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A CLASS OF NON-CENTRAL E-FUNCTORS

G. R. CHAPMAN

1. Introduction. We refer the reader to [1, Chapters 1 and 2] for the
notions of E-functor and centrality. Let Ry € R be the integral group rings of
the groups G1 € G. Butler and Horrocks [1, Chapter 26] have shown that on
the category € of left, unitary R-modules the Hochschild E-functor determined
by R is central. There are no examples of non-central Hochschild E-functors,
and our purpose is to establish the existence of a class of such E-functors.

Take G to be finite, non-abelian and let .S be the centre of R. Denote by & the
Hochschild E-tunctor determined by .S. We obtain a necessary condition for the
centrality of ® in terms of the group structure of G. Let G* denote the subgroup
of G generated by the commutators of G together with the set {g"9: g € G},
where 7% (g) is the class number of g in G. The main result is

THEOREM. If G/G* # {e}, then ® is non-central.

We note that G/G* # {e} when G is a non-abelian p-group.

2. Preliminaries. Let Z denote the integers with trivial G-module action,
Exts = Ext, Tor® = Tor,and 4, B€ €. If0>L—>P—>4—0,0—>B—
Q — M — 0 denote, respectively, a ®-projective representation of 4 and a
®-injective representation of B, then we have the exact sequences:

.. > Ext'(P, B) — Ext'(L, B) % Ext*(4, B) — . . .

...— Ext'(4, Q) -» Ext'(4, M) o2, Ext’(4,B) — ...

We note that Ext - ®(4, B) = Im 8;; ® - Ext(4, B) = Im §, [1, Chapter 10].

3. Proof of the theorem. We use the result quoted in the preliminaries,
with 4 = B = Z and show that & Ext(Z, Z) = 0, Ext- ®(Z, Z) = G/G*,
whence the theorem follows. To avoid confusion, in the early stages of the proof
B is taken to be a finitely generated, torsion free, G-trivial G-module. We prove
that if 0 > J - R ®s Z — Z — 0 denotes the standard ®-projective repre-
sentation of Z, then |G| - J = 0. From this, it follows that B is ®-projective (so
& - Ext(—, B) = 0) and that Ext! (J, B) = Ext;! (Z ®¢J, B). We use the
last fact to show that Ext- ®(Z, B) = Ext! (J, B). When B = Z, this is
G/G*, and the proof is complete.
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LEMMA 1. J has exponent |G|.

Proof. Let I be the difference ideal of G. Define f:R — R ®sZ by
f@r) =r ®s1 (r € R); then we have the exact commutative diagram of
G-modules and G-module homomorphisms:

0 o0
1ol
K=K
Lol
(@) 0-I >R S5 Z-0

LS [
0—-J 2 RRsZ—-2Z—0

Lol
0 0

Since S is the centre of R, if s € S, then s+ (R ®sZ) = €(s) - (R ®s Z).
Let N denote the sum of the elements of G. Then Ng € S,s0 N¢ - (R ®s Z) =
|G| - (R ®s Z). But J is a G-submodule of R ®s Z, so Ng - J = |G| - J.

Now Ng I = 0, and since J is a G-homomorphic image ot I, Ng-J = 0.
Thus, |G| - J = 0, and the lemma is proved.

Note that J is finitely generated, so it is finite.
LEMMA 2. B is a $-injective.

Proof. Consider the standard ®-injective representation of B

0 — B % Homg(R, B) — N — 0.

Since B is G-trivial, Homg (R, B) =2 Hom, (Z ®s R, B), and since S is com-
mutative we can take this to be Hom, (R ®s Z, B). As an S-module (and
hence as a group) R ®sZ is Z @J. Now by Lemma 1, J is finite, so
Hom, (J, B) = 0 and Homg (R, B) = B. This isomorphism provides a
G-splitting map for <.

LemMma 3. Ext! (J, B) = Ext,! (Z ®¢J, B)

Proof. 1f 0 > M — F — J — 0 is a free presentation of J, we obtain exact
sequences:
(1) 0—Homg¢ (J, B) » Homg (F, B) —» Hom¢ (M, B) —
Ext! (J, B) - Ext! (F,B) — ...
..o Tory (Z,F) > Tory (Z,]) > Z QcM —>2Z Qe F—>2Z ®cJ —0
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In the latter sequence, Tor; (Z, F) = 0 and if we put
U = Ker {Z ®G F—Z ®GJ}1

there arise further exact sequences

(2) 00— Homy (U, B) < Hom, (Z ® M, B) — Hom, (Tory (2, J), B) — . . .
(3) 00— Homz (Z ®¢J, B) > Hom, (Z ®¢ F, B) - Hom, (U, B) —
Extz! (Z ®eJ, B) — Extz' (Z ®¢ F, B)

Now, Ext! (F, B) = Extz;! (Z ®¢ F, B) = 0. Since J is finite (Lemma 1),
so are Tor; (J, Z) and Z ®¢J. However, B is torsion free, which means that
Hom, (J, B) = Homy, (Tor: (J, Z), B) = Hom, (Z ®¢J, B) = 0. Applying
these facts to the sequences (1), (2), and (3) we can construct the exact
commutative diagram

0 — Homyg (F, B) —» Hom¢ (M, B) — Ext! (J, B) —» 0
I IR
0 — Hom; (Z ®¢ F, B) —» Homy (U, B) — Ext;! (Z ®¢J, B) —0,

where the left hand isomorphism is an associativity isomorphism (B is G-
trivial), and the right hand isomorphism is the composite of an associativity
isomorphism and ¢ Hence, Lemma 3 follows.

LeEmMA 4. Ext - ®(Z, B) =~ Ext! (J, B)
Proof. From the preliminaries, it is sufficient to show that
Ext! (R ®sZ,B) =0
in the exact sequence
..— Ext' (Z, B) - Ext' (R ®s Z, B) — Ext' (J, B) %, Ext? (Z,B) — ...

Now, Ext! (Z, B) = 0, and from Lemmas 1 and 3, Ext! (J, B) is finite, so
Ext! (R ®s Z, B) is finite. Consider the exact sequences

0 — Homg¢ (Z, B) » Homg (R ®s Z, B) —» Homg (J, B) — . ..

0 - Homg (R ®s Z, B) [ilHomG (R, B) > Homg (K, B)
— Ext' (R ®s Z,B) — Ext' (R,B) — ...

In the former, Hom¢ (J, B) = 0, which means that Coker [f] is finite. Thus,
Homg (K, B) is finite. However, since B is G-trivial and torsion free, Homg
(K, B) is free, whence it is zero. It now follows from the latter exact sequence
that Ext! (R ®s Z, B) = 0, and Lemma 4 is proved.
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Now take B = Z. From Lemmas 3 and 4, Ext-®(Z,Z2) >~ 7 ®¢J.
Considering the diagram
0

!
[2
!
0—-K—1I - J—0
! !
Z®(;I——>Z ®GJ—)0
! !

0 0 )
we see that Z ®¢J = I/(1%2 + K).
From diagram (¢), K = R(I N S). Let Cy, ..., C. denote the distinct

conjugacy classes of G, and let %, ¢; denote, respectively, the number of and
the sum of the elements in C;(1 = 7 < k). Then a basis for K is

Now, the map #:I/I? - G/G" given by n((g — 1) + I?) = gG’ is an iso-
morphism between the additive group I/I? and the multiplicative group G/G’.
Since n((g1 — 1) + I?) = n((ggig™* — 1) + I?), for all g, g: € G, it follows
that n((&; — hy) + I2) = (g,G')", where g; is some element in C;, 1 =7 < k.
Hence, the additive group I/(I?> + K) is isomorphic to the multiplicative
group G/G*, where G* is the subgroup of G generated by the commutators of G
together with the set {g/i:g; € C;, 1 < ¢ < k}, and the theorem is proved.

COROLLARY. If G is a non-abelian p-group, then ® is non-central.

Proof. From the class equation for G, it follows that G* C G’ - C(G) - G?,
where G? = {gP:g € G}. For a p-group, G’ - G*» = ¢(G), the Frattini subgroup
of G, so there exists an epimorphism G/G* — G/{¢(G) - C(G)}. But
G # ¢(G) - C(G), since otherwise, G would be abelian. Hence, G/G* # {e},
and the result follows from the theorem.
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