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A CLASS OF NON-CENTRAL E-FUNCTORS 

G. R. CHAPMAN 

1. I n t r o d u c t i o n . We refer the reader to [1, Chapters 1 and 2] for the 
notions of E-functor and centrality. Let Ri Ç R be the integral group rings of 
the groups G\ C G. Butler and Horrocks [1, Chapter 26] have shown tha t on 
the category S of left, uni tary i^-modules the Hochschild E-functor determined 
by Ri is central. There are no examples of non-central Hochschild E-functors, 
and our purpose is to establish the existence of a class of such E-functors. 

Take G to be finite, non-abelian and let 5 be the centre of R. Denote by <i> the 
Hochschild E-lunctor determined by S. We obtain a necessary condition for the 
central i ty of $ in terms of the group structure of G. Let G* denote the subgroup 
of G generated by the commutators of G together with the set {gh^: g £ G}, 
where h(g) is the class number of g in G. The main result is 

T H E O R E M . If G/G* ^ {e}, then <î> is non-central. 

We note t ha t G/G* 9^ [e] when G is a non-abelian p-group. 

2. Pre l iminar ie s . Let Z denote the integers with trivial G-module action, 
E x t s = Ext , T o r 6 = Tor, and 4 , B G <S. I f O - > L - + P - + , 4 - > 0 , 0 - * £ -+ 
Q —» M —> 0 denote, respectively, a ^-projective representation of A and a 
<ï>-injective representation of B, then we have the exact sequences: 

. . . -> Ext 1 (P , B) -> Ext 1 (7 , B) ^> Ext\A,B) - » . . . 

. . . - * Ext 1 (.4, Q) -> Ext\A,M) ^> Ext2 (.4, B) -> . . . 

We note t ha t Ex t • $ ( 4 , B) = Im ô i ; $ • E x t ( 4 , 5 ) = Im <52 [1, Chapter 10]. 

3. Proof of t h e t h e o r e m . We use the result quoted in the preliminaries, 
with A = B = Z and show tha t $ • Ex t (Z , Z) = 0, Ex t • $ ( Z , Z) = G/G*, 
whence the theorem follows. T o avoid confusion, in the early stages of the proof 
B is taken to be a finitely generated, torsion free, G-trivial G-module. We prove 
t h a t if 0 —-> 7 —> R (x),s Z —> Z —> 0 denotes the s tandard ^-projective repre­
sentat ion of Z, then \G\ -J = 0. From this, it follows tha t B is ^-projective (so 
3> • E x t ( - , B) = 0) and tha t Ext 1 (7, B) ^ Extz1 (Z ®GJ, B). We use the 
last fact to show tha t E x t - 3>(Z, B) ^ Ext 1 ( 7 , 5 ) . When B = Z, this is 
G/G*, and the proof is complete. 
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LEMMA 1. J has exponent \G\. 

Proof. Let 7 be the difference ideal of G. Define f:R—>R(g)sZ by 
f(r) = r 0s 1 (r £ R); then we have the exact commutative diagram of 
G-modules and G-module homomorphisms: 

(a) 

0 0 
1 1 
K = K 

i i 
0->I -^R -U 

1 if 
0 - > / -^R®sZ 

1 Ï 
0 0 

Since S is the centre of R, ii s £ S, then s • (i? (x)s Z) = c(s) • (R (g)s Z). 
Let iVG denote the sum of the elements of G. Then iVG Ç 5, so iVG • (i? (x)s Z) = 
|G| • (R (g)s Z). But J is a G-submodule of R ®s Z, so NG • J = |G| • J . 

Now NG -7 = 0, and since J" is a G-homomorphic image of 7, iVG - 7 = 0. 
Thus, |G| • J = 0, and the lemma is proved. 

Note that J is finitely generated, so it is finite. 

LEMMA 2. B is a ^-infective. 

Proof. Consider the standard $-injective representation of B 

O-^B^UomsiR.B) ->JV->0. 

Since B is G-trivial, Hom s (R, B) = Hom z (Z (g)s R, B), and since S is com­
mutative we can take this to be Hom z (R ®sZ,B). As an 5-module (and 
hence as a group) R ®s Z is Z @J. Now by Lemma 1, J is finite, so 
Hom z (J, B) = 0 and Horns (R, B) ~ B. This isomorphism provides a 
G-splitting map for i. 

LEMMA 3. Ext1 (7, B) ^ Extz
x (Z ®GJ,B) 

Proof. If 0 —> M —> F —> J —> 0 is a free presentation of J, we obtain exact 
sequences: 

(1) 0 -> HomG (7, B) -» Horn, (F, 5 ) -> HomG (M, B) -> 

Ext1 (J, 5 ) -» Ext1 (F, £ ) - + . . . 

. . . -> Tori (Z, F) -* Torx (Z, J) -» Z ®G 717 -> Z <g)0 F -> Z ®G J -> 0 
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In the latter sequence, Tori (Z, F) = 0 and if we put 

U= Ker{Z ®G F-> Z ®GJ}, 

there arise further exact sequences 

(2) 0 -> Horn, (U, B) X Homz (Z ®G M, B) -> Homz (Tor! (Z, / ) , 5 ) - > . . . 

(3) 0 -> Hom z (Z ®c J, B) - • Hom z (Z ®G F, B) -> Hom z (U, S ) -> 

Ext*1 (Z ®G J, 5 ) -> Extz1 (Z ®GF,B) 

Now, Ext1 (F, 5 ) = Extz
x (Z ®GF,B) = 0. Since 7 is finite (Lemma 1), 

so are Tori (J", Z) and Z (x)# / . However, B is torsion free, which means that 
Hom2 (/, B) = Horn, (Tori (7, Z), 5 ) = Horn, (Z ®GJ, B) = 0. Applying 
these facts to the sequences (1), (2), and (3) we can construct the exact 
commutative diagram 

0 -> Horn, (F, B) -> HomG (Af, 5 ) -> Ext1 (J, B) -> 0 

II? II? 
0 - • Hom z (Z ®Q F, B) -» Hom z (£7, 5 ) -> Ext^1 (Z ®G J, B) -> 0, 

where the left hand isomorphism is an associativity isomorphism (B is G-
trivial), and the right hand isomorphism is the composite of an associativity 
isomorphism and £. Hence, Lemma 3 follows. 

LEMMA 4. Ext • $(Z, B) ^ Ext1 (/, B) 

Proof. From the preliminaries, it is sufficient to show that 

Ext1 (R ®SZ,B) = 0 

in the exact sequence 

. . . -> Ext1 (Z, B) -> Ext1 (i? Os Z, J3) -» Ext1 (J, 5 ) ^> Ext2 (Z, 5 ) -> . . . 

Now, Ext1 (Z, B) = 0, and from Lemmas 1 and 3, Ext1 (J, B) is finite, so 
Ext1 (R ®s Z, B) is finite. Consider the exact sequences 

0 -> HomG (Z, 5) -» HomG (i? (g)s Z, 5) -> Hom G (J", 5) -> . . . 

0 -> HomG (2? ® s Z, 5) ̂5 HomG (i?, 5) ->Hom„ (K, B) 

-» Ext1 (R ®s Z, 5) -> Ext
1 (R,B)->... 

In the former, HomG (J, B) = 0, which means that Coker [/] is finite. Thus, 
HomG (K, B) is finite. However, since B is G-trivial and torsion free, HomG 

(K, B) is free, whence it is zero. It now follows from the latter exact sequence 
that Ext1 (R 0s Z, B) = 0, and Lemma 4 is proved. 
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Now take B = Z. From Lemmas 3 and 4, Ex t • $ ( Z , Z) ^ Z ®G J. 
Considering the diagram 

0 

Ï 
P 

Ï 
0-+K-+I -> / - > 0 

1 I 

I I 
0 0 

we see t h a t Z ®G J ^ I/(P + K). 
From diagram (a), K = R(I H\ S). Let G , . . . , Ck denote the dist inct 

conjugacy classes of G, and let hu ct denote, respectively, the number of and 
the sum of the elements in C^(l ^ i ^ k). T h e n a basis for K is 

{ti - A,:l ^ i ^ * } . 

Now, the map rf.I/P —> G/G given by rj((g — 1) + I2) = gG' is an iso­
morphism between the addit ive group I/P and the mult ipl icat ive group G/G'. 
Since iKtei - 1) + ^2) = ^ ( f e i ^ 1 - 1) + I2), for all g, g l £ G, it follows 
t h a t 7]((Ci — Ai) + J2) = {giG)n\ where gt is some element in Cu I ^ i ^ k. 
Hence, the addit ive group I/(P + K) is isomorphic to the mult iplicative 
group G/G*, where G* is the subgroup of G generated by the commuta to rs of G 
together with the set {gthi:gi (z Ci} 1 tî i t^ k}, and the theorem is proved. 

COROLLARY. If G is a non-abelian p-group, then $ is non-central. 

Proof. From the class equat ion for G, it follows t h a t G* Ç G • C(G) • Gp, 
where Gv = {gp:g G G}. For a ^-group, G - Gp = <t>(G), the Fra t t in i subgroup 
of G, so there exists an epimorphism G/G* —* G/{<t>(G) - C(G)). Bu t 
G 9^ <t>(G) • C(G), since otherwise, G would be abelian. Hence, G/G* ^ {e}, 
and the result follows from the theorem. 
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