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I - INTRODUCTION 

Until very recently the only available source of accurate positions for 
the Moon and planets were the american export ephemerides from JPL in 
particular DE86/LE40 which expired in May 1979 and then DE96/LE44 
and DE102/LE51. Unfortunately, these ephemerides were constructed for 
various applications, but are not necessarily adapted for a purpose 
such as the EROLD program. Furthermore, these ephemerides are badly 
documented, which prevents having good homogeneity with the computations 
for the representation of the various motions of a lunar laser reflector 
with respect to a terrestrial station. Thus, in this framework, some 
other studies were useful. 

A few years ago, we decided that it would be desirable to support the 
Lunar Laser data reduction with the construction of a new ephemeris 
by numerical integration. This was considered valuable not only from 
the scientific point of view, but also as an operational tool for the 
EROLD and MERIT programs. Early in 1980, we adopted this ephemeris, 
called ECT 18, in the EROLD computations for the Annual Reports of 

• BIH and for the needs of MERIT Operating Center and Analysis Center at 
CERGA. 

II - DESCRIPTION OF BASIC MODEL 

The anachronym ECT means "Ephemeride CERGA-Texas" in order to underline 
that the studies were under the responsibility of the author at CERGA, 
but collaborating with the University of Texas for the integrator model, 
of which a version (Lawson 1965) was already operational in Austin and 
was thus modified and adapted to our computer. Since then, there has 
been a considerable evolution in the improvements of the acceleration 
requirements of the laser data. 

The basic integrator is a classical Adams-Moulton predictor-corrector, 
in rectangular coordinates, used for simultaneous integration of eleven 
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bodies. For lunar integration, the method uses differences at 12th-order, 
at a step of 0.25 day. 

The predictor-corrector mode is used for the "critical" bodies of the 
solar system : Moon, Earth, Venus while the predictor only mode is 
applied to the other bodies. 

The starting procedure is made by application of the Gauss f and g „_ 
series, with the closure to a limit chosen by the user, currently 10 
The computations of integration are performed in the full CDC double 
precision, i.e. 28 significant figures. 

Ill - MODELLING OF ACCELERATIONS ; 

The computation of accelerations for the Moon and the planets are per­
formed in several steps : the point-mass force model, including rela-
tivistic aspects, the effects of Earth's zonal harmonics, the effects 
of the lunar gravity harmonics, the effects of tidal friction on the 
lunar orbit. 

1/ Point-mass force model : The differential equations governing the 
motion of the centers of masses are written and integrated in the 
inertial Cartesian coordinate system, referred to the mean equinox and 
equator of B1950.0. The origin is the solar system barycenter. 

2 
The principal force terms represent the Newtonian attractions in 1/r 
of each body, treated as point-masses. The effect of the mass of the 
body i on its own acceleration is contained in its contribution to the 
Newtonian potential at each perturbing body j and in its contribution 
to the Newtonian acceleration of each body j. 

Obviously a pure Newtonian theory is not sufficient to obtain the 
required accuracy for the lunar laser data analyses. On the other hand, 
a full process of the post-Newtonian expansion is very complicated and 
very expensive as computing time, so that truncatures of the series have 
often been performed by several authors in selecting only the greatest 
terms which seem to be the most significant ones. For example, Brouwer 
and Clemence (1961) considered only the terms of second-order that would 
exist if the Sun and the considered body were the only with non-zero 
masses in the system. A few other authors considered some additional 
terms for the three body effects in the Earth-Moon system (Devine,1967; 
O'Handley et al.,1969), essentially for the lunar applications. However, 
this approach may be very dangerous and these approximations, even if 
they are quite adequate to the Einsteinian general relativity motion 
of the Earth-Moon barycenter and of the other major planets, represent 
only a few percents of the relavistic contribution to the geocentric 
motion of the Moon. 

Consequently, we have based our model on the full 2nd-0rder post-
Newtonian general relavistic accelerations of the eleven point-masses. 
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The expressions used for the acceleration of each body i with respect 
to the barycenter of the solar system, in the rectangular inertial system 
are adopted from the equation 35 of T. D. Moyer (1971). 

2/ Tidal acceleration : This effect represents essentially an acceleratio 
in the lunar orbital longitude due to the tidal energy dissipation in 
the Earth which causes a deceleration of the Earth rotation so that, 
in the hypothesis of the conservation of angular momentum in the Earth-
Moon system, it is transferred to the lunar orbit. 

Two types of procedures have been studied for the modelling, with the 
goal of optimizing the computations. Details of both models may be 
found in Mulholland and Calame (1982). 

3/ Effects of Earth's zonal harmonics : Due to the significant mass 
and non-sphericity of the Earth and the Moon, the geocentric motion of 
the Moon is strongly disturbed by the gravitational figures of both. 

The direct acceleration due to the oblateness of a body is derived from 
the generalized potential function 

1 °° n / a \ n 
• • I S ( f ) < < 

n=l m=o \ / 
sintf ) 

x ( C cos mA + S sin vaX ) 
nm nm 

where : u = gravitational constant of the body 

r,c(>,A = radius, latitude and longitude relative to the body 

a = mean equatorial radius of the body 
P 

P = associated Legendre functions 

C S = harmonic coefficients 
nm, nm 

-, For the effects relative to the Earth, we consider only the zonal terms 
j of second, third and fourth-degree. 
i 
! 
j The orientation of the Earth's figure, then the orientation of the axis 
i with respect to the adopted inertial system, is computed from the prin­
cipal terms of precession. The nutation effect is not yet taken into 
consideration. 

4/ Effects of the lunar gravity field : Similarly, the orbital motion 
of the Moon is influenced by its own figure. The modelling of the 
orientation of the figure axis is a little more delicate here because 
its motion is less uniform. Thus, it is necessary to take account of 
the physical librations, since the principal axis of inertia is 
shifted from the adopted frame, with significant oscillations. 
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In our modelling, the effects of the second and third-order and degree 
of the lunar gravity field are introduced. The necessity to include 
so many terms may not be evident, even for the high accuracy of the 
laser data, but in fact the effects of third-order are not completely 
negligible and also, due to the spin-orbit interactions, these intro­
ductions were done in the preparation of future achievements to 
integrate simultaneously the orbital and rotational motions of the Moon, 
in order to ensure consistency between them. Indeed, the offset of the 
C„„ coefficient is particularly critical and may cause a fictitious 
secular acceleration of the Moon along its orbit. 

5/ Current omissions : In the present model, there are some significant 
omissions which are under study but of which the effects are not yet 
introduced. In particular, the lunar elasticity and dissipation I 
are not considered. Also, most of the constant values are those for the| 
1976 IAU system of Astronomical Constants, excepting for the precession,i 
nutations, lunar and planetary masses and lunar harmonics. l-

IV - RESULTS 

This modelling of the positions of the solar system bodies was used 
to provide the ephemeris ECT18, early in 1980. For the Moon, the 
initial conditions of the motion were adjusted to the lunar laser data 
available from McDonald Observatory from 1969 to December 1979. The 
planetary initial conditions were obtained from DE96. The result was 
used for the purposes of the EROLD program and the MERIT campaign, as 
it is described by Calame (1982). This ephemeris may possibly be 
exportable, but this has not yet been done. 

Furthermore, to estimate the quality of this product, we have per­
formed some comparisons with recent JPL export ephemerides (DE96,DE102). 
Samples of differences for the geocentric position of the Moon are shown -
in figures 1 and 2. These diagrams are corrected for the differences in 
basic constants to show the discrepancies inherent only to the 
modellings themselves and to the initial conditions. It appears that 
the ECT18 ephemeris presents smaller discrepancies with DE96 than 
with DEI 02, but this may be explained by the choice of the initial 
conditions for the planets, which perturb largely the Moon motion. 
Among the differences, there are essentially annual, monthly and 
long-term (19 years) effects. After global solutions from the Lunar 
Laser data on 11 years (1969-1980), for 50 parameters, without fitting 
of the short-term variations in the Earth rotation, the post-fit r.m.s. 
residuals, from these three ephemerides (ECT18, DE96, DEI02), are 
3.92 ns, 3.98 ns and 3.85 ns, respectively. Obviously, this ephemeris 
ECT18 is still experimental; some new studies are under investigation 
for improved versions. 
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DISCUSSION 

Chapront : What initial conditions did you introduce in ECT18 for 
the planetary perturbations ? 

Calame : Those obtained from the DE96. 

Lestrade : Does the relativistic model from Moyer, used in ECT18, is 
the same as Estabrook's formula in the solar system barycentric 
coordinates ? 

Calame : I do not have the Estabrook's forirula, so that no comparison 
has been done, but the formulation would probably be compatible. 
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