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ABSTRACT

We prove that certain roots of the Bernstein—Sato polynomial (i.e. b-function) are jumping
coefficients up to a sign, showing a partial converse of a theorem of L. Ein, R. Lazarsfeld,
K. E. Smith, and D. Varolin. We also prove that certain roots are determined by a filtra-
tion on the Milnor cohomology, generalizing a theorem of B. Malgrange in the isolated
singularity case. This implies a certain relation with the spectrum which is determined by
the Hodge filtration, because the above filtration is related to the pole order filtration. For
multiplier ideals we prove an explicit formula in the case of locally conical divisors along a
stratification, generalizing a formula of Mustata in the case of hyperplane arrangements.
We also give another proof of a formula of U. Walther on the b-function of a generic
hyperplane arrangement, including the multiplicity of —1.

Introduction

Let X be a complex manifold and let D be an effective divisor on it. For a positive rational
number «, the multiplier ideal J(X,aD) is a coherent ideal of the structure sheaf Ox defined
by the local integrability of |g|?/|f[|*® for g € Ox, where f is a holomorphic function defining
D locally, see [ELSV04, Laz04, Nad90]. This gives a decreasing filtration on Ox, and essentially
coincides with the filtration induced by the V-filtration of Kashiwara [Kas83] and Malgrange [Mal81]
along D indexed by Q, see [BS05]. It is also related to the spectrum Sp(f,x), see [Bud03, BS05].

The numbers a at which the J(X,aD) jump are called the jumping coefficients of D. It is
shown by Ein et al. (see [ELSV04]) that any jumping coefficients which are less than one are roots
of the Bernstein-Sato polynomial bs(s) (i.e. the b-function) up to a sign. It is well known that the
minimal jumping coefficient o coincides with the minimal root of bs(—s), see [Kol97]. For x € D,
we define by, (s), af, by replacing X with a sufficiently small neighborhood of x. For o« > 0 with
0 < € < 1, the graded pieces are defined by

G(X,aD)=J(X,(a —¢)D)/T(X,aD) (= Gr{;Ox).

We say that « is a local jumping coefficient of D at = if G(X, aD), # 0. We have a partial converse
to the theorem of [ELSV04] as follows (see §3.3).

THEOREM 1. Let v be a root of by ,(—s) contained in (0,1). Assume that:

(a) &f = f for a holomorphic vector field &;
(b) a < ay, for any y # x sufficiently near x.

Then « is a local jumping coefficient of D at x.
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Theorem 1 does not hold if either of the two conditions is not satisfied, see Remarks 3.4. Con-
dition (b) is satisfied if exp(—27i3) is not an eigenvalue of the Milnor monodromy of f at y # «
for any 8 € [af g, ). By definition, J(X,(a +1)D) = fJ(X,aD) for o > 0, and the jumping
coefficients have a periodicity so that a > 0 is a jumping coefficient if and only if o+ 1 is. However,
the roots of by(—s) do not have such a periodicity and we have to restrict to (ayg,1).

As for the relation with the spectrum, Budur [Bud03] proved that, if a € (0,1) and G(X, aD)
is supported on a point x of D (e.g. if condition (b) of Theorem 1 is satisfied), then the coefficient
my of the spectrum Sp(f,z) =3 5 mgtﬁ is given by

me = dimG(X, aD),. (0.1)

Indeed, under the above hypothesis, G(X, aD)(= Gr{;Ox) is identified with the Hodge filtration
F"~1 on the A-eigenspace of the Milnor monodromy H" !(F,,C), for A = exp(—2mia) where F,
denotes the Milnor fiber around x and n = dim X, see [BS05]. In the isolated singularity case,
(0.1) is closely related to [Loe85, Mal75, Vaq92, Var82]. We have a generalization of a result of
Malgrange [Mal75] as follows (see §4.5).

THEOREM 2. There exists canonically a decreasing filtration P on H" Y(F,,C), stable by the
Milnor monodromy and containing the Hodge filtration I, and for any rational number « such that
A = exp(—2mia), we have the following.

(a) IfGrpH" YF,,C)\ # 0 with p = [n — al, then « is a root of by x(—s).

(b) If o + i is not a root of by,(—s) for any y # x and any i € N, then the converse of the
assertion (a) holds.

(c) If A is not an eigenvalue of the Milnor monodromy at y # x, then the multiplicity of the root
« coincides with the degree of the minimal polynomial of the action of the monodromy on
Gr’}%H”_l(Fx,C),\.

Note that the spectrum [Ste89] is defined in the same way as in assertions (a) and (c) replacing P
with the Hodge filtration F' and the minimal polynomial with the Characterlstlc polynomial, see § 3.5.

The filtration P is defined by using the saturated Brleskorn lattlces Gl ; (see (4.1.6)), and contains

the Hodge filtration F', see Proposition 4.4. Replacing g p with the Brieskorn lattices Qj(f_i), we

have the filtration P contained in P, see (4.1.6). In the isolated singularity case, P coincides with the
Hodge filtration F', see [SS85, Var82]. In the quasi-homogeneous isolated singularity case, this also
follows from [Mal75, Ste77a] (where the Milnor cohomology is identified with the Jacobian ring, and
the Hodge filtration is described by using the weighted degree of monomials). If f is a homogeneous
polynomial in general, then P coincides with P and with the pole order filtration defined by using
a local system on an open subvariety of P"~! calculating H" ! (F}, C),, see Proposition 4.9.

In general it is not easy to calculate J(X,aD) explicitly except for some special cases, see
[How03, How01, Mus06], etc. In this paper, we give an explicit formula for J (X, aD) in the case D
is a locally conical divisor along a stratification, i.e. D is locally defined by a weighted homogeneous
function with nonnegative weights and the zero weight part, which is the limit of the (local) C*-
action, is given by the stratum passing through the point (e.g. D is an affine cone of a divisor on
P2 which is defined locally in classical topology by a weighted homogeneous polynomial), see § 1.2
for details. We have a (shifted) decreasing filtration {G$ }ocq on Ox , associated to the weights at
each x € D, see §1.3. Let D" denote the smallest closed analytic subset of D such that D is a
divisor with normal crossings outside D""¢, and let DX} be the smooth part of the reduced variety
Dred-
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THEOREM 3. Let X be a complex manifold and let D be a locally conical divisor along a stratifi-
cation. Then a section g of Ox belongs to J(X,aD) if and only if g, € Ox , belongs to G; for
any x € D" U DXY.

This generalizes a formula of Mustata [Mus06] for a hyperplane arrangement with a reduced
equation. The condition for x € D] is equivalent to that the vanishing order of g along D is strictly
greater than am, — 1 where m, is the multiplicity of D at z. A similar formula has been known
for a function with nondegenerate Newton boundary, see [How03, How01, Laz04] (and also §2.4).
By induction on stratum, Theorem 3 is reduced to Theorem 2.2 whose proof uses the above ana-
lytic definition of multiplier ideal together with some commutative algebra, see Proposition 2.1,
Theorem 2.2 and §2.3.

For a divisor D on a complex manifold, let ap = min{as, : « € D} where f is a holomorphic
function defining D on a neighborhood of x. As a corollary of Theorem 2.2 we can deduce the
following.

PROPOSITION 1. Assume X = C" and that D is the affine cone of a divisor Z of degree d on P"~ .
Let Ty be the ideal sheaf of {0} C C™. Then we have for o < ay

J(X,aD) =TF with k = [da] —n + 1.
In particular, j/d is a local jumping coefficient of D at 0 if n < j < day.

Note that az < 1, and the equality holds if Z is a reduced divisor with normal crossings, e.g. if
. . . . k k—1
D is a generic hyperplane arrangement, see also [Mus06]. Since dimZ§ /IO+1 = (":_1 ), we get
from (0.1) and Proposition 1 the following.

COROLLARY 1. With the notation and the assumption of Proposition 1, assume that Z is a reduced
divisor with normal crossings on P"~1. Then the coefficients m,, and m,,_, of the spectrum Sp(f,0)
are (J71) fora = j/d < 1.

The assertion for m,_, is reduced to that for m, by the symmetry of the Hodge numbers for
the nonunipotent monodromy part of the vanishing cohomology (which is identified with that of the
nearby cycle sheaf in this case). Note that the formula is the same as in the case of a homogeneous
polynomial with an isolated singularity, and can also be deduced from the calculation of the Hodge
filtration in §4.8.

In the case of a generic central hyperplane arrangement with a reduced equation f, the b-function
is determined by Walther [Wal05] (except for the multiplicity of the root —1). Using Theorem 2
together with [Bri73, ESV92], we first see that the roots of by(—s) are strictly smaller than two,
see Proposition 5.2. Then we can give another proof of his formula together with the multiplicity of
—1, using the relation between the b-function and the V-filtration in [Kas83, Mal81] together with
Corollary 1, see §5.4. Note that for any arbitrary hyperplane arrangement, —1 is the only integral
root of bs(s) (see [Wal05]), and we can show that its multiplicity is —n if the arrangement is not
the pull-back of an arrangement in a strictly lower-dimensional vector space, see Proposition 5.3.
More details will be given in a forthcoming paper on the b-functions of hyperplane arrangements.

Walther’s formula shows that, without restricting to the interval (0,1), there is no relation
between the spectrum and the roots of by(—s) (in contrast to the case of a homogeneous polynomial
with an isolated singularity). This comes from the difference between the Hodge and pole order
filtrations on the Milnor cohomology in Theorem 2, see Proposition 4.9.

As for the spectrum of generic central hyperplane arrangement, the m, for o € Z are easily
calculated, see (5.6.1). Combined with Corollary 1, this gives the spectrum of a generic central
hyperplane arrangement for n = 3, because the Euler characteristic is calculated in [CS95, OR93].
It is possible, in principle, to calculate the spectrum for a general n, using [DS04].
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In §1, we introduce locally conical divisors along a stratification. In §2, we prove Theorem 2.2
which implies Theorem 3. In § 3, we explain the relation with b-function and spectrum, and prove
Theorem 1. In §4, we explain the relation with Brieskorn modules and Gauss—Manin systems, and
prove Theorem 2. In §5, we treat the case of a generic central hyperplane arrangement, and give
another proof of Walther’s theorem as an application of Theorem 2.

1. Locally conical divisors along a stratification

1.1 Conical divisors

Let Y be a complex manifold, and (z1,...,z,) be the coordinate system of C". Let w = (wy, ..., w,)
€ QL (i.e. w; are positive rational numbers). We say that an effective divisor D on X :=Y x C”
is a conical divisor along Y x {0} with positive weight w = (w1, ..., w,) if D is locally defined by a
relatively weighted homogeneous function f with positive weight w (i.e. f is a linear combination
of a7* -+ a¥» with Oy-coefficients such that (v1,...,1,) € N” satisfies >, w;v; = 1). For a positive
real number A\, we define ¢, : C" — C" by

oa(xy, .. ) = (A2, ATy, (1.1.1)

and id x ¢y : Y x C" — Y x C" will be denoted also by ¢x. Then ¢3 f = Af.

1.2 Locally conical divisors along a stratification

We say that a divisor D on a complex manifold X is a locally conical divisor along a smooth
submanifold Z if for each z € Z, there exist a complex manifold Y, a conical divisor D’ on Y x C"
with positive weight w along Y x {0}, an open subset U’ of Y x C", and an open neighborhoods
U of z in X together with an isomorphism U ~ U’ inducing isomorphisms U N D ~ U' N D/,
UNZ~U"N(Y x{0}) (in particular, z corresponds to a point of Y x {0}). Note that the weight
w is not necessarily unique in general.

Let D be an effective divisor on a complex manifold X. Let D""¢ be the smallest closed analytic
subset of D such that D\ D" is a divisor with normal crossings on X \ D"°. We say that D is
a locally conical divisor along a stratification {S;} of D™ if D is a locally conical divisor along S;
for each 1.

1.3 Shifted w-filtrations along strata
With the notation of §1.1, let z = (y,0) € Y x {0} and g € Ox . We have the expansion

9= g (1.3.1)
s

such that gg is a linear combination of | - - - a¥» with Oy-coefficients satisfying
> wilvi+1) = . (1.3.2)
i

We define a decreasing filtration G of ideals of Ox , such that G* is generated by z* ---a¥» with
Yo wi(vi +1) > a (ie. g € G* if and only if g3 vanishes for 3 < «a). This is called the shifted
w-filtration.

If D is a locally conical divisor along Z or a stratification {S;} as in §1.2, we have the shifted
w-filtration G, on Ox , for each x € Z or D""°. This is not necessarily unique in general.

If x € DI (:= D\ SingDyeq), let h be a holomorphic function defining D;eq on a neighborhood
of z and let m, be the multiplicity of D at x. Then for a > 0, we have G§ = hi_l(’)x,z where i is
the minimal integer such that ¢ > m,a.
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Let Go% = U5>a G? in general.

Remarks 1.4. (i) If f =", wz with u;(0) # 0 and a; € Z~o, then D := f~1(0) is locally conical
along the origin, because f =Y y/* with y; = u, L/ai x;. This implies, for example, that a divisor D
on C? is locally conical along a stratification, if it is defined by f = 2%y’ 4+ y%2b 4 2%2® with a,b > 1.

(i) It is possible that the moduli of singularity really vary along a stratum, e.g. f = (23 + 33

+ 23)u + zyz0.

2. Calculation of multiplier ideals
The following is the key to the proof of Theorem 3.

PROPOSITION 2.1. With the notation and the assumptions of § 1.1, let X =Y xC", X' = X\ Y x{0}
with the inclusion j : X' — X. Put D' = DN X'. If g € Ox 5 belongs to j,.J(X',aD’), then each
gp in (1.3.1) belongs to j.J(X',aD").

Proof. Since J(X',aD') is extended to a coherent sheaf on X, 7,7 (X', aD’) N Ox is coherent.
(Indeed, the assertion is reduced to the case where the complement of the image of j is a divisor,
using a Cech complex. Then any section of j,.J(X',aD’) N Ox defines a section of Ox/J (X, aD),
which is supported on the divisor, and hence is annihilated by a sufficiently high power of a function
defining the divisor. So the intersection with j,. 7 (X', aD’) can be replaced by the intersection with
the algebraic localization of a coherent extension of J (X', «D’) which is quasi-coherent.)

For x = (y,0) € Y x {0}, let
M= (.J(X",aD')NOx)z, N =Ox_,.
We denote G, by G in this section to simplify the notation. For g € Q, let
G°M =1lim,G°M/G'M, G°N =1im,G°N/G'N,
pa— pa—

and M ,]/\7 be their inductive limit for §, respectively. By the Mittag-Leffler condition, we have
the injectivity of GEM — GP M for § > 3 so that we get the filtration G of M (similarly for
N), see also [Sai88a]. By the Artin-Rees lemma, G®M,GPN coincide with the I-adic completion
of G®M,GPN by the ideal T of Y x {0}, because the filtration G is induced by G on N which is
essentially equivalent to the I-adic filtration (i.e. there are positive rational numbers «, § such that
G c I' € G for i > 0).

For A € C*, we see that M, G’ N, and hence GP M are stable by the action of @3- So the filtration
G on M splits canonically (because G on G”/G7 does). Thus, for g € G’ M, we have g = g5 + ¢’
where gg is as in (1.3.1) and ¢’ € GZPM N N because gz € N. So the assertion is reduced to

G>PM =G>PM NN, (2.1.1)

because this implies gg € M so that we can proceed by induction on 3 replacing g with ¢'.
For the proof of (2.1.1), consider the commutative diagram

0——=G>M N N/G>8M —0

L]

0— (G>PM)N —= N — (N/GZP M) —=0

where the bottom row is the I-adic completion of the top row. By the above argument, we have
G>PM = (G>PM)", and the vertical morphisms are injective by Krull’s intersection theorem. So
(2.1.1) follows. This completes the proof of Proposition 2.1. O
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THEOREM 2.2. With the above notation and assumption, we have
J(X,aD), = (j.J (X', aD"), NG"*Ox,, forz €Y x {0}, (2.2.1)

where G~% is as in § 1.3.

Proof. We first show that g € J(X,aD) if g € (j.J(X',aD")), N G7*Ox ;. We have the expan-
sion g = Zﬁ gs as in (1.3.1). By Proposition 2.1 we may assume g = gg with § > «, because
(1T (X', aD") N Ox)/T(X,aD) is annihilated by a sufficiently high power of the ideal of Y x {0}
in the notation of Proposition 2.1 so that the assertion is clear if g € Gg for 3 sufficiently large.
We have a relatively compact open subset U of X' together with A € (0,1) such that Uj>0 O\ U
contains U, \ 'Y x {0} where U, is a sufficiently small open neighborhood of  in X on which g is
defined. (For example, use a function defined by p(z) = >, |z;|Y/" so that p(¢rx) = Ap(x).)

Let w =dxy A -+ ANdxy Ndyy A -+ A dyp—r, where (y1,...,Yn—r) is a local coordinate system
of Y. Then ¢}, (gsw) = MBgsw, and

3 /U B Uaal /1) @) = 30 /U (IgsP/1 )0 AT

>0 >0 \D

— =) (gl nw.

U\D
So the assertion follows.

Similarly, we see that g ¢ J(X,aD) if g € (juJ(X',aD")), and g ¢ G7“. Here we may assume
g € G by replacing a with a smaller number if necessary. Then we may assume further that g = g,
using the above argument. So the assertion follows by considering a sufficiently small open subset
U of X’ such that the ¢,;U (j € N) are disjoint. This completes the proof of Theorem 2.2. O

2.3 Proof of Theorem 3

The assertion is well known outside D™, i.e. if D is a divisor with normal crossings, see e.g. [Bud03,
BS05]. We proceed by induction on stratum. Since the assertion is local, we may assume X =Y x C"
with Y = S; and D is defined by a relatively homogeneous function f with positive weight w =
(wi,...,w,) asin §1.1. Then the assertion follows from Theorem 2.2 by induction on stratum.

2.4 Nondegenerate Newton boundary case
Assume f € Ox , has a nondegenerate Newton boundary [Kou76, Var76]. Then we have a formula
similar to Theorem 3 by [How03, How01, Laz04]. There is a shifted Newton filtration G on Ox

such that G*Ox ¢ is generated over Ox o by the monomials x7* - - - 2% satisfying

Y weivi+1) > a (2.4.1)

for any (n — 1)-dimensional faces o of the Newton polyhedron, where the w,; are positive rational
numbers such that o is contained in the hyperplane defined by . ws;v; = 1. Then

J(X,aD), = G"*Ox for a < 1. (2.4.2)

This is proved in [How03] in the polynomial case. The proof in the analytic case should be essentially
same. (It would also be possible to use an argument similar to the proof of Theorem 2.2 together
with the torus embedding constructed in [Var76], because the nondegeneracy corresponds to the
condition that the restriction of the proper transform of the hypersurface to each stratum, which is
isomorphic to a torus, is nonsingular.) In the isolated singularity case with nondegenerate Newton
boundary, this is related to [Sai88a] using § 3.2 and Proposition 4.7.
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3. Relation with the b-function and spectrum

3.1 b-function

Let X be a complex manifold of dimension n, and f be a nonconstant holomorphic function on X.
Let

M =Dx]s|f*.
It is identified with a Dx[s|-submodule of
By := Ox ®@c C[0y],

generated by 1 ® 1 (which is identified with f*), where s = —0t, see [Kas77, Mal81]. Here By is
the direct image of Ox by the graph embedding iy : X — X x C as a D-module, and the action of
Dxxc on By is defined by identifying 1 @ 1 with the delta function 6(¢t — f). More precisely, for a
vector field £ on X and the coordinate ¢ of C, we have

Egd]) = (g @0 — (flge ™,

: i - (3.1.1)
tlged)=Ffoed —jgod ",

and the actions of h € Ox and 9} are natural, see also [BS05].

The b-function by (s) is the minimal polynomial of the action of s on M /tM. Since M /tM is holo-
nomic, the b-function exists if X is (relatively) compact or X, f are algebraic. By Kashiwara [Kas83]
and Malgrange [Mal81], By has the filtration V' together with a canonical isomorphism of perverse
sheaves

DRx(Gr{/By) = s Cx[n —1] for a >0, A = exp(—2mia) (3.1.2)

such that exp(—2mid,t) on the left-hand side corresponds to the monodromy 7" on the right-hand
side. Here DR x denotes the de Rham functor (which induces an equivalence of categories between
regular holonomic D-modules and perverse sheaves) and ¢ \Cx[n — 1] is the M-eigenspace of the
nearby cycle (perverse) sheaf ¢ ;Cx [n—1] for the semisimple part of the monodromy 7', see [BBD82,
Del73a, Del73b].

3.2 Relation of the multiplier ideals with the V-filtration
By [BS05] we have

J(X,aD) =V*Ox if « is not a jumping coefficient, (3.2.1)

where the filtration V' on Ox is induced by the V-filtration on Bf(= Ox ® C[0;]) in §3.1. If a is a
jumping coefficient (or actually, for any «), we have for 0 < ¢ < 1

J(X,aD) = V<0, V®Ox =J(X,(a—¢)D). (3.2.2)

This implies another proof of a theorem of Ein et al. (see [ELSV04]) that any jumping coefficients
which are less than one are roots of the b-function up to a sign.

3.3 Proof of Theorem 1

By §3.2 we can essentially replace J (X, aD) with V*Ox. By condition (a), we have {f = f so that
£f° = sf*, and hence

M = Dx|[s|f* = Dx f° C By. (3.3.1)
By condition (b), M/V>*M is supported on {z}, and is generated over C[9] := C[d4,...,0,] by
(Ox/V=*Ox)®1C By /V=*By, (3.3.2)
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where 0; = 0/0x;. Consider the filtered morphism induced by (3.3.2)
(OX/V>°‘(’)X,V) ®c Cl9] — (Bf/V>°‘Bf,V). (3.3.3)

This is strictly injective, i.e. it induces injective morphisms of the graded pieces. Indeed, for g < «a,
the Gre Ox ; are finite-dimensional vector spaces, and are annihilated by the maximal ideal of Ox .,
see [Bud03] and [Sai88b, Lemma 3.2.6]. Moreover, V on By/V =By is a filtration as Dx-modules
and the morphism of graded pieces induced by (3.3.2) is injective by the definition of the induced
filtration. So we get the strict injectivity of (3.3.3), because any holonomic D x-module supported
on {x} is isomorphic to a direct sum of C[9], and is freely generated over C[J] by its annihilator of
the maximal ideal of Ox .

By the above argument, the image of (3.3.3) is M/V~>“M, and the strict injectivity implies that
there is no § < « such that GreM = 0 but Gr@@x = 0. So the assertion follows.

Remarks 3.4. (i) The assertion of Theorem 1 does not hold if either of the two conditions is not
satisfied. For example, consider f = 2+ y* +23y? or f = 2% +y* +23y?2 where condition (a) or (b)
is not satisfied, respectively. Here a = % + % —1= % >ap = % + % = %. Note that their jumping
coefficients coincide with those for f = 2° + y* by [How03], and % is not a jumping coefficient.

(i) In the case of f = (2% — y?)(2? — 2%)(y* — 2?)z, we see that 2 is not a jumping coefficient
by an argument in [Mus06] (because there is no hypersurface of degree two on P? containing all the
points of Z whose multiplicity is three), but it is a root of bs(—s) as shown in §5.5 below. In this
case, condition (a) in Theorem 1 with positive weights is satisfied, but condition (b) is not.

(iii) The first assertion of Theorem 1 trivially follows from [Mal81], if any rational number [ in
(af, ) such that exp(—27if3) is an eigenvalue of the Milnor monodromy is a jumping coefficient.
This condition for any o € (af,1) is satisfied by the generic central hyperplane arrangement, but
not necessarily by nongeneric arrangements, e.g. if f is as in remark (ii) above.

3.5 Spectrum

With the notation of §3.1, let F, denote the Milnor fiber around z € D := f~1(0). The spectrum
Sp(f, @) = > qeq Mat® is defined by

Mo = Z:(—l)j_"Jrl dim Gr2, HY (F,,C)y  with p = [n — o], A = exp(—2mia),
J
where HJ (Fy,C), is the A-eigenspace of the reduced cohomology for the semisimple part Ty of the
Milnor monodromy 7', and F' is the Hodge filtration, see [Ste77b, Ste89].

In this paper we define a mixed Hodge structure [Del70b, Del71, Del74] on the Milnor cohomology
HJ(F,,C) by using the pull-back of the nearby cycle sheaf 1 ;C x[n—1] by the inclusion i, : {z} — X
in the derived category of mixed Hodge modules. This pull-back is defined by iterating the pull-
back by i; : X/ — XJ7! where X7 = {z;, = 0 :i < j} C X with 21,...,2, local coordinates
around z. (Here we may assume that X is a polydisk around z.) The pull-back by i; is defined by
using the mapping cone of 0; := 0/0z; : Gr%/j — Gr?/j where V; is the V-filtration of Kashiwara
and Malgrange along {z; = 0} and the Hodge filtration F' on Gr%/j is shifted by one so that 0;
preserves F'. (We can prove (0.1) using this, because G(X, aD) is annihilated by the maximal ideal
under the assumption of (0.1).)

The following lemma will be used in Proposition 5.3 to determine the multiplicity of the root
—1 of the b-function of a hyperplane arrangement.

LEMMA 3.6. With the notation of § 3.1, assume GrK/_HkH"_l(Fm, C)x # 0 for a positive integer k,
where W is the weight filtration. Then N* # 0 on Y ACx, where N is the logarithm of the unipotent
part of the monodromy.
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Proof. We have the weight filtration W on the perverse sheaf ¢ s \Cx[n — 1] (see [BBD82]) such
that we have isomorphisms for j > 0
N7 Gy o aCxn = 1] — Gy 4 aCxln — 1].

This gives the weight filtration of a mixed Hodge module, see [Sai88b, Sai90]. Furthermore, the mixed
Hodge structure on H" !(F,,C) is given by applying the pull-back functor H7i% to 1 \Cx[n — 1]
as in §3.5. The functor H'i¥ preserves the condition that Gr!" = 0 for i > r where r is any fixed
integer, see [Sai90]. So the hypothesis implies that Gr!” +m¥ACx[n—1] # 0 for some m > k, and
the assertion follows. O

4. Brieskorn modules and Gauss—Manin systems

4.1 Let f be a non-constant holomorphic function on a complex manifold X of dimension n > 2,
and x € D := f~1(0). With the notation of §3.1, the Gauss-Manin system is defined by

Gy = HODRXBf’x (=wxz QDx.» Bf.z), (4.1.1)

where wy is the sheaf of the differential forms of degree n. Here we consider only the cohomology
of degree 0 because we assume essentially isolated singularity conditions when we consider Gauss—
Manin systems in this paper. This is a regular holonomic C{t¢}(d)-module where C{t}(9;) = Ds
with S an open disk. It is known that G is a finite free C{{9; '}}[9;]-module of rank f,_1 where
i is the rank of the jth cohomology of the Milnor fiber around z, see e.g. [BS04].

The Brieskorn module is defined by
Hp =%, /df Ay

It is a C{t}{d; ')-module, where 9; 'w is defined by df A n with dy = w. There is a canonical
morphism

H} — Gy, (4.1.2)
compatible with the action of C{t}(9; ') so that G, is identified with the localization of H' by 0 L
Let V' be the filtration of Kashiwara and Malgrange on Gy indexed by Q so that
Oit — o is nilpotent on G1{;Gy.

It is known that VG for a > 0 is naturally identified with the Deligne extension of the restriction
to a punctured disk of a coherent extension of Qf such that the eigenvalues of the residue of the
connection are contained in [ — 1, ). In particular, we have isomorphisms for o« € (0,1] and
A = exp(—2mia)

H" Y(F,,C)) ~ GGy, (4.1.3)
where the left-hand side is the A-eigenspace of the Milnor cohomology for the Milnor monodromy.
We define the Brieskorn lattices of G ¢ by

g\ =0;'¢)" (iez) with G =Tm(H} —Gy),

where the last morphism H;ﬁ — Gy is as in (4.1.2). Note that Qj(f) C g](f‘” because g}o) is stable by
the action of 0, L Let (3}” be the saturations of gj(f), i.e.

g = gy = tontay.

k>0 k>0
They have the induced filtration V. By [Kas77, Mal74], we have

G\ c v>og;. (4.1.4)
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This implies att’gvj(f) = (3}” for i > 0, and
g}i) = 8{i§§0) = tiij}O) for i € N.
For a > 0 and 7 € N, we have
t:Gig Gl S Grgtigl) ¢ Gty (4.1.5)

because the action of t°0} = t0;(t0; — 1) --- (td —i+1) on Gr‘{‘;rigj([o) for @ > 0 is injective and hence
surjective.

Using the isomorphism (4.1.3) for o € (0, 1] and A\ = exp(—2mia), we define decreasing filtrations
P and P on the Milnor cohomology by

PP (F, Oy ~ Gi gy,

o S (4.1.6)
Pn_l_ZHn_l(Fx,C))\ ~ Gl‘?}gf 7 )

Note that P~ 1~% = Pr=1=i = 0 for i < 0 by (4.1.4), and P"~ '~ is stable by the Milnor monodromy
because Q](c_z) is stable by the action of td;.

If £f = f for a vector field &, then gj(fi) = Gvff_i) and P = P. In the isolated singularity case, P
coincides with the Hodge filtration, see [SS85, Var82]. Note that g}” is the image of df A Q}_xl and
Q](co) / Q}l) is a quotient of

Of = wxa/df NV,
because d(n ® 1) = dn ® 1 — (df A n) ® 0, where d is the differential of DRx By, see (3.1.1). If

D has an isolated singularity, then it is well known that (4.1.2) is injective, and g](P) /gj(}) = Qy,
see [Pha79, SS85].

PROPOSITION 4.2. The filtration V on the Gauss—Manin system Gy coincides with the filtration
induced by the filtration V' of Kashiwara and Malgrange on By via the isomorphism (4.1.1) using
any trivialization of wx ,. We have the canonical isomorphisms for a € Q

VoG, = H'DRx(V*By,), GrGy = H°DRx(Gr{:B;.). (4.2.1)
Proof. For —oo < o < 3 < v < +00, we have a long exact sequence
2 HDRx(V?/V")B;, — H'DRx(V®/V")B;y — HDRx(V*/VP)Bsy S,

compatible with the action of 9t so that the connecting morphisms 9 vanish, where (V*/V5)B o=
VB . /VPB; .. We have the finiteness of H'DRx (V“B; ) over C{t} by [Sai88b, Proposition 3.4.8],
and the connecting morphisms 0 vanish also for v = +o0o (where V> = 0) using the completion,
see [Sai88b]. So the first isomorphism follows, and the second isomorphism then follows using the
vanishing of 9. O

ProrosiTiON 4.3. With the notation of § 3.1 we have for any o € Q
Im(H°DRx (V°M,) — HDRx (By.)) = VoG,
Im(H°DR x (G1§ M,) — H°DRx (G By,)) = Gr3G.

Proof. The canonical morphism H°DRyx(V*M,) — H°DRx(Gr{M,) is surjective, because
H'DRx(V>*M,) = 0. So the second isomorphism is reduced to the first using Proposition 4.2,
and it is enough to show the first isomorphism. The right-hand side is the intersection of the im-
ages of H'DRx(M,) and H'DRx(V®By.), because C;J(IO) is the image of H'DRx(M,). By the
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commutative diagram

HODRy (VOM) —= H°DRx (V*B;) —= H'DRxV(B;/M) —= 0

| | |

HDRy (M) H°DRx (By) HDRyx (Bs/M) —=0

the assertion is reduced to the injectivity of the last vertical morphism, but this is easily proved by
using the action of d;t together with a long exact sequence as in the proof of Proposition 4.2. So
the assertion follows. O

PROPOSITION 4.4. With the notation of § 4.1 the Hodge filtration F' on the Milnor cohomology is
contained in P.

Proof. The Hodge filtration F' on the Milnor cohomology is defined by using the construction
in §3.5. For any regular holonomic Dx;-1-module N, we have canonical morphisms of complexes
C(9; : Gry, N — Gr{, N) < C(9;: V/N - V)N) = C(9; : N — N),
which are quasi-isomorphisms at least after taking the de Rham functor on X7. Iterating this, we
get a canonical isomorphism in the derived category
i, Gr{yBs = DRx (G1{/Bs.2),
where the left-hand side is defined as in § 3.5. If N underlies a mixed Hodge module so that it has the
Hodge filtration F', then the Hodge filtration £’ on Gri)/‘jN is induced by F' on N, and the canonical
surjection VjON — Gr(‘)/jN is strictly compatible with F'. This implies that the Hodge filtration F' on
HO%*Gr$ By is contained in the filtration on H'DRx (Gr{:B; ;) = Gr{:G; induced by F on Gr{:B
(up to an appropriate shift) via the above isomorphism. Moreover, the latter filtration on Gr{;Gy is
contained in P by (4.1.5) and Proposition 4.3. Indeed,
FBr.= P Ox @,
0<i<p

and the image of F,V*By , in H°DRy (Bfz) = Gy is contained in G- n VG by (’j}‘“ C Gv;_i_l).
So the assertion follows. O

4.5 Proof of Theorem 2

Since the de Rham complex DRx is the Koszul complex for 0y,...,0, (trivializing wx by dz; A
.-+ Adzy) and M, is generated over Dx|[s] by 1® 1 (or f*), we see that the image of H'DRx M, in

Gy coincides with _C’Z([O). By (4.1.3) the filtration P in (4.1.6) is identified with a filtration on Gr{/Gy
for a € (0, 1], which is also denoted by P. Then, by (4.1.5), we have for i € N
th: PP Gy S GG ¢ GGy
Let P denote also the filtration on Gr(:B ¢ for a € (0,1] such that for i € N
th: PTG By S Grdt M C G tiBy.
Then
t: Gr"ﬁ_l_iGr{‘}Bf = Gri (M /tM).

By Proposition 4.3 the filtration P on Gr{;By induces P on Gr{;Gy taking the de Rham functor
DRx. So the assertion (a) follows from the spectral sequence

Ef’q = Hp+qDRxG1"I;3G1"?}Bf7I = Hp+qDRxGl"%/Bf7x, (4.5.1)
because EV'? # 0 if ER! # 0.
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If o+ is not a root of by, (—s) for any y # x and i > iy where iy is a nonnegative integer,
then Ef’q =0forp+qg>0o0rp+q<0andp<py:=n—1-—1ip. Indeed, a Dx-module supported
on a point is a direct sum of C[d] in the notation of §3.3, and DRx(C[d]) = C. So we have E}*! =
E%! for p < po, and the assertion (b) follows. If the assumption of assertion (c) is satisfied, then
EP? =0 for p+ q # 0 and E}'? = ER? for any p,q by a similar argument. So the assertion follows.

PRroroOSITION 4.6. With the notation of §§ 3.1 and 4.1, assume that f is a weighted homogeneous
polynomial of strictly positive weights (w1,...,wy). Let £ =) . w;z;0; so that £f = f and, hence,
P = P. Let Q? be the (-eigenspace for the Lie derivation by . Let o be a rational number such
that exp(—2mica) is not an eigenvalue of the Milnor monodromy at y # x. Then « is a root of by(—s)

if and only if the image of Qo‘ in Q(O)/Q](rl) does not vanish. Its multiplicity is one if « is a root.

Proof. Since £f = f, we have tg(o C 0, 19 ¥ and, hence, Q Q](co) by the definition of the action

of o, L Let w§ be the (-eigenspace for the action of £&. Then the action of att on the image of
wX ,®1®1in Qf is given by the multiplication by 3. Indeed, if we take gdx{ A --- A dz,, € w§ , SO
that €9 = (B —>_, wi)g, then we have, by (3.1.1),

<Z wﬁm) (g & 1) = BQ ®1-— att(g ® 1)7

where the left-hand side vanishes in the cohomology of the de Rham complex which is identified
with the Koszul complex for 0y, ..., 3, as above, see also [Sai88a].

This implies that Grégj(?) is generated by the image of w§ ., S0 that the action of d;t on Grég}(’)
is semisimple (using the algebraic Gauss—Manin system if necessary). Then the assertions follow
from Theorem 2. O

In the isolated singularity case, we have the following.

PROPOSITION 4.7. With the notation of §4.1, assume that D has an isolated singularity at x. Let
V' denote the filtration on wx , = Q}x induced by the filtration V' on Ox , using any trivialization
of wx . Then the natural projection wx , — H;ﬁ is strictly compatible with the filtration V¢ for
a<1.

Proof. Let V' denote the filtration on wx , induced by the filtration V' on H;ﬁ using the projection
WXz — H;ﬁ. Since the filtration V' on By induces the filtration V' on the Gauss-Manin system by
Proposition 4.2, we have Vwx, C V'*wx . Then we get the equality for @ < 1 by calculating
the dimension of their graded pieces for o < 1, because they both give the coefficient m,, of the
spectrum for o < 1. So the assertion follows. O

4.8 Hodge and pole order filtrations

Assume that X is affine space C" and that D is the affine cone of a divisor Z of degree d on
Y := P"!. Then there is a cyclic covering 7 : Y =Y of degree d which is ramified along Z. Put
U=Y\Z,U=r"YU). Then U is identified with the Milnor fiber Fy of a function f defining
the affine cone D of Z, and the geometric Milnor monodromy corresponds to a generator of the
covering transformation group of U — U, see [DS06, §1.8].

For k = 1,...,d, let L* /9 be the direct factor of m.C; on which the action of the Milnor
monodromy is the multiplication by exp(—2mik/d) so that H’ (U, L*/®) = Hi(F,,C)y where A =
exp(—2mik/d). Note that L*/9 is a local system of rank one on U, and its monodromy around a
smooth point x of Z,q is the multiplication by exp(2wikm, /d) where m, is the multiplicity of Z
at x. (This can be shown by blowing up along the origin of C" and considering the nearby cycles
for the pull-back of f, see also [DS04].)
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Let £*/4 be the meromorphic extension of L* /4 @¢ Op. This is a regular holonomic
Dy-module on which the action of a function h defining Z is bijective. We see that £*/9) is locally

isomorphic to a free Oy (xZ)-module generated by a multivalued function hj_k/ ¢ \Where h; = a:j_d f
on {z; # 0} C P"L. Note that the Oy-submodule generated locally by hj_k/d(: m;?f_k/d) is iso-
morphic to Oy (k), because the relation gjhj_k/d = gihi_k/d means that gjxé? = gixf, i.e. {g;} defines
a section of Oy (k).

The pole order filtration P,L*/4) is defined to be the locally free Oy -submodule of £*/4) gener-
ated by h;z_(k/d) on {x; # 0} for i € N, and P,L*/9) =0 for i < 0. Then P,L*/% is isomorphic to
Oy (id+k) by the above argument. On the other hand, there is the Hodge filtration F' on L£KE/d) guch
that F£*/4) = p,£k/4) outside SingZ,eq for any i by the theory of mixed Hodge modules. Then
we have F,L*/4) < p,£k/d) on Y because P;LF/D is locally free and SingZ,eq has codimension at
least two in Y.

The Hodge and pole order filtrations are closely related respectively to the spectrum and the
b-function of f. Indeed, the Hodge filtration F on £*/® induces the Hodge filtration on the Milnor
cohomology by taking the de Rham cohomology. Similarly the pole order filtration P on the
Milnor cohomology is defined by using the de Rham cohomology. Here the filtration is shifted
by the degree of the differential forms, and the associated decreasing filtration is used. Then we
have Theorem 2 together with the following.

PROPOSITION 4.9. With the above notation and assumptions, the above pole order filtration P
coincides with the filtration P = P in (4.1.6). Moreover, for o = k/d € (0,1) and X = exp(—2mia),
the above P"~1~% is identified with the image of

GGy € iy iGy = GrpGy o H" (1, O),,

where the middle isomorphism can be induced by both 8,5 and t—*, and the last morphism is induced
by (4.1.3).

Proof. This follows from the arguments in [DS06], using the local generator hj_k/ “in §4.8 to define
an isomorphism generalizing [DS06, Lemma 1.2]. Note that S*(0 < i < d) in [DS06] is identified
with £(4=0/9) @ Oy (-Z) in this paper, and € [f_l],(f) (the degree k part of the image of the
interior product ¢¢) is identified with the vector space of meromorphic sections of W*W*ng over
Y \ Z on which the Lie derivation L¢ acts as the multiplication by k. Here 7 : C"\ {0} — Y
denotes the canonical projection. Then we get the desired isomorphism by using the restriction
to {x; = 1} C C" for any . The above identification of the filtrations is compatible with (4.1.6)

because tiGrg/an](co) =t'0} Gr?frigj(”m = Gr$+igj(”0)' -

Remark 4.10. If Z is smooth, the two filtrations F; and P; on £*/9 coincide for any i, and this
explains the coincidence of the spectrum and the roots of bs(—s) (forgetting the multiplicity) in
this case. However, if Z is a reduced divisor with normal crossings, these two filtrations coincide
only for ¢ = 0, and not for ¢ > 0 because the Hodge filtration is defined by using the sum of the pole
orders along the irreducible components, see [Del70a]. This explains the fact that the spectrum and
the roots of by(—s) coincide (forgetting the multiplicity) only if they are restricted to the interval
(0,1] in this case.

Remark 4.11. Let D be as in §4.8 so that f is a homogeneous polynomial of degree d. Then the
Brieskorn lattice Q](co) has a monomial basis (w;) over C{t} such that each wj; is represented by

x¥dxy N -+ Ndxy, with v = (v1,...,1,) € N
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Restricting to a Milnor fiber, this gives a basis (jw ]) of the Milnor cohomology. For the last assertion,
it is enough to assume that (w;) gives a basis of gl f [t_ | over (C{t}[ 11, and the minimality condition

in [Wal05, Theorem 4.8], corresponds to that it gives a basis of g §over C{t}. Using this basis, the
pole order filtration P on the Milnor cohomology is expressed as

priti= ¥ Clwy,
deg(wj)/d<i+1
where deg(zdxy A --- A dxy,) = |v| + n. This follows from the well-known formula
Ot(x¥dxy N - Ndzy) = (deg(ax”dxy A -+~ Ndzy)/d)z"dzy A -+ A day,.

(See the proof of Proposition 4.6.) So Theorem 2(a) may be viewed as a generalization of [Wal05,
Theorem 4.8].

5. Case of hyperplane arrangements

5.1 Cohomology of twisted de Rham complexes

With the notation and the assumptions of §4.8, assume further that D is the affine cone of a
projective hyperplane arrangement Z in Y = P"~! ie. D is a central hyperplane arrangement.
Then, by [Bri73, ESV92, STV95], the cohomology of the local systems on U =Y \ Z in §4.8 can
be calculated as follows.

Let Z; (1 < i < d) be the irreducible components of Z where d = deg Z, and x1,...,x, be
coordinates of C" such that Z; = {x,, = 0}. Then the complement Y’ of Z; in Y is identified with
C" 1. Let g; be a polynomial of degree 1 on Y’ defining Z; NY”’. Put

wi=dg;/gi(1<i<d—1), h=g1-gq1.
For o = (aq,...,0q-1) € C1 et
he = g7 gyty!
and Oy h® be a free Oy,-module of rank one on Y’ with formal generator h*. There is a regular
singular integrable connection V such that for u € Oy

V(uh®) = (du)h® + uwh®  with w = Z ;w;.
1<i<d—1
Let Ap be the C-vector subspace of T'(U,Q}h*) generated by w;, A -+ A w; h® for any iy <

- < zp Then Aj, o, with differential wA is a subcomplex of I'(U, €2j;h%). Put ag = =31 ;g1 Q-
By [Bri73, ESV92 STV95] we have the canonical quasi-isomorphism

A, o = T(U,Qh), (5.1.1)
if the following condition holds for any dense edge L of Z:

ag = Y o; ¢ N\{0}. (5.1.2)
Z; DL

Here an edge is an intersection of Z; over a subset of {1, ..., d}, and an edge is called dense if and only
if the hyperplanes containing the edge are identified with an indecomposable central arrangement
(where an arrangement in C" is called decomposable if and only if there is a decomposition C" =
C" x C"" such that the arrangement is the union of the pull-backs of arrangements on C" and C"",
see [STVI5] for details.) In the case of a constant local system, this is due to [Bri73]. In a general
case, it is shown in [ESV92] and is improved in [STV95]. Note that if Z is a divisor with normal
crossings (i.e. if Z is generic), then condition (5.1.2) is equivalent to o; ¢ N\ {0} for any i € [1,d]
(because the dense edges consist of the Z; in this case), and [ESV92] is sufficient in this case.
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As a corollary, we obtain the following.

PROPOSITION 5.2. Let D be a central hyperplane arrangement in C"™ defined by a reduced polyno-
mial f of degree d. Let Z be the projective arrangement in P"~! corresponding to D. For an edge
L of Z, let mr, be the number of hyperplanes Z; O L. Assume that all of the roots of by, ,(—s) are
strictly less than two for any y € Z where h is a reduced local equation of Z at y. Assume, moreover,
that there is a hyperplane, denoted by Zg, such that GCD(mp,d) = 1 for any dense edge L of Z
contained in Zy. Then the roots of by(—s) are strictly less than two.

Proof. We apply the above argument to the case a; = —k/d(0 < i < d) for each k € [0,d —1]. Then
for k € [1,d—1], we see that h® = h=*/? is a section of PyL*/%) which has a zero of order k along the
divisor at infinity Z;, and condition (5.1.1) is satisfied for any dense edge L of Z. (Indeed, af ¢ Z
if L C Zy, and oy, < 0 otherwise.) Moreover, the meromorphic extension of w;, A--- A wi, to Y has
at most a pole of order one along each Z;(1 < i < d). Thus, Az_al is contained in Qg_l Qo P,k
with i =1if 0 < k < d and 7 = 0 if kK = 0 by the definition of P;. So the assertion follows from
Theorem 2 together with (5.1.1) using [Bri73, ESV92, STV95]. O

The first assertion of the proposition below is due to [Wal05].

PROPOSITION 5.3. With the above notation, —1 is the only integral root of b(s) (see [Wal05]), and
its multiplicity is n, assuming that the arrangement is not the pull-back of an arrangement in a
strictly lower-dimensional vector space.

Proof. The assertion is well known in the normal crossing case. In particular, it holds on the smooth
part of Z. By induction on stratum, we may assume that the assertion holds for any y € C™ \ {0}.
Note that the b-function of a global defining equation of a central hyperplane arrangement is equal
to that of a local equation at zero, using the C*-action. We can apply §5.1 with a; = 0 for any 7, and
(5.1.1) holds by [Bri73] where wA = 0. In particular, H"~!(P"~1\ Z, C) is nonzero and is generated by
logarithmic forms on an embedded resolution of (P"~!, Z), see [ESV92]. Then Grh. H"~1(F,C); =0
for p # n— 1, and hence —1 is the only integral root by Theorem 2. Moreover, Gr}¥ H"~1(Fy,C); =
0 for i # 2n—2 by the Hodge symmetry of Gr}V H"~(Fy, C);. Thus Gr, o H"'(Fy,C); # 0. (This
also follows from [DS04] in the case Z is a divisor with normal crossings.) So the assertion holds
from Lemma 3.6 together with [Kas83, Mal81]. O

5.4 b-function of a generic hyperplane arrangement
The b-function by (s) of a generic central hyperplane arrangement with a reduced equation is deter-
mined as follows by Walther [Wal05].

(W) The roots of by(s) are —j/d for n < j < 2d — 2, and the multiplicity of a root o is 1 for av # —1
and is n for @« = —1, assuming d > n.

(The last assertion on the multiplicity of —1 was not proved in [Wal05]) Here generic means that a
central hyperplane arrangement has normal crossings outside the origin. In particular, the arrange-
ment is not the pull-back of an arrangement in a strictly lower-dimensional vector space since d > n.
Using the arguments in this paper, we can give another proof of his theorem as follows.

By Proposition 5.2, using [Bri73, ESV92] in the normal crossing case, we first get
The roots of by(—s) is strictly smaller than two. (5.4.1)

The assertion on the integral roots follows from Proposition 5.3. For the non-integral roots, the
multiplicity is always one by Proposition 4.6. Moreover, Theorem 2 and (5.4.1) imply that 1 + k/d
is a root of by(—s) for 1 < k < d — 2, and is not a root for k¥ = d — 1. Indeed, by Corollary 1,
mg, for a = k/d is strictly smaller than (gj) if £ < d— 2, and they coincide if £k = d — 1.
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Since dim H"~'(Fy,Q)y = (“23) for A = exp(—2mik/d) with 1 < k < d — 1 (see [CS95, OR93]),
these imply

FPlH YRy, Q) # HV Y Fy,C)y if1<k<d—2,

FP H" YRy, C)y = H" Y(Fy,C)y ifk=d— 1.

Note that P*~'H" 1(Fy,C) = F"~'H"(F,,C) because PyL*/9) = Fy£*/4 (since Z is a divisor
with normal crossings). We have, moreover, P"2H""1(F,,C)\ = H"}(F,C), by (5.4.1). So the
assertion follows from Theorem 2.

5.5 Example of a nongeneric hyperplane arrangement
With the notation of §5.1, assume n = 3, d = 7, and h = (2% — y?)(2? — 1)(y® — 1) so that f is as
in Remarks 3.4(ii). Then 2 is a root of bs(—s) (although it is not a jumping coefficient).

Indeed, let Z" = {2% — y? = 0}, Z” = {(2* — 1)(y* — 1) = 0}. Then we can apply the argument

in §5.1 to the case where «; = —% if Z;, c Z', and o; = % if Z; ¢ Z". In this case we have

dim A, , =6, dimAj, =9, dimH*(A4;,)=xU) =4

Since Q2 @0 PyLO/T) =~ Oy (2) where Y = P2, we see that g(z,y)h~>"dx A dy can be extended to a
section of Q% ®o Py£O/T) if g(x, y) is a polynomial of degree at most two. Moreover, g(z,y)h =%/ Tdz A
dy is contained in A%w if g(x,y) is a linear combination of (z—¢)(y—¢’) with e, = +1, i.e. if g(z,y)
has order at most one for both z and y. Indeed, h® is naturally extended to a section of PyL(%/7)
having a simple zero along Z” and the divisor at infinity, and d(x +¢)/(x + ) Ad(y + &) /(y + &’)
has a simple pole along the divisor at infinity.

Let V' be the vector subspace of .Ai ., consisting of such elements. We see that the dimension of
the image of dA,lL , in A%’a /V is at least two, calculating the differential d of A}, o which is defined
by wA, see §5.1. So we get dim V' N d.A,lwé < dimV = 4 because dim d.A,llﬂ = 5. Thus, the image of
V in H?(U, L®®/7) does not vanish by (5.1.1) (using [ESV92]), and hence 2 is a root of by(—s) by
Theorem 2 together with Proposition 4.9.

5.6 Spectrum of a generic hyperplane arrangement
The calculation in §5.4 implies that the coefficient m,, of Sp(f,0) for a € Z is given by

(d—1
Mpyi = (—1)”_1_Z< ; > forl<i<n—1. (5.6.1)

Assume « ¢ Z. Then m,, is calculated by Corollary 1 if a < lora>n—1. For 1 <a <n-—1, it is
possible to calculate m, using [DS04] together with the (twisted) weight spectral sequence because
the dimension of the cohomology of the twisted forms Q7,(r) on the projective space P* can be
calculated by using the Bott vanishing theorem and the Euler sequence.

Remark 5.7. For hyperplane arrangements, it is conjectured by Mustata [Mus06] that the jumping
coefficients depend only on the combinatorial data (i.e. the dimensions of various intersections of
irreducible components) of the hyperplane arrangement. This assertion can be reduced to that for
the spectrum, and will be proved in a forthcoming joint paper with Budur and Mustata. Using [BS05]
together with Hodge theory, it is easy to show that they remain unchanged under a deformation
with the combinatorial data fixed, see also [Ran97]. However, the parameter space of hyperplane
arrangements with fixed combinatorial data is not connected as shown in [Ryb98]. In the case of a
cone of a curve of higher degree in P2, a similar fact is known as Zariski’s example, see e.g. [Esn82].

For hyperplane arrangements, it is possible to show the non-connectivity of the parameter space
by using the following.
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(A) Let p; = a; +Ab;(i = 1,2, 3) be three points on C? with a linear motion parametrized by A € C.
Then there are, in general, two values of A for which the three points are on one line.

Indeed, this implies that, for a certain family of line arrangements in C? with fixed combinatorial
data whose parameter space is one-dimensional, it is possible only for two points of the parameter
space to add one line to the corresponding line arrangement so that the obtained line arrangement
has certain restricted combinatorial data. For example, consider the union of

{zy(a® = )(* = Dz —y)(w —y—1) =0} C C?,
with three lines L1, Ly, L3 such that L; passes (1,0), Ly is parallel to {x = y}, L3 passes (0,0) and
LlﬂLQC{y:1}, LgﬂLgC{IL’:—l}, LlﬂL;J,C{y:—l}.

The parameter space of such arrangements is one-dimensional if L3 is deleted. So we can apply the
above argument to the three points (0,0), Ly N {y = —1}, and Ly N {x = —1}.
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