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Abstract

Objective. A continuous survey on influenza was conducted in Hulunbuir, China from
January 2010 to May 2019 to reveal epidemiological, microbiological and air pollutants asso-
ciated with laboratory-confirmed influenza cases.
Methods. Influenza-like illness and severe acute respiratory infection subjects were enrolled
from a sentinel hospital in Hulunbuir during the study period for epidemiological and viro-
logical investigation. The association between air pollutants and influenza-positivity rate was
assessed by a generalised additive model.
Results. Of 4667 specimens, 550 (11.8%) were tested positive for influenza. The influenza-
positivity was highest in the age groups of 5–14 years, 50–69 years and ⩾70 years. We
found that the effect of particulate matter ⩽2.5 μm (PM2.5) concentrations on the influ-
enza-positivity rate was statistically significant, particularly on day lag-4 and lag-5. Genetic
characterisations showed that (H1N1) pdm09 strains belonged to subclade 6B.1 and that
influenza B isolates belonged to subclade 1A-3Del, with significant substitutions in the haem-
agglutinin and neuraminidase proteins compared with those in the WHO-recommended vac-
cine strains.
Conclusions. Elderly individuals and school-age children were at high risk for influenza infec-
tion. PM2.5 concentrations showed significant effects on influenza-positivity rate in
Hulunbuir, which could be considered in local influenza prevention strategies.

Introduction

Influenza is a contagious respiratory disease (RD) caused by influenza virus, which is a con-
siderable public health problem, posing epidemic, epizootic outbreak and pandemic threat to
humans. The influenza vaccine was successfully developed in 1937 [1] and began to be used as
a licensed product in 1944 [2]. Since the 1960s, a variety of anti-influenza virus drugs have
been developed, but the influenza virus continues to circulate in humans, resulting in 3–5 mil-
lion serious infections and leading to 650 000 deaths annually worldwide [3].

Influenza viruses evolve rapidly, escaping preexisting immunity and the natural or
vaccine-induced immune response through genetic variations, such as antigenic shift and anti-
genic drift, which are prone to occur in the haemagglutinin (HA) gene and neuraminidase
(NA) gene [4, 5]. Influenza viruses are classified into four types, A to D types [6]. In
human infection cases, influenza A and B viruses constitute the dominant strains, while influ-
enza C virus is rare [7]. Influenza D virus has not been identified in influenza cases directly
transmitted from human to human [8]. Influenza pandemics may occur when viral strains
generated through antigenic shift possess novel subtypes to which the human population is
susceptible. The 2009 H1N1 pandemic strain resulted from genetic reassortment of eight
gene segments in influenza strains from humans, birds and swine [9]. Although antigenic
shift may not occur in influenza B virus due to the limitation of its host barrier (humans
and seals), the virus probably leads to epidemics with substantial morbidity and mortality bur-
dens by evading human immunity through antigenic drift [10]. Laboratory evidence showed
that a single amino acid substitution in influenza B virus might be responsible for the acqui-
sition of virulence in mice [11]. These findings highlight the importance of continuous epi-
demiological and molecular surveillance of influenza as an effective way to detect mutant
strains with pandemic and epidemic potential, as well as to accelerate public health prepared-
ness and responses.
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Previous studies indicated that air pollution might contribute
to the morbidity caused by influenza. An epidemiological survey
suggested that particulate matter ⩽10 μm (PM10) and ozone (O3)
should be considered in predicting the morbidity of influenza
viruses [12, 13]. A study analysed the acute effects of pollutants
on hospitalisations for acute exacerbation of chronic obstructive
pulmonary disease (AECOPD) in Shenyang, China and air pollu-
tion was found to increase the rate of hospitalisation for AECOPD
[14]. Moreover, a report from Christchurch, New Zealand,
showed that PM10 raised the incident rate of influenza at 2 days
after exposure [15].

Hulunbuir (115°31′–126°04E, 47°05′–53°20′N) is a temperate
city located in northeastern China, where more than half of any
given year is occupied by winter, which is also known as the coal-
heating season lasting from October to May. The summer in
Hulunbuir is negligibly short, while the winter is long enough
to cover the entire influenza season (November to April). The
region has 14 banners and covers a total area of 252 777 km2, bor-
dering Russia in the north and northwest, as well as Mongolia in
the west and southwest. The total length of the border is 1733.32
km. In 2017, the registered population of Hulunbuir was 2.5792
million individuals, with 1.6661 million people (64.6%) living in
the city, including 42 minority groups, such as Mongolian,
Daur and Ewenki people. A hospital-based sentinel surveillance
site has been established since the 2009 H1N1 pandemic as part
of the national influenza surveillance project in China.

At present, studies on associations between air pollution and
RDs have been conducted in some of the regions. For example,
short-term effects of air pollution on the hospitalisation rates of
patients with AECOPD were analysed in Jinan [16]. A study in
Nanjing quantified the effects of air pollution on influenza-like
illness (ILI) [17]. However, little documentation about influenza
has been reported in Hulunbuir. In this study, we aimed to inves-
tigate epidemiological and genetic characteristics of influenza
virus, as well as to evaluate associations between positivity rates
of influenza and air pollutant concentrations in Hulunbuir. This
in-depth exploration of influenza surveillance data may provide
insights into influenza prevention and control policies not only
for research areas but also for cities with similar climate or air pol-
lution conditions.

Methods

Ethics statement

This study was a part of the Chinese National Influenza-like
Illness Surveillance Network (CNISN) organised by The
National Health Commission of the People’s Republic of China.
This study was approved by the ethical review committees of
the Chinese Center for Disease Control and Prevention (CDC)
in accordance with the Declaration of Helsinki. Written consent
was obtained from each participant who provided specimens.

Case definition and specimen collection

We collected samples from two types of cases, ILI cases and severe
acute respiratory infection (SARI) cases, defined by the World
Health Organization (WHO) global influenza surveillance stan-
dards. ILI cases were defined as an acute respiratory infection
with a fever ⩾38 °C, cough or sore throat with onset within 10
days. In addition to the above requirements, SARI cases needed
hospitalisation [18].

Throat swabs were collected from January 2010 to May 2019 at
the hospital-based sentinel surveillance site of Hulunbuir People’s
Hospital. Epidemiological information on name, gender, age,
address, date of onset, date of collection and type of specimen
was gathered during data collection. All specimens were stored
in 2 ml of virus transport medium at −80 °C and then transported
to the laboratory within 1 week for subsequent detection.

Laboratory methods

Total RNA was extracted from 100 μl of transport medium using
an RNeasy Mini Kit (74104, Qiagen, Germany). Real-time reverse
transcription-polymerase chain reaction (RT-PCR) was con-
ducted to detect the influenza types (A/B) and subtypes (H3/
H5/H7/H9/(H1N1) pdm09) using Influenza Nucleic Acid
Detection Kits (JC10202, JC10209, JC10301, S-SBIO, China)
according to the manufacturer’s directions. Then, influenza
strains were isolated by inoculating medium positive for influenza
onto specific pathogen-free eggs and further confirmed by haem-
agglutination (HA) and haemagglutination inhibition (HI) tests.
Standard reference serums for HI were supplied by the Chinese
CDC. All influenza isolates were stored at −80 °C. We randomly
selected 9 (H1N1) pdm09 strains from 2017 to 2019, with three
strains from each year, and four influenza B strains from 2019
for HA and NA sequencing, which was conducted by Shanghai
BioGerm Medical Biotechnology.

Phylogenetic analysis

Multiple sequence alignments for HA and NA genes were con-
ducted by using ClustalW. Reference strain sequences, including
those of vaccine strains recommended by the WHO during
research years, were obtained from the GenBank and global initia-
tive on sharing all influenza data (GISAID) databases [19].
Phylogenetic trees were constructed in MEGA10 using a max-
imum likelihood method based on the Kimura 2-parameter sub-
stitution model. A total of 1000 bootstrap replicates were
performed, and bootstrap values higher than 50 were labelled at
the branch.

Mutation analysis of the HA and NA proteins

Analysis of amino acid substitutions was performed for the HA
and NA proteins in Hulunbuir strains. We selected the NCBI
influenza virus sequence annotation tool to obtain protein
sequences encoded by nucleotide sequences [20]. The identifica-
tion of mutations was carried out with Unipro UGEN v1.32.0
by comparing protein sequences with those of reference vaccine
strains (A/Michigan/45/2015(H1N1), B/Colorado/06/2017
(Victoria)). Moreover, FluSurver (http://flusurver.bii.a-star.edu.
sg) was also utilised to confirm the site of mutation output by
Unipro UGEN v1.32.0. Information on amino acid substitutions
was investigated on NCBI PubMed.

There are generally three numbering schemes for sequence
alignment: 2009 H1N1 pandemic numbering, classical H3N2
strain numbering and classical H1N1 strain numbering.
Different amino acid sites might be shown under different num-
bering schemes. In this study, all three numbering schemes were
used to search for information on amino acid mutations. We
selected the 2009 H1N1 pandemic numbering scheme to show
mutation sites in this study.
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Prediction of potential glycosylation sites

Potential glycosylation sites on the HA and NA proteins were pre-
dicted with the NetNGlyc 1.0 server (http://www.cbs.dtu.dk/ser
vices/NetNGlyc/), with A/California/07/2009(H1N1), A/Michigan/
45/2015(H1N1) and B/Colorado/06/2017(Victoria) as reference
strains [21]. The NetNGlyc server predicts N-glycosylation sites
under artificial neural networks that examine the sequence context
of Asn-Xaa-Ser/Thr sequons. Threshold values above 0.5 were pre-
dicted to be glycosylation sites.

Association between ambient factors and the positivity rate of
influenza in Hulunbuir

Daily meteorological datasets were provided by the Hulunbuir
observatory (119°76′E, 49°21′N), while air quality surveillance
datasets were provided by the Hulunbuir environmental monitor-
ing station including two environmental monitoring sites: 119°
77′E, 49°23′N and 119°73′E, 49°35′N. Meteorological and air
quality datasets were combined with influenza incident rates
based on the monitoring date. The air quality surveillance pro-
gramme in Hulunbuir started in January 2015, and the air pollu-
tant concentration data before 2015 were not available.

Statistical analysis

The prevalence (detection ratio) of influenza was calculated by
dividing the sum of positive cases by the total number of cases.
An influenza virus type or subtype was considered to be predom-
inant if it accounted for the highest proportion in influenza posi-
tive cases, and its proportion was 10% or higher than that of other
types or subtypes [22]. χ2 tests or Fisher’s exact tests were selected
for comparing the cross tables of categorical variables. The
Kruskal–Wallis or Wilcoxon rank-sum tests were chosen for con-
tinuous variable comparisons, as appropriate. To explore the asso-
ciation between the daily reported influenza cases and ambient
factors, including meteorological measurements and air pollutant
concentrations, pairwise Spearman correlations were calculated
and visualised by heatmaps. To estimate the influenza viral infec-
tion rate associated with ambient factors, a generalised additive
model (GAM) assuming a Poisson distribution was built using
the R package mgcv [23, 24].

The basic model can be written in the following form:

Yt represents the number of influenza cases reported on the day t;
E(Yt) represents the expected number of influenza cases on the
day t; α0 represents the intercept; β1 represents the linear coeffi-
cient of PM2.5 and PM2.5 represents the daily average concentra-
tion of air-borne particulate matter with 2.5 μm in diameter. The
‘s()’ represent the spline smooth function while the df represents
degree of freedom. The temperature, pressure, humidity, wind
speed and precipitation are daily average on the day t, while the

PM10, sulphur dioxide (SO2), nitrogen dioxide (NO2) and
ozone (O3) represent different air pollutant concentrations on
the same day.

The degrees of freedom for each variable in the GAM were
predicted by the bruto function implemented in the R package
mda to avoid over parameterisation due to limited sample sizes
[25]. Degrees of freedom used in modelling were df1 to df10,
whose real values were 7, 5, 3, 4, 3, 3, 4, 5, 4 and 6, respectively.
Based on GAMs, the excess ratio (ER) of influenza infections
associated with air pollutants was calculated in percentages
using (RR− 1) × 100% where RR denotes the relative risk esti-
mated from the regression coefficient of PM2.5:

ER = (RR − 1)× 100%

In this report, not only the current exposure (lag-0) to ambient
factors but also the lagged exposure up to 14 days (lag-1 to
lag-14) were selected considering the maximum incubation per-
iod of influenza infection and response time to air pollution
[26, 27]. The sensitivity of this model has been checked by com-
paring results from partial datasets. All the analyses and statistical
modelling were completed using R version 3.5.3 (https://www.r-
project.org).

Accession numbers

All strains sequenced for the HA and NA genes in this study have
been submitted to the GenBank database under accession numbers
for (H1N1) pdm09 (MN559728, MN559729, MN559730,
MN559731, MN559732, MN559733, MN559734, MN559735,
MN559736, MN559737, MN559738, MN559739, MN559740,
MN559741, MN559742, MN559743, MN559744 and MN559745)
and influenza B virus (MN559746, MN559747, MN559748,
MN559749, MN559750, MN559751, MN559752 and MN559753).

Results

Descriptive statistics of epidemiological factors

From January 2010 to May 2019, a total of 4667 ILI and SARI
specimens were collected at the hospital-based sentinel surveil-
lance site, Hulunbuir People’s Hospital. Real-time RT-PCR detec-
tion showed that 550 (11.8%) cases were positive for influenza

viruses, of which 344 (62.5%) were influenza A positive and
206 (37.5%) were influenza B positive. Among the positive speci-
mens, (H1N1) pdm09 (40.2%) accounted for the highest propor-
tion, and followed by influenza B (37.5%) and H3 (22.3%)
(Supplementary Fig. S1). Regarding sex, the number of male
cases (50.1%) was almost equal to that of female cases (49.9%).
Moreover, the proportion of cases positive for (H1N1) pdm09,
H3N2 and influenza B virus in the male group tended to be

Log[E(Yt)] =a0 + b1PM2.5 + s(time, df 1)+ s(Temperature, df2)

+ s(Pressure, df 3)+ s(Humidity, df 4)+ s(Wind Speed, df 5)

+ s(Precipitation, df6)+ s(PM10, df7)+ s(Sulphur Dioxide, df 8)

+ s(NitrogenDioxide, df 9)+ s(Ozone, df10)
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identical to that in the female group (there was no significant dif-
ference) (Table 1). Of 4667 specimens, 40 (0.9%) were SARI cases.
A total of nine (22.5%) SARI cases were positive for influenza
viruses, with (H1N1) pdm09 (77.8%) being predominant, fol-
lowed by H3 (11.1%) and influenza B (11.1%).

The number and proportion of laboratory-confirmed influ-
enza (LCI) cases are presented by year. During the research per-
iod, the positive rate for influenza was 44.7% in 2019, followed by
2018 (16.3%) and 2016 (14.5%) (Table 1). The years 2010, 2011,
2012, 2016 and 2018 were dominated by influenza B virus, while
(H1N1) pdm09 was the predominant virus in 2014, 2017 and
2019. H3N2 was predominant in 2015. Moreover, the positive
rate for (H1N1) pdm09 was equal to that for H3 in 2013 (Fig. 1).

The majority of laboratory-confirmed positive cases (95.3%)
were distributed from November to April, indicating that there
was an obvious influenza epidemic peak in winter (cold climate
season) in Hulunbuir (Supplementary Fig. S2). Moreover, in
each peak, cases positive for influenza A virus most often began
to be detected in November, while influenza B virus detection
began in January, which was later than influenza A (Fig. 2).

The age ranged from 0 to 98, and we divided cases into five age
groups, 0–4 years, 5–14 years, 15–49 years, 50–69 years and ⩾70
years group. The 15–49 years group constituted 39.3% of the total
number of influenza positive cases, followed by that in the 0–4
years (33.5%), 5–14 years (16.4%), 50–69 years (8.7%) and ⩾70
years (2.0%) groups, respectively. The positive rate for influenza

virus in the ⩾70 years old group was 17.0%, followed by that in
the 5–14 years (16.7%), 50–69 years (16.7%), 15–49 years
(10.6%) and 0–4 years (9.1%) groups. The percent positive by sub-
type was presented by age groups. (H1N1) pdm09 accounted for
the highest influenza infection ratio in all age groups except for
the 5–14 years group, in which the majority of positive cases
was caused by influenza B virus (Table 1).

Associations between air pollutants and the positivity rate of
influenza in Hulunbuir

We collected air quality surveillance datasets from two environ-
mental monitoring sites: 119°77′E, 49°23′N and 119°73′E, 49°
35′N. Both monitoring sites were located in downtown area of
Hulunbuir city. After analysing and sorting out the monitoring
data, we found that data from the first monitoring site was
more complete, so we choose data from this site for the following
analysis in this study. During the 2015–2019 research period in
Hulunbuir, the average air quality index (AQI) was 47.99 and
the average concentrations of air pollutants were 28.02, 44.88,
7.39, 0.55, 19.75 and 62.72 μg/m3 for PM2.5, PM10, SO2, CO,
NO2 and O3, respectively in the influenza season (November to
April) (Table 2). The AQI reached peak in April in the influenza
season, and the peak time of PM2.5, PM10, SO2, CO, NO and O3

are shown in Supplementary Fig. S1. Moreover, time series of
meteorological factors were shown in Supplementary Fig. S2.

Table 1. Descriptive statistics on the LCI cases in Hulunbuir, during January 2010–May 2019

Characteristics

Influenza viruses detected by types and subtypes No. (%)

Total no.Negative H3N2 (H1N1) pdm09 Influenza B virus

Year

2010 69 (90.8) 2 (2.6) 0 (0.0) 5 (6.6) 76

2011 46 (93.9) 1 (2.0) 0 (0.0) 2 (4.1) 49

2012 347 (94.0) 10 (2.7) 0 (0.0) 12 (3.3) 369

2013 521 (97.9) 5 (0.9) 5 (0.9) 1 (0.2) 532

2014 676 (91.0) 23 (3.1) 27 (3.6) 17 (2.3) 743

2015 612 (95.6) 19 (3.0) 0 (0.0) 9 (1.4) 640

2016 547 (85.5) 19 (3.0) 9 (1.4) 65 (10.2) 640

2017 582 (89.5) 22 (3.4) 41 (6.3) 5 (0.8) 650

2018 535 (83.7) 7 (1.1) 42 (6.6) 55 (8.6) 639

2019 182 (55.3) 15 (4.6) 97 (29.5) 35 (10.6) 329

Age group (years)

0–4 1422 (90.9) 34 (2.2) 62 (4.0) 47 (3.0) 1565

5–14 638 (83.3) 30 (3.9) 30 (3.9) 68 (8.9) 766

15–49 1639 (89.4) 41 (2.2) 88 (4.8) 66 (3.6) 1834

50–69 340 (83.3) 17 (4.2) 30 (7.4) 21 (5.1) 408

⩾70 78 (83) 1 (1.1) 11 (11.7) 4 (4.3) 94

Gender

Female 2056 (88.2) 61 (2.6) 114 (4.9) 99 (4.2) 2330

Male 2061 (88.2) 62 (2.7) 107 (4.6) 107 (4.6) 2337

Total 4117 (88.2) 123 (2.6) 221 (4.7) 206 (4.4) 4667

Notes: Statistical testing result summarised by grouping variables; year: χ2 = 759.375, P < 0.001; age group: χ2 = 80.194, P < 0.001; gender: χ2 = 0.536, P = 0.991.
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Meteorological data and concentrations of air pollutants in the
non-influenza season are also listed in Table 2. The association
between the rate of influenza viral infections and air pollution
was assessed by a GAM (Supplementary Figs S3 and S4). There
was a negative relationship between influenza cases and daily
air temperature and daily precipitation and positive relationship
between influenza cases and daily air pressure. In air pollutants,
there were negative correlations between influenza cases and O3

and AQI, and positive correlations between influenza cases and
NO2, CO and PM2.5. During these correlations, we found PM2.5

concentrations showed significant effects on the rate of influenza-
positive cases. The excess rates of influenza infection associated
with increasing PM2.5 concentration with lagged days (0–14) esti-
mated by the GAM are shown in Figure 3. This result indicated
that the effect of PM2.5 on influenza-positivity rate was statistically
significant on day lag-4 and lag-5. The excess rate of influenza
infection associated with increasing PM2.5 concentration was
2.96% (95% confidence interval (CI) 0.88–5.03) on day lag-4
and 3.80% (95% CI 1.59–6.00) on day lag-5 (Table 3). The
model fit and diagnosis indicators have been summarised in
Supplementary Table S1, and the Residual autocorrelation and
partial autocorrelation charts are shown in Supplementary
Fig. S5. Sensitivity analysis results were available from the authors
on request.

Phylogenetic analysis of (H1N1) pdm09

A total of 9 (H1N1) pdm09 strains from 2017 to 2019 were
selected for HA and NA sequencing. The nucleotide identity of
the HA gene ranged from 97.89% to 99.20%, while NA amino
acids shared 98.18% to 99.58% identity, compared with HA of
A/Michigan/45/2015(H1N1), the WHO-recommended vaccine
strain in 2017–2019. To clarify the clade distribution of the
obtained sequences, phylogenetic trees for the HA and NA
genes were constructed along with those of the reference strains
obtained from the GenBank and GISAID databases. Analysis of
phylogenetic trees revealed that these nine strains belong to sub-
clade 6B.1. HA genes were represented by A/Michigan/45/2015
(H1N1), and NA genes were clustered with A/Zambia/38/2015
(Fig. 4).

Phylogenetic analysis of influenza B

Influenza B viruses were classified into two lineages, the B
Yamagata lineage and the B Victoria lineage. The B Victoria lin-
eage can be further divided into clade 1A (clade 1A-1Del, clade
1A-2Del and clade 1A-3Del) and clade 1B based on phylogenetic
analysis. In this study, four influenza B isolates in 2019 were
selected for HA and NA sequencing. Nucleotide comparison

Fig. 1. Daily distribution of LCI cases in Hulunbuir from January 2010 to May 2019.
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showed 98.80% HA identity and 99.02–99.28% NA identity
with NA of B/Colorado/06/2017 as reference. Phylogenetic
trees revealed that strains from Hulunbuir belong to subclade
1A-3Del. HA genes were characterised by B/Texas/21/2019, and
NA genes were clustered with B/Minnesota/02/2019 (Fig. 5).

HA and NA substitutions in (H1N1) pdm09 isolates

An amino acid comparison between nine obtained (H1N1) pdm09
strains and A/Michigan/45/2015(H1N1) (reference vaccine strain
from 2017 to 2019) was conducted to clarify genetic characteris-
tics. These sequences were highly conserved with those of the vac-
cine strain, with HA amino acid identity >98%. Moreover, three
strains isolated in 2017 showed a high homology (>99%) with
the vaccine strain, with only 1–2 amino acid mutations in the
HA protein. A total of 23 mutations were found in the isolates.
All strains except for A/Hulunbuir/1701/2017(H1N1) shared an
S200P substitution (2009 H1N1 pandemic numbering). Two
strains isolated in 2017 showed an A232G substitution. Isolates
from 2018 to 2019, with the exception of A/Hulunbuir/1901/
2017(H1N1), shared an R240Q substitution. Other sporadic sub-
stitutions are listed in Table 4. In brief, of all the amino acid muta-
tions mentioned above, the substitutions N146D and S200P were
reported to increase binding affinity to α2,6 SA-linked glycans
[28, 29], and D204V reduces binding to the human receptor in
H1N1 [30]. A232G was related to the host specificity shift in
human H3N2, and R240Q [31] changed the HA binding affinity

to its receptor in H2 and H3 strains [32]. Substitutions occurring
at S200P and R240Q were also considered to be associated with the
virulence of influenza virus [33, 34]. Additionally, the N179S
mutation tended to remove a potential N-glycosylation site, and
the S127L mutation was involved in a T cell epitope.

(H1N1) pdm09 isolates showed 97.23–99.79% homology for
the NA protein with NA of A/Michigan/45/2015(H1N1) as a ref-
erence. All strains isolated in 2018 and 2019 shared the G77R,
V81A and N449D substitutions. Moreover, the G41D mutation
occurred in A/Hulunbuir/1702/2017(H1N1) and A/Hulunbuir/
1703/2017(H1N1), and D248N occurred in A/Hulunbuir/1801/
2017(H1N1) and A/Hulunbuir/1802/2017(H1N1), which were
identified as mild drug resistance sites (Table 5).

HA and NA substitutions in influenza B isolates

Four influenza B strains showed 99.83% amino acid identity in
the HA protein and 99.57% amino acid identity in the NA protein
compared with those of B/Colorado/06/2017, the reference vac-
cine strain during 2018–2020. In total, nine amino acid mutations
were identified in the HA protein, namely, S16N, G138D, G142R,
K146E, D171del, V183I, T201N, K495R and T544A. The Q365K
and A388T substitutions were detected in the NA protein
(Table 6). In detail, the substitutions G138D, G142R and D171del
were reported to belong be localised in antigenic sites [35, 36],
and the T201N mutation created a new N-glycosylation site that
may affect antigenic and other properties [37]. Furthermore, the

Fig. 2. Temporal pattern of influenza viruses by types and subtypes in Hulunbuir from January 2010 to May 2019. (A, B, C and D) Heatmaps of the weekly proportion
of positive results for influenza, (H1N1) pdm09, H3N2 and influenza B virus lineages.
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T201N mutation was shown to change HA binding affinity to its
receptor, which might lead to a host specificity shift [38].

Prediction of potential glycosylation sites

A total of seven potential glycosylation sites at the positions 28,
40, 104, 179, 304, 498 and 557 on the HA gene were predicted
in eight (H1N1) pdm09 strains, consistent with A/Michigan/45/
2015(H1N1). Only one strain (A/Hulunbuir/1803/2017(H1N1))
showed six potential glycosylation sites, lacking position 179,
which was identical to A/California/07/2009(H1N1). All nine
strains and A/Michigan/45/2015(H1N1) shared eight potential
glycosylation sites at the positions 42, 50, 58, 63, 68, 88, 146
and 235 on the NA gene, while A/California/07/2009(H1N1) pos-
sessed eight potential glycosylation sites, with the position 386
instead of 42 compared with those of the isolated strains. All
influenza B strains were predicted to have 11 potential glycosyla-
tion sites on the HA protein and four potential glycosylation sites
on the NA protein, consistent with B/Colorado/06/2017.

Discussion

Our study investigated epidemiological and genetic characteristics
of LCI cases in Hulunbuir from January 2010 to May 2019 and
evaluated the association between air pollutants and the rate of
influenza-positive cases for in-depth exploration surveillance
data, performing a comprehensive analysis of the influenza activ-
ity in the research area. A total of 4667 ILI and SARI specimens
were collected during the research years, of which 344 (62.5%)
were influenza A positive and 206 (37.5%) were influenza B posi-
tive, with (H1N1) pdm09 (40.2%) being predominant, followed
by influenza B (37.5%) and H3N2 (22.3%). Specimens positive
for influenza A virus were also detected for H5/H7/H9 subtypes,
the avian influenza viruses, from January 2010 to May 2019.
However, no H5/H7/H9-positive cases were found during the
research period. Since 2013, subtypes of the predominant influ-
enza virus have changed over the years, which has been reported
in tropical regions [39]. Additionally, although available data were
collected up to May 2019 with the proportion of positive cases in
the following months in 2019 unknown, the year 2019 probably
posed the highest positive rate for LCI cases, as the monthly pro-
portion of positive cases was higher than that of the same period
in other years.

There was no significant difference in the percentage of influ-
enza virus positive specimens between the male and female
groups. Our study showed an age-specific distribution, with the
highest influenza-positive rate in the group of ⩾70 years old
(17.0%), followed by the 5–14 (16.7%) and 50–69 (16.7%) years
old groups, indicating that elderly individuals and school-age chil-
dren might be at high risk for influenza infection in Hulunbuir.
Moreover, positive cases in groups of individuals that were 50–
69 and ⩾70 years old were dominated by (H1N1) pdm09, while
influenza B was the dominant virus in the 5–14 years old
group. Therefore, local vaccination and other prevention strategies
for influenza infection should attach importance to the elderly
population and school-age children, including consideration of
the different predominant subtypes in the different age groups.
Additionally, the positive rate in the 0–4 years old group (9.1%)
was lower than that in the other age groups, which is consistent
with previous reports in Singapore [40]. The transmission pattern
may account for this result, as influenza infection in this ageTa

b
le

2.
Su

m
m
ar
y
st
at
is
ti
cs

of
am

bi
en

t
m
ea
su
re
m
en

ts
in

H
ul
un

bu
ir
fr
om

Ja
nu

ar
y
20
10

to
M
ay

20
19

M
ea
su
re
m
en

ts

N
on

-f
lu

se
as
on

(M
ay

to
O
ct
ob

er
)

Fl
u
se
as
on

(N
ov
em

be
r
to

Ap
ri
l)

M
ea
n

S.
D
.

M
in

P
25

M
ed

ia
n

P
75

M
ax

M
ea
n

S.
D
.

M
in

P
25

M
ed

ia
n

P
75

M
ax

P

Te
m
pe

ra
tu
re

(°
C)

13
.8
3

7.
67

−
14
.2
0

8.
91

15
.3
6

19
.6
5

29
.9
1

−
15
.5
8

11
.3
6

−
39
.2
5

−
24
.3
3

−
18
.0
0

−
6.
53

13
.9
9

<0
.0
01

Ai
r
P
re
ss
ur
e

(m
m
H
g)

70
0.
03

4.
66

68
4.
21

69
7.
08

69
9.
85

70
3.
03

71
4.
43

70
7.
08

5.
21

68
9.
25

70
3.
61

70
7.
13

71
0.
51

72
3.
00

<0
.0
01

Re
la
ti
ve

hu
m
id
it
y

(%
)

56
.7
1

16
.6
1

14
.7
5

44
.8
8

57
.1
9

68
.8
8

95
.3
8

68
.4
6

11
.0
2

27
.2
5

63
.6
3

70
.8
8

76
.0
0

98
.2
5

<0
.0
01

W
in
d
sp
ee
d
(s
/m

)
4.
47

2.
03

0.
88

3.
00

4.
13

5.
61

14
.7
5

3.
95

1.
70

0.
63

2.
75

3.
75

5.
00

11
.7
5

<0
.0
01

P
re
ci
pi
ta
ti
on

(m
m
)

1.
79

5.
82

0.
00

0.
00

0.
00

0.
40

86
.0
0

0.
19

0.
73

0.
00

0.
00

0.
00

0.
01

9.
40

<0
.0
01

AQ
I

56
.2
4

19
.1
0

21
.0
0

45
.0
0

54
.0
0

62
.0
0

22
8.
00

47
.9
9

19
.7
8

19
.0
0

34
.0
0

44
.0
0

54
.0
0

17
2.
00

<0
.0
01

P
M
2.
5
(μ
g/
m

3 )
21
.6
4

13
.9
7

4.
00

13
.0
0

18
.0
0

27
.0
0

17
8.
00

28
.0
2

17
.1
2

6.
00

16
.0
0

23
.0
0

34
.0
0

13
0.
00

<0
.0
01

P
M
10

(μ
g/
m

3 )
50
.6
8

33
.7
2

0.
00

28
.0
0

44
.0
0

63
.0
0

34
4.
00

44
.8
8

26
.7
1

12
.0
0

27
.0
0

38
.0
0

54
.0
0

27
2.
00

<0
.0
01

SO
2
(μ
g/
m

3 )
4.
47

4.
58

1.
00

2.
00

3.
00

4.
00

41
.0
0

7.
39

6.
68

2.
00

4.
00

5.
00

8.
00

42
.0
0

<0
.0
01

CO
(m

g/
m

3 )
0.
38

0.
13

0.
00

0.
30

0.
40

0.
40

1.
10

0.
55

0.
27

0.
00

0.
40

0.
50

0.
70

2.
00

<0
.0
01

N
O
2
(μ
g/
m

3 )
16
.0
4

6.
26

4.
00

12
.0
0

15
.0
0

20
.0
0

66
.0
0

19
.7
5

9.
86

4.
00

12
.0
0

18
.0
0

25
.0
0

60
.0
0

<0
.0
01

O
3
(μ
g/
m

3 )
91
.0
6

23
.2
8

13
.0
0

74
.7
5

92
.0
0

10
6.
00

18
6.
00

62
.7
2

19
.6
3

0.
00

51
.0
0

61
.0
0

75
.0
0

12
2.
00

<0
.0
01

N
ot
es
:A

ir
qu

al
it
y
an

d
po

llu
ta
nt

m
ea
su
re
m
en

ts
st
ar
te
d
si
nc
e
Ja
nu

ar
y
20
15
;A

Q
I,
ai
r
qu

al
it
y
in
de

x;
P
M
2.
5,
pa

rt
ic
ul
at
e
m
at
te
r
2.
5
μm

or
le
ss

in
di
am

et
er
;P

M
10
,p

ar
ti
cu
la
te

m
at
te
r
10

μm
or

le
ss

in
di
am

et
er
;S

O
2,
su
lp
hu

r
di
ox
id
e;
CO

,c
ar
bo

n
m
on

ox
id
e;
N
O
2,

ni
tr
og

en
di
ox
id
e;

O
3,
oz
on

e;
P
25
,
pe

rc
en

ti
le

25
;
P
75
,
pe

rc
en

ti
le

75
.

Epidemiology and Infection 7

https://doi.org/10.1017/S0950268820001387 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268820001387


group relies on household transmission, and thus, children have a
reduced chance to be exposed to influenza viruses.

A previous study indicated that there is a single influenza epi-
demic peak in temperate regions from November to March [41].
We found that positive cases for influenza in Hulunbuir began in
mainly November and ended in April during the research years,
with one peak year-round. Historical statistics of climate seasons
in Hulunbuir indicated that winter started on 20 September and
ended on 11 May. Therefore, winter covered the whole influenza
epidemic season in Hulunbuir. Moreover, positive cases for influ-
enza B virus constantly occurred later than those for (H1N1)
pdm09 and H3N2. In this study, all influenza positive cases
were H1N1, H3 subtypes and influenza B which were seasonal
influenza. This indicated that our study might provide reference
in instituting local prevention and control strategies of seasonal
influenza in these cities.

Research on the association between air pollution and RDs has
attracted wide attention in recent years. Air pollutants including
O3 have been demonstrated to be associated with influenza activ-
ity in Hong Kong [12]; likewise, PM10 and O3 were important
predictors that showed a significant effect on paediatric influenza

in Brisbane, Australia [13]. Our study provided additional evi-
dence of associations between air pollutants and influenza in a
temperate city in China. We found that the effect of PM2.5 con-
centrations on the influenza-positivity rate was statistically signifi-
cant, particularly on day lag-4 and lag-5. The most significant
relationship between PM2.5 and influenza-positivity rate occurred
at 5 days after exposure, and the excessive rate was 3.80% (CI
1.59–6.00%). The key indicators of the relationship between fine
particulate matter concentrations and respiratory infections,
including influenza, from this report and recent publications are
summarised in Table 7. A survey conducted in Hefei, a city in
southern China, showed that ILI and LCI were related to PM2.5

concentration increments, with ERs of 1.9% and 8.9%, respect-
ively, at 2 weeks after exposure [27]. Another report evaluated
the relationship between PM2.5 and AECOPD in Jinan, a city in
eastern China. In this report, in Jinan, the ER was 3.1% (CI
1.7–4.4%) at 3 days after exposure [16]. A similar relationship
has also been found in America, Europe and Oceania. A study
in New York, USA, associated PM2.5 with influenza at an ER of
3.9% (CI 2.1–5.6%) at 6 days after exposure [42]. A report from
Christchurch, New Zealand, showed that PM10 raised the incident

Fig. 3. The excess rates of influenza infection associated with increasing PM2.5 with lagged days estimated by GAM models.
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Table 3. The excess rates of influenza infection associated with increasing PM2.5 with lagged days estimated by GAM

Lagged
days

Influenza-like cases Influenza positive cases Influenza A virus cases Influenza B virus cases

ER
(%)

LL
(%)

UL
(%) P

ER
(%)

LL
(%)

UL
(%) P

ER
(%) LL (%)

UL
(%) P

ER
(%) LL (%)

UL
(%) P

0 0.50 −0.01 1.02 0.057 −1.56 −3.20 0.08 0.062 −1.63 −3.85 0.58 0.149 −1.46 −2.71 −0.20 0.023

1 0.56 0.01 1.12 0.047 −1.11 −2.90 0.68 0.223 −1.68 −4.12 0.76 0.176 −0.24 −1.23 0.75 0.637

2 1.23 0.65 1.81 <0.001 −0.44 −2.10 1.22 0.602 −1.57 −4.07 0.93 0.220 −1.13 −2.32 0.07 0.065

3 0.66 0.18 1.14 0.007 −0.27 −1.16 0.61 0.545 1.55 −1.68 4.78 0.346 −0.21 −1.27 0.86 0.702

4 0.36 −0.17 0.88 0.183 2.96 0.88 5.03 0.005 3.27 −0.30 6.84 0.073 0.86 −2.15 3.88 0.575

5 0.05 −0.52 0.62 0.865 3.80 1.59 6.00 0.001 3.55 −0.37 7.47 0.076 −0.47 −1.57 0.63 0.404

6 0.77 0.24 1.30 0.005 −0.61 −1.58 0.36 0.219 1.32 −0.68 3.33 0.195 −0.95 −2.01 0.10 0.076

7 0.52 −0.06 1.09 0.081 0.08 −0.88 1.05 0.866 0.04 −1.29 1.36 0.958 −0.28 −1.28 0.72 0.581

8 −0.18 −0.74 0.38 0.532 −0.98 −2.88 0.93 0.316 −1.15 −3.85 1.55 0.405 −0.91 −2.11 0.28 0.134

9 0.16 −0.35 0.67 0.550 −1.29 −2.62 0.04 0.057 −1.35 −3.88 1.17 0.293 −0.42 −1.40 0.56 0.405

10 −0.22 −0.76 0.31 0.418 1.00 0.00 1.99 0.049 2.64 −0.39 5.68 0.088 −0.08 −1.16 1.00 0.885

11 −0.21 −0.71 0.29 0.403 −1.23 −2.75 0.29 0.112 −1.46 −3.91 0.99 0.242 −0.72 −3.43 1.99 0.601

12 −0.08 −0.63 0.48 0.789 0.07 −1.99 2.13 0.946 −3.90 −6.51 −1.30 0.003 −1.03 −2.05 0.00 0.05

13 0.68 0.17 1.20 0.009 −0.06 −0.98 0.85 0.889 −1.99 −3.99 0.02 0.052 −0.97 −2.24 0.30 0.133

14 0.07 −0.46 0.61 0.791 0.18 −1.88 2.23 0.867 −1.84 −4.02 0.33 0.097 −1.36 −2.83 0.10 0.068

Notes: ER, excess ratio in percentage; LL, lower limit of 95% CI; UL, upper limit of 95% CI. Excess rates of influenza infection were estimated by PM2.5 increasing 50 μg/m3; adjusted R2 for the models were: 0.226 (influenza-like cases), 0.285 (influenza
positive cases), 0.253 (influenza A virus cases), 0.219 (influenza B virus cases).
The statistical significance has been displayed in the colum P. The P stands for “P-value” or statistical power.
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Fig. 4. Phylogenetic analysis of the HA and NA genes of (H1N1) pdm09 strains: (A) HA phylogeny And (B) NA phylogeny. Phylogenetic trees were constructed in
MEGA10 using a maximum likelihood method based on the Kimura 2-parameter substitution model. A total of 1000 bootstrap replicates were performed, with
bootstrap values and major amino acid substitutions labelled at the branches. The tree was rooted by the vaccine strain A/California/07/2009.
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rate of influenza by an ER of 2.43% (CI 1.59–3.27%) at 2 days
after exposure [15]. In Turin, Italy, a study showed that emer-
gency room admissions for respiratory reasons in paediatric
increased by 1.3% (CI 0.3–2.2%), 5 days after NO2 exposure
[43]. The association between air pollutants and total hospital
admission for RDs showed to be strong with PM2.5 at lag-4
(ER: 1.50; CI 1.09–1.99%), NO2 at lag-4 (ER: 1.27; CI 1.02–
1.53%) and PM10 at lag-0 (ER: 0.61; CI 0.33–0.89%) in Istanbul,

Turkey [44]. In Montreal, Canada, the number of emergency
room visits for respiratory illness increased by 21% (CI 8–34%)
after O3 exposure [45]. In Minneapolis-St. Paul, USA, O3 raised
the number of RDs by 5.15% (CI 2.36–7.94%) [46]. In London,
UK, it has been reported that an increase in PM10 was related
to RDs (ICD-9 460-519) by an ER of 1.5 (CI 0.8–2.2%) at 3
days after exposure [47]. However, a previous study indicated
that the effects of PM2.5 on daily ILI were significant without a

Fig. 5. Phylogenetic analysis of the HA and NA genes of influenza B strains: (A) HA phylogeny and (B) NA phylogeny. Phylogenetic trees were constructed in MEGA10
using a maximum likelihood method based on the Kimura 2-parameter substitution model. A total of 1000 bootstrap replicates were performed, with bootstrap
values and major amino acid substitutions labelled at the branches. The tree was rooted by the vaccine strain B/Victoria/02/1987.
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Table 4. Amino acid substitutions of the HA protein in Hulunbuir (H1N1) pdm09 strains compared with that of A/Michigan/45/2015, the WHO-recommended vaccine strain during 2017–2019

Year Strains %AA identity

HA 1 HA 2

64 91 127 146 179 181 200 202 204 232 240 267 273 277 288 312 319 341 421 513 523

A/Michigan/45/2015(H1N1) 100.00 V S S N N S S T D A R V T N P I K I I N E

2017 A/Hulunbuir/1701/2017(H1N1) 99.82 – – – – – – – – – – – – – – – – – V – – –

2017 A/Hulunbuir/1702/2017(H1N1) 99.65 – – – – – – P – – G – – – – – – – – – – –

2017 A/Hulunbuir/1703/2017(H1N1) 99.65 – – – – – – P – – G – – – – – – – – – – –

2018 A/Hulunbuir/1801/2017(H1N1) 98.94 – R – – – T P – V – Q – – – – V – – – – –

2018 A/Hulunbuir/1802/2017(H1N1) 98.94 – R – – – T P – V – Q – – – – V – – – – –

2018 A/Hulunbuir/1803/2017(H1N1) 98.76 – R – – S T P – – – Q – I – – V – – – – –

2019 A/Hulunbuir/1901/2017(H1N1) 98.41 – R – D – T P I – – A – D S V – – – – –

2019 A/Hulunbuir/1902/2017(H1N1) 98.23 – R – D – T P I – – Q A – D S V – – – – –

2019 A/Hulunbuir/1903/2017(H1N1) 97.88 I R L – – T P – V – Q – – del – V T – M S D

Notes: 2009 H1N1 pandemic numbering.

Table 5. Amino acid substitutions of the NA protein in Hulunbuir (H1N1) pdm09 strains compared with that in A/Michigan/45/2015, the WHO-recommended vaccine strain during 2017–2019

Year Strains %AA identity

NA

14 41 47 51 74 77 81 127 163 188 248 314 389 416 438 449 452 453 467

A/Michigan/45/2015(H1N1) 100.00 C G E Q F G V L I I D M I D T N T V I

2017 A/Hulunbuir/1701/2017(H1N1) 99.57 – – G – – – – – – T – – – – – – – – –

2017 A/Hulunbuir/1702/2017(H1N1) 99.79 – D – – – – – – – – – – – – – – – – –

2017 A/Hulunbuir/1703/2017(H1N1) 99.79 – D – – – – – – – – – – – – – – – – –

2018 A/Hulunbuir/1801/2017(H1N1) 97.23 – – – – – R A – V T N – – – – D – G –

2018 A/Hulunbuir/1802/2017(H1N1) 98.72 – – – – – R A – V T N – – – – D – – –

2018 A/Hulunbuir/1803/2017(H1N1) 98.93 – – – – – R A – – T – – – – A D – – –

2019 A/Hulunbuir/1901/2017(H1N1) 98.08 – – – K S R A – – T – – K N – D I – –

2019 A/Hulunbuir/1902/2017(H1N1) 98.08 – – – K S R A – – T – – K N – D I – –

2019 A/Hulunbuir/1903/2017(H1N1) 98.51 S – – – – R A V – – – I – – – D – – V

Notes: 2009 H1N1 pandemic numbering.
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time lag in Nanjing, China, where the ER was 2.99% with a 95%
CI 1.64–4.36 [17]. In Hong Kong, it has also been reported that
the relationship between PM10 and RD without lag time has an
ER of 0.7% with a CI 0.3–1.0% [47]. The difference in days of
lag may be due to the different research groups, differences
between ILI and LCI cases, and different climate and geographical
characteristics. Moreover, monitoring and control measures to
reduce the concentrations of PM2.5 could potentially reduce the
risk of influenza infection. These measures may also be an effect-
ive local public health response for regions with the similar cli-
mate, geographical characteristics or air pollution conditions.
However, whether the correlation between air pollutants and
influenza infection is causation needs more mechanism research
to confirm.

Phylogenetic analysis showed that sequenced strains of
(H1N1) pdm09 belonged to clade 6B.1, which is identical to
A/Michigan/45/2015(H1N1), the vaccine strain recommend by
the WHO during 2017–2019. The HA amino acid identity of

the isolates decreased annually, with the vaccine strain as a ref-
erence. We identified some significant amino acid substitutions
in the HA and NA proteins compared with those of the vaccine
strain, such as N179S, S200P, D204V, A232G and RA240Q in
the HA protein and G41D and D248N in the NA protein.
The S200P and N146D mutations were identified as antigenic
mutations that have been reported to increase binding affinity
to several α2,6 SA-linked glycans involved in adaptation to the
human host [31, 48]. Moreover, the S200P substitution
enhanced viral replication in the lungs of mice, resulting in
increased virulence [49]. The N179S substitution appeared to
remove a potential N-glycosylation site. A/Hulunbuir/1803/
2017(H1N1) with N179S showed six potential glycosylation
sites, whereas other isolates in Hulunbuir were predicted to
have seven potential glycosylation sites. The G41D and D248N
mutations in the NA protein were associated with mild drug
resistance, which may reduce the sensitivity of strains to neur-
aminidase inhibitors.

Table 6. Amino acid substitutions of the HA and NA protein in Hulunbuir influenza B strains compared with that in B/Colorado/06/2017, WHO-recommended vaccine
strain during 2018–2020

16 138 142 146 171 183 201 495 544 365 388

B/Colorado/06/2017 100.00 S G G K D V T K T 100.00 Q A

2019 B/Hulunbuir/1901/2019 98.63 N D R E del I N R A 99.57 K T

2019 B/Hulunbuir/1902/2019 98.63 N D R E del I N R A 99.57 K T

2019 B/Hulunbuir/1903/2019 98.63 N D R E del I N R A 99.57 K T

2019 B/Hulunbuir/1904/2019 98.63 N D R E del I N R A 99.57 K T

Notes: 2009 H1N1 pandemic numbering.

Table 7. Summary of recent reports on the relationship between ambient fine particulate matters and respiratory infections including influenza

Study area
Infection
type

Particulate
matter Increment ER% 95% CI P-value

Lagged
time Reference

Hulunbuir, CN LCI PM2.5 50 μg/m3 3.80 1.59–6.00 0.001 5 days This
report

Hefei, CN ILI PM2.5 10 μg/m3 1.9 1.6–2.2 <0.05 2 weeks 27

Hefei, CN LCI PM2.5 10 μg/m3 8.9 6.0–11.9 <0.05 2 weeks 27

Jinan, CN AECOPD PM2.5 10 μg/m3 3.1 1.7–4.4 <0.05 3 days 16

New York, USA Influenza PM2.5 5.4 μg/m3 3.9 2.1–5.6 <0.001 6 days 42

Nanjing, CN ILI PM2.5 51.08 μg/m3 2.99 1.64–4.36 <0.05 0 days 17

Christchurch, NZ Influenza PM10 10 μg/m3 2.43 1.59–3.27 <0.05 2 days 15

Hong Kong, CN RD PM10 10 μg/m3 0.7 0.3–1.0 <0.05 0 days 47

London, UK RD PM10 10 μg/m3 1.5 0.8–2.2 <0.05 3 days 47

Turin, IT RD NO2 10 μg/m3 1.3 0.3–2.2 <0.05 5 days 43

Istanbul, TR RD PM2.5 10 μg/m3 1.50 1.09–1.99 <0.05 4 days 44

Istanbul, TR RD NO2 10 μg/m3 1.27 1.02–1.53 <0.05 4 days 44

Istanbul, TR RD PM10 10 μg/m3 0.61 0.33–0.89 <0.05 0 days 44

Montreal, CA RD O3 36 ppb 21 8–34 <0.05 0 days 45

Minneapolis-St. Paul,
USA

RD O3 15-parts-per-billion 5.15 2.36–7.94 <0.05 0 days 46

ER%, excessive rate in percentage; CI, confidence interval; NA, not available; ILI, influenza-like illness; LCI, laboratory-confirmed influenza; AECOPD, acute exacerbation of chronic obstructive
pulmonary disease; CN, The People’s Republic of China; USA, United States; NZ, New Zealand; UK, United Kingdom; IT, Italy; TR, Turkey; CA, Canada; RD, respiratory diseases refers to ICD-9
460-519.
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Influenza B strains isolated in Hulunbuir were classified as
members of the clade1A-3del genetic group, with HA amino acid
deletions at the positions 169, 170 and 171, while B/Colorado/06/
2017, the vaccine strain recommended by the WHO during
2018–2020, belongs to clade1A-2del. Several significant amino
acid substitutions occurred in the isolates, such as G142R and
D171del at antigenic sites [35, 36] and T201N at the receptor-
binding site in the HA protein [38], indicating that the influenza
virus might escape host immunity due to constant alteration.

Our study had several limitations. First, although the selection
of the surveillance sentinel site was based on a comprehensive
assessment, including factors such as land area, population dens-
ity, hospital location, size and the number of patients, there is
only one monitoring sentinel in Hulunbuir, resulting in incom-
plete monitoring data. No (H1N1) pdm09-positive cases were
detected in 2010, 2011 and 2015, most likely due to missed collec-
tion. Second, the isolation and sequencing began in 2017 for
(H1N1) pdm09-positive cases and in 2019 for influenza
B-positive cases, leading to incomplete analysis of genetic charac-
teristics of influenza virus in Hulunbuir. Third, only 40 SARI
cases were collected in this study. Therefore, we analysed effects
of air pollutants only on total LCI cases with ILI and SARI
cases together. The differences in the impact of air pollutants
on ILI cases and SARI cases were not mentioned in this paper
due to the small sample size of SARI cases. Fourth, the air quality
surveillance programme started in January 2015 in Hulunbuir,
and the association between air pollutants and influenza-positive
cases has been assessed since only 2015 due to a lack of monitor-
ing data before 2015.

In conclusion, epidemiological and genetic characteristics, as
well as the association between air pollutants and the positivity
rate of influenza, were investigated in Hulunbuir. Epidemiological
features indicated that elderly individuals and school-age children
might at high risk of influenza infection. PM2.5 showed significant
effects on positivity rate of influenza in Hulunbuir, as assessed by
the GAM. Genetic characteristics demonstrated that key amino
acids of influenza viruses are constantly changing, highlighting
the significance of continuous monitoring and surveillance.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268820001387.
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