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SUMMARY

The incidence of infection by mycobacteria, other than tubercle bacilli (MOTT) is increasing in

the United Kingdom, Europe and the United States. These diseases increase morbidity and are an

increasing public health concern. However, the epidemiology of disease due to these species is not

well characterized. We used space–time clustering approaches and Generalized Linear Modelling

to investigate the potential predictors of disease in cases of infection by organisms of the

Mycobacterium avium complex (MAC) and M. malmoense recorded in the north of England

during 2000–2005. There was significant spatial and temporal clustering in juvenile cases of

infection by MAC but not for cases of infection in adults by either species. There were no

significant predictors of infection by M. malmoense or juvenile cases of M. avium. Incidence of

disease caused by M. avium in adults was significantly related to health deprivation and weakly

related to rainfall. We consider possible reasons for the difference in epidemiology in infection

by M. avium in adults and juveniles.

INTRODUCTION

Understanding the aetiology and epidemiology of

emerging pathogens is a major factor determining

how health professionals manage and control disease.

Whilst management at the clinical level can be

progressed incrementally with each patient treated,

management in the public health sphere is limited

by the small number of cases available from which

to characterize epidemiology and aetiology. Myco-

bacteria are slow-growing actinomycetes of which

Mycobacterium tuberculosis andM. leprae are perhaps

the most well-known human pathogens. Whilst the

epidemiology of these two diseases is well understood,

there are a range of other mycobacterial species that

pose risks to human health. There are many other

species of mycobacteria that are facultative sapro-

phytes but are also pathogenic in human hosts [1, 2].

Atypical mycobacterial infections have increased in

prevalence in the United Kingdom over the last 20

years [3]. The increase reflects in part the emergence

of HIV infection, where mycobacterial infection is

an opportunistic response to immunosupression, but

there have also been increases in incidence in the

non-HIV community. The majority of the increase

in cases over this period has been due to infection

by M. avium [4] but infections by a strain identified as

M. malmoense (a species first discovered in 1977) have

also increased [5]. The biogeographies of M. avium

and M. malmoense in the United Kingdom are

* Author for correspondence : Dr S. P. Rushton, Institute for
Research in Environment and Sustainability, Devonshire Building,
University of Newcastle upon Tyne, Newcastle upon Tyne
NE1 7RU, UK.
(Email : steven.rushton@ncl.ac.uk)

Epidemiol. Infect. (2007), 135, 765–774. f 2006 Cambridge University Press

doi:10.1017/S0950268806007424 Printed in the United Kingdom

https://doi.org/10.1017/S0950268806007424 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268806007424


different with the latter having a more northerly

distribution [6], whilst M. avium is found more in the

south. In patients with HIV, infection by both species

is often disseminated. In immunocompetent hosts,

however, infection is localized and usually results in

either pulmonary disease or cervical lymphadenitis.

Cervical lymphadenitis is usually found amongst

children [7] and most records of this disease in the

United Kingdom occur as a result of infection by

M. avium [4]. Pulmonary disease on the other hand is

usually found in adults and is often associated with

other predisposing pulmonary disease [8]. Whilst the

pulmonary disease is curable, infection has been

shown to increase morbidity. In the case of M. mal-

moense death due to infection may be as high as 15%

of cases infected [9]. Infection with this disease may

also shorten longevity, since death rates up to four

times higher than that expected amongst the general

population have been recorded even though infection

itself may not be identified as the proximal cause of

death [10].

There is considerable public health interest in

understanding the epidemiology of these pathogens.

In this paper we investigate the epidemiology of

M. avium and M. malmoense infections in cases

recorded in northern England over the period from

2000 to 2005 using space–time clustering and Gen-

eralized Linear Modelling (GLM) approaches. We

assess the extent to which incidence of the disease

is clustered, consider possible causes of clustering

where it exists and investigate the role of social and

environmental predictors in determining the incidence

of infection by both species.

MATERIALS AND METHODS

Data

The data were derived from anonymized records

of the incidence of M. avium and M. malmoense

held by the North of England Reference Centre for

Mycobacteriology based in the Health Protection

Agency Regional Laboratory, Newcastle, UK. These

comprised the residential post-code of patients and

the date of record for all primary positive records of

samples submitted to the Reference Centre between

2001 and 2005. The post-codes were converted to

spatial locations on the United Kingdom National

Grid using a post code–grid reference cross-

referencing file available from the Office of National

Statistics. The geographical coordinates of the case

residence and the date of record were used as inputs

to the space–time clustering analyses.

Potential environmental and social predictors of

disease incidence could not be collected at the tem-

poral and spatial resolution of the individual case.

Instead we adopted the administrative districts in

which each case was found as the unit for modelling.

Super Output Areas (SOAs) are a geographic hier-

archy designed to improve the reporting of small

area statistics in England and Wales within the

United Kingdom. SOAs were generated by a com-

puter program which merged units of landscape

together taking into account measures of population

size, mutual proximity and social homogeneity [11].

At the lowest level, landscape units are grouped in

units with a mean population of 1500 individuals.

We overlaid the records of disease incidence for the

period 2000–2005 on a map of the distribution of

Lower SOAs for the north of England, in order to

assess how many records occurred in each SOA and

evaluate the extent to which the SOA could be used as

the spatial unit of the response (incidence of disease)

in the GLM.

Five predictors of social deprivation derived from

the Office of National Statistics were collated for

each SOA in which each case was found [11]. These

were indices of health, income, education, environ-

ment, housing and an index of multiple deprivation

(IMD) which was a government statistic derived

from a combination of all of the other indices. Each

index was derived from counts of measures of

deprivation in each category. The index of income

deprivation was derived from taxation and social

credit-based statistics for each household, specifically :

indicators comprising the number of adults and chil-

dren in Income Supportable households; adults and

children in Income Based Job Seekers Allowance

households ; adults and children in households claim-

ing Disabled Persons Tax Credit and the number of

Asylum seekers. The health deprivation index was

determined from morbidity data; health statistics

related to hospital admission and measures of adults

suffering from mood or anxiety disorders. The mor-

bidity data were used to calculate an estimate of years

of potential life lost, as an age- and sex-standardized

measure of premature death in the SOA. Since we

could not collect social and environmental data at

the same temporal scale as the cases themselves, we

assumed that the data collected for the 2001 national

census (Office of National Statistics), at the beginning

of our sample period, were representative of the space
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and time period over which cases of M. avium and

M. malmoense were recorded.

Environmental predictors were also not available

at the resolution of either the individual case disease

or the SOA. We collected variables that we hypoth-

esized might impact on the incidence of atypical

tuberculosis, these were rainfall and extent of urban

environment. Rainfall was selected because myco-

bacteria are found extensively in natural water systems

and one suggested route of infection is through aero-

lization in water droplets [2], thus wetter environ-

ments might be expected to have higher incidences of

infection. The extent of the urban environment along

with SOA size were used as surrogates for population

density, since the SOA is defined in terms of its

population size. Mean annual rainfall at 5 kmx2

resolution (UK, Meteorological Office) was used to

create a fine scale map at 50 m for the United

Kingdom. A map of the SOAs at the same spatial

scale was then overlaid over the rainfall data and a

mean annual rainfall for the SOA derived by aver-

aging across the rainfall values for all pixels in the

SOA map. The proportion of each SOA that was

urban and built environment was collated in a similar

way but based on the coverage of urban/building

in each 1 km of the National Grid. These data were

derived from the CEH Land Cover map, a classifi-

cation of satellite images derived from imagery col-

lected in 1989 and 1990 [12] and available from the

Countryside Information System [13]. Overlaying

maps of different spatial scales obviously leads to only

very crude estimates of the extent of both potential

predictors in each SOA, but no other data were

available at the appropriate scale. All spatial data

were collated and overlaid in the public domain

geographical information software GRASS [14].

Analysis of space–time clustering

We used K-functions to estimate the extent to which

cases of M. avium and M. malmoense were clustered

in time and space. The K-function is a second-order

moment measure that measures spatial dependence

over a range of spatial scales [15]. K-function analysis

has advantages over other techniques for investigat-

ing clustering because it specifically focuses on inves-

tigating the scale of space–time interactions rather

than simply testing the null hypothesis that there is

no space–time interaction [16]. The K-function at

distance s is defined as the expected number of events

within distance s of an arbitrary event. Over a surface

of events it is calculated from:

K̂K(s)=
R

n2

X

ilj

X Is(dij)

wij
,

where R is the area of the study area; n is the number

of points ; s is the distance; I is an indicator variable

taking the value 1 if the event is within the distance s ;

d is the distance between points i and j and w is an

edge-correction factor that allows for the fact that the

boundary of the study area may lie within the search

radius s, beyond which there are obviously no events

to count. IfK(s) is calculated for randomly distributed

points in the same plane, for multiple realizations

of randomly distributed points, then it is possible to

assess the extent to which the observed pattern K

deviates from random. To consider clustering in both

time and space the K-function is extended to K(s, t)

which is defined as the expected number of events

within distance s and time t of an arbitrary event.

Here u is the temporal separation between points

i and j and v is an analogous edge-correction factor

for time:

K̂K(s, t)=
R

n2

X

ilj

X Is(dij)

wij

It(uij)

vij
:

If the processes are independent in time and space

then K(s, t) should equate to the product of two

K-functions, that relate to space Ks(s) and to time

KT(t).

The function:

D̂D(s, t)=K̂K(s, t)xK̂Ks(s)K̂KT (t), [15]

is then a measure of the extent of spatio-temporal

dependency in the point data. The extent to which

there is spatial and temporal dependency in the point

data can be assessed by Monte Carlo approaches in

a manner similar to that for the simple K-function,

by allocating time coordinates to the points at

random and comparing the random D(s, t) with those

of the observed.

We used the SPLANCS package [17] within the

public domain statistical package R [18] to analyse

space–time clustering in the point data for M. avium

and M. malmoense. In order to allow for an edge-

correction factor, we defined the study area as a

convex polygon enclosing all data points. In reality

this polygon approximated to the coastline on the

east and west coasts of the Unitrd Kingdom but was

cut off in the north by the boundary of Scotland and

southern England (for which we had no data). The
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age distribution of cases was highly bimodal for

both species of Mycobacteria, so we undertook

separate analyses for two age groups, juveniles and

young adults aged f20 years and adults aged >20

years. It is possible to calculate K-functions over

any range of time (t) and space (s) units between the

upper and lower limits of the geography and time

domains in a dataset. For datasets where information

on time and position are recorded at fine scales, as

here, the computational time required to undertake

the analysis at increments of unit time and space over

the whole geographical and time ranges of the data

would be large. We undertook initial analyses over

the range 0–30% of the total ranges in time and space

with time and space steps of 500 m and 30 days. The

upper limit of 30% of the ranges in s and t were

selected to ensure that the edge-correction factors

(w and v) did not become unbounded as happens

when either value approaches the magnitude of the

geographical and temporal ranges of the dataset [19].

Where significant space–time clustering was detected,

the range of time and space was then narrowed to

encompass the highest peaks on the surface plot of

D(s, t) and the analyses repeated in order to identify

the spatial and temporal range over which clustering

was most apparent. The final analyses were under-

taken with a spatial range of 1000–5000 m in 100-m

steps and with a time range of 20–400 days in 30-day

steps. We used 999 randomizations to assess the

significance of clustering in each test, allowing us

to test the extent of significance to three significant

figures.

Generalized Linear Modelling

Whilst we had spatial coordinates and measures of

predictor variables for SOAs where both diseases

were found over the period 2000–2005, we did not

have equivalent data where the disease was known

not to occur. We used SOAs where the disease had

not been recorded as controls in a case-control

analysis of the relationship between disease incidence

in SOAs and the potential predictors. To do this we

selected an equivalent number of controls to the

number of cases. We then fitted unconditional

logistic regression models with presence/absence re-

corded for case and control SOAs as the dependent

variable and the social deprivation and environ-

mental data for each SOA as explanatory variables.

The predictor variables were: the Index of Multiple

Deprivation (IMD score) ; indices of health, income,

environmental deprivation, mean annual rainfall for

the SOA, the proportion of the SOA urban/built

environment and the size of the SOA. Since the

number of cases of infection by both diseases was low

relative to the total number of SOAs available with

no records of infection analyses were repeated 1000

times for 1000 selections of controls, to assess the

extent to which models were robust. In effect this

represents a compromise between maximizing the

efficiency of the logistic regression analyses (where a

balance of 50:50 presences and absences minimizes

the sensitivity of the analysis to the level of prevalence

within the data) and covering the range of variation

in explanatory variables in the population of SOAs

where disease was not recorded. We assessed model

significance on the basis of how many times out of the

1000 runs the regression coefficient for each predictor

in each model were significant. Thus, if the regression

coefficient for a particular variable was significantly

different from zero 998 times out of the total 1000

analyses, we concluded that this represented a P value

of 99.8% of that variable being a significant pre-

dictor. We collated the empirical P values for the

regression coefficients and derived mean estimates

of P and associated confidence intervals for each

predictor variable in each model. We assessed the

variance explained by each model in terms of the

decline in deviance in each replicate and provided

estimates of the mean deviance explained for each

model. We fitted a full model with all predictor

variables included and then stepwise removal of non-

significant predictor variables was used to find the

most parsimonious model. We assessed the extent to

which the binomial error model was suitable for the

model by assessing overdispersion in the residuals.

Models were undertaken for all records of M. avium

and M. malmoense and for the two age groups (>20

years and f20 years) separately.

RESULTS

There was a total of 554 cases of M. avium and 268

cases ofM. malmoense in the north of England region

over the period 2000–2005. The region comprised

11 385 Lower SOAs indicating that both diseases

were comparatively rare in the population as a whole

(around 1/20 500 and 1/42 500 in the population, re-

spectively). The distribution of cases closely follows

that of population density with concentrations in the

metropolitan areas of Leeds, Manchester, Tyneside

and Teeside (Fig. 1). The geographical distribution of
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cases of M. avium appeared to be wider than that

ofM. malmoense but this probably reflects the greater

number of cases of infection by the former. The

age distribution of cases was bimodal for both dis-

eases with the majority of cases being recorded in

older age groups (Figs 2 and 3). There were 63 cases

of infection with M. avium that were aged f20 years.

The mean age of these cases was 5.46 years (S.D.=
4.84, median 4 years) with the data highly skewed to

the left, with most cases <3 years of age. There were

27 cases of infection with M. malmoense in juveniles

aged f20 years. The mean age of these cases was

4.529 years (S.D.=4.11, median 3 years). Both diseases

in the younger age group were clearly associated

with very young children. The ethnicity of cases was

not recorded with sufficient frequency to allow this

variable to be used in analyses.

There was no significant space–time clustering for

cases of infection by either Mycobacterium species

when all ages were considered together. When the

cases were split into two age groups, there was no

evidence of significant space–time clustering in cases

of M. malmoense for either age group, whilst cases of

M. avium infection amongst the f20 years age group

showed clustering with 966 out of 999 simulations

of randomly allocated time coordinates having a

smaller D(s, t) value than that observed in the case

data (Fig. 4). There was no evidence of clustering

in M. avium cases for adults aged >20 years. The

contour surface of D(s, t) values for the f20 years

Fig. 1. Distribution of cases of M. avium (x) and M. malmoense (%) in northern England 2000–2005.
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age group of M. avium cases (Fig. 5) showed a peak

at 200 days peaking at a range of y2000 m but was

generally higher over all spatial ranges. The results

suggest that the incidence of cases of M. avium in

individuals aged f20 years was not random.

The distribution of cases of infection amongst

SOAs was uniformly low with only one record of

two cases per SOA amongst the f20 years age group

for M. avium ; 14 cases of two records per SOA in the

>20 years age group. There were only five cases

of duplicate records per SOA amongst all of the

M. malmoense cases. There were no cases where an

individual SOA had more than two cases of infection

with either disease. The frequency (n=1000) with

which each predictor variable had a significant re-

gression coefficient in a full model with all predictors

included is shown in Table 1 for analyses of the

combined age groups and individual age groups of

each Mycobacterium species. In the full model there

were no predictor variables that were significantly

different from zero for 95% of the sample runs.

Stepwise reduction of individual predictors from the

full model was used to identify models with increased

significance. With the exception of a two-variable

model including IMD score and the extent of urban/

built environment in the SOA, none of the predictor

variables produced had significant regression coeffi-

cients in more than 50% of the sample runs for any

age grouping of theM. malmoense data. ForM. avium

health deprivation score in combination with rainfall

had significant regression coefficients more frequently

(Table 2) for the>20 years age group and also for the

combined age groups. The model for the combined

age groups had significant regression coefficients for

the health and rainfall covariates 945 and 781 times

respectively out of the 1000 runs. In the >20 years

age group the models performed slightly better with

980 and 856 runs out of 1000 producing significant

regression coefficients for the health and rainfall

covariates. Ninety-five per cent confidence intervals

on the P values for the 1000 model runs did not

include the 0.05 indicating that for the majority of

model runs the covariates of health deprivation score

and rainfall were significant predictors of incidence of

M. avium in SOAs. The amount of variation in the

incidence of cases explained (the deviance decline)

in all models was <2%, suggesting that none of the

predictors were good explanatory variables for the

incidence of disease. The indices of overdispersion in

the adult and combined age group models were low

at 1.365 and 1.368 respectively, indicating that the

binomial error model was appropriate for analysing

the data. The amount of variation explained by the

model for the >20 years age group was greater than

that for the models with the combined age groups,

suggesting that the factors explaining the incidence

of disease in adults were different from those for

juveniles aged f20 years. A post-hoc analysis of

the power of the parsimonious logistic regression

equations for all cases of M. avium infection and the

>20 years age group showed that the sample size

needed to achieve a power of>80% for an odds ratio

of 1.01 was in excess of 10 000 cases. Taken together

these results suggest that predicting the incidence of
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Fig. 3. Histogram of the age of cases of M. malmoense
in northern England 2000–2005. Curve fitted by kernel
smoothing.
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Fig. 2. Histogram of the age of cases of M. avium in
northern England 2000–2005. Curve fitted by kernel
smoothing.
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human infection by either Mycobacterium species is

likely to be difficult.

DISCUSSION

The absence of clustering in space and time for cases

ofM. malmoense and adult cases ofM. avium suggests

that the incidence of these diseases is effectively

random in time and space. There are two possible

explanations for this. First, the data may have been

inadequate in that they might not have represented

the true picture of the incidence of disease in the

region studied. Detection of cases of both diseases is

difficult and so there may have been under-recording

for both mycobacteria as noted elsewhere [3, 20].

Furthermore, if there was a temporal or spatial

trend in under-recording then this would also have

impacted on the detection of clustering [16]. Second,

the absence of clustering in adult cases for both

mycobacteria may simply indicate that infection is

random [21].

The results suggest that clustering occurred in

juvenile cases of M. avium over a range of scales but

peaked at a time interval of 100–200 days and 2500 m

between cases. There are three possible explanations

for this pattern. First, is that the clustering may

simply represent underlying clustering in the popu-

lation at risk. If this were the case then one would

expect a significant negative relationship between

the size of the SOA in which cases were found and

disease incidence (since the size of SOA is defined

on the basis of population density and small SOAs
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are inevitably clustered in urban areas). No such

relationship was found for either adults or juvenile

cases of either disease. The second explanation is

that there is a factor which predisposes for disease

which has a spatial and temporal pattern. M. avium,

in particular, is widely distributed in the environment

and in wildlife [22]. Ingestion of contaminated water

sources and contaminated swimming pools are

believed to be routes by which children become

infected [2] and a cluster in immunocompromised

patients was traced to a hospital water supply [23].

Clustering in M. ulcerans infections in Ghana also

arises because of spatial pattern in the distribution of

arsenic in the soil [24], which predisposes for infec-

tion. One possible environmental factor that could

show spatial structure or pattern is the water source

used for domestic consumption. M. avium incidence

in the United States is related to the pH of potable

water resources, being higher in areas of low pH soils

[25]. Analysis of soil pH was not possible in the

Table 1. Regression diagnostics relating disease incidence to different social and environmental predictors,

where controls were selected at random from the Lower Super Output Areas in northern England

(n=1000 selections of random controls paired with the observed cases)

Species

Age

(yr) Intercept

IMD

score Health Housing Env. Income Rainfall Urb. Size

M. avium Mean coeff. x0.0003 0.0015 0.00005 0.00005 0.0357 0.0008 0.0001 0 0

All S.D. 0.00001 0.0016 0.00005 0.00003 0.0137 0.0002 0.0037 0 0

Number 593 99 28 52 89 371 698 2 3

Mean coeff. x0.0002 0.002 0.00006 0.00002 0.0297 0.001 0.0019 0 0

>20 S.D. 0.0001 0.001 0.00005 0.00003 0.0144 0.0003 0.004 0 0

Number 790 53 78 47 11 163 816 13 5

Mean coeff. x0.0004 x0.0031 0.00005 0.0001 0.0803 x0.0001 x0.0048 0 0

f20 S.D. 0.0005 0.0062 0.0002 0.0001 0.0539 0.0007 0.014 0 0

Number 34 32 30 17 63 131 6 14 4

M. malmoense 0.0002 x0.0025 x0.00007 x0.00007 x0.0027 0.0002 x0.01443 0 0

All S.D. 0.0001 0.0023 0.00007 0.00004 0.0172 0.0003 0.0058 0 0

Number 18 61 48 27 77 1 24 311 10

Mean coeff. 0.0004 x0.004 x0.00011 x0.00008 x0.0187 0.0004 x0.0124 0 0

>20 S.D. 0.0002 0.0029 0.00008 0.00005 0.0244 0.0003 0.0061 0 0

Number 41 170 101 64 103 21 52 167 6

Mean coeff. x0.00002 0.00007 x0.00021 0.01549 x0.0015 x0.0167 x0.00035 0 0

f20 S.D. 0.00051 0.00032 0.00016 0.04771 0.0016 0.0301 0.00021 0 0

Number 7 2 6 9 28 1 50 31 18

Mean regression coefficients, standard deviations and the number of replicate models for which the relevant regression coefficient for a

variable was significant at P<0.05.

IMD, Index of multiple deprivation; Env, environmental deprivation score; Urb, extent of urban.

Table 2. Number of times each predictor variable had a regression coefficient significantly different from

zero in parsimonious logistic regression analyses relating M. avium disease incidence to social and environmental

predictors, where controls were selected at random from the Lower Super Output Areas in northern England

Age
group

Regression
parameter Number

Mean
P value 95% CI

All ages Intercept 999 0.0009 0.00069–0.0011
Health 945 0.01209 0.0104–0.0137
Rain 781 0.0417 0.0365–0.0469

>20 years Intercept 1000 0.000265 0.0002–0.00033

Health 980 0.00587 0.00047–0.0007
Rain 856 0.0245 0.021–0.0277

Mean deviance decline and standard deviation given for all models.
Mean and 95% confidence intervals (CI) for the empirical P values for the 1000 regressions.
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present study because many of the SOAs were in

urban environments where soil is disturbed, mixed

and highly heterogeneous. Furthermore, the water

supplies of much of the study area are not as localized

as those in the United States with water for the

conurbations coming from considerable distances

away. The second explanation is that the disease is

contagious in the juvenile age group. In this context

a peak of clustering at 200 days and 2000 m is

then suggestive of the period and spatial domain of

contact, infection and subsequent detection of symp-

toms in the host. A spatial domain of 2000 m could

reflect contact patterns amongst children attending

nursery or educational establishments. One possible

unmeasured factor that may influence the incidence

of disease is the ethnicity of the cases, but previous

studies have demonstrated that there is no link be-

tween incidence of non-tuberculous infections and

ethnicity [19, 26]. We conclude that the clustering

amongst juvenile cases represents a contagious disease

or some unmeasured environmental risk factor with

spatial pattern.

The relationship between incidence of M. avium in

adults and measures of social deprivation has been

recorded before [19] although a similar association

was not found in mycobacterial pulmonary disease

cases in Scotland [27]. Whilst the link appears clear,

the amount of variation explained by the models

was low, suggesting that the deprivation and rainfall

predictors were not good variables for explaining the

incidence of disease. It is likely that both variables

were rather crude predictors; their spatial resolution

was certainly crude relative to the level of the indi-

vidual case of disease. Cases were not only rare

amongst SOAs as a whole but where they did occur

they constituted one case in a population of y1500.

It is also probable that there are other unmeasured

factors such as the incidence of other diseases like

HIV infection that should have been included as

explanatory variables (although HIV is unlikely to be

a major factor in this study since the modal age of the

adult cases was 65 years). It is obvious that health

and social deprivation were surrogates for the real

mechanisms causing disease, with deprivation reflect-

ing factors that lead to an increased environmental

load ofM. avium and hence increased risk of exposure

and infection. M. avium has been associated with

damp and mouldy buildings [21]. The weak associ-

ation with high rainfall, might be explained in terms

of increased aerolization of mycobacteria and en-

hanced exposure to infection in wetter areas. It is also

possible that deprivation and its close association

with lower social status reflects an industrial cause,

since exposure to particles and smoking lead to other

conditions that predispose for disease [2]. Finally,

it is also possible that adult cases of disease were

simply a resurgence of the disease in adults that had

become infected in their youth. Resurgence could be

associated with a decline in health in old age that is

also likely to be faster amongst lower social groups

that typically live in areas of greater deprivation.

This last effect may also explain why the amount of

variation explained by the GLMs was low, since dis-

ease would only then be recorded in a comparatively

small number of individuals amongst the population

as a whole that had become infected whilst young,

who also went on to suffer deprivation and then

recrudescence in later life. This is effectively a pro-

gressively smaller cohort, through time, of the overall

population initially exposed to the disease. On this

basis it seems likely that further advances in under-

standing the link between environment and disease

incidence will only be made when individual life-

history data can be collected rather than snapshot

measures of environmental predictors taken at the

time of case recognition. A prospective study involv-

ing collation of socioeconomic and life-long potential

exposure to environmental risk factors is one way

in which this last hypothesis could be tested.

The results presented here suggest that incidence of

atypical mycobacterial disease is not easily explained

in terms of environmental and social predictors,

giving further support to the theory that infection

is to some extent opportunistic. More interestingly,

the results suggest that the epidemiology of disease in

adults and juveniles, corresponding to pulmonary and

cervical lymphadenitis, is different. If the hypothesis

that cumulative exposure to predisposing factors

is valid then this also suggests that public health

management of both diseases should be different and

targeted at monitoring groups at risk.
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