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In freely decaying stably stratified turbulent flows, numerical evidence shows that the
horizontal displacement of Lagrangian tracers is diffusive while the vertical displacement
converges towards a stationary distribution, as shown numerically by Kimura & Herring
(J. Fluid Mech., vol. 328, 1996, pp. 253–269). Here, we develop a stochastic model for the
vertical dispersion of Lagrangian tracers in stably stratified turbulent flows that aims to
replicate and explain the emergence of a stationary probability distribution for the vertical
displacement of such tracers. More precisely, our model is based on the assumption that the
dynamical evolution of the tracers results from the competing effects of buoyancy forces
that tend to bring a vertically perturbed fluid parcel (carrying tracers) to its equilibrium
position and turbulent fluctuations that tend to disperse tracers. When the density of a fluid
parcel is allowed to change due to molecular diffusion, a third effect needs to be taken into
account: irreversible mixing. Indeed, ‘mixing’ dynamically and irreversibly changes the
equilibrium position of the parcel and affects the buoyancy force that ‘stirs’ it on larger
scales. These intricate couplings are modelled using a stochastic resetting process (Evans
& Majumdar, Phys. Rev. Lett., vol. 106, issue 16, 2011, 160601) with memory. More
precisely, Lagrangian tracers in stratified turbulent flows are assumed to follow random
trajectories that obey a Brownian process. In addition, their stochastic paths can be reset
to a given position (corresponding to the dynamically changing equilibrium position of a
density structure containing the tracers) at a given rate. Scalings for the model parameters
as functions of the molecular properties of the fluid and the turbulent characteristics of
the flow are obtained by analysing the dynamics of an idealised density structure. Even
though highly idealised, the model has the advantage of being analytically solvable.
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In particular, we show the emergence of a stationary distribution for the vertical
displacement of Lagrangian tracers. We compare the predictions of this model with direct
numerical simulation data at various Prandtl numbers Pr, the ratio of kinematic viscosity
to molecular diffusion.

Key words: turbulent mixing, stratified turbulence

1. Introduction

Two points in a homogeneous and isotropic turbulent flow tend to move apart. As a result,
a cloud of Lagrangian tracers spreads under the action of turbulent fluctuations. This fact,
known since Taylor (1922) and Richardson (1926), is often called turbulent diffusion
or dispersion and is often modelled using eddy diffusivities representing turbulent
fluctuations in much the same way molecular diffusivities represent molecular agitation
and thermal fluctuations.

Formally, the above scenario is valid in homogeneous and isotropic flows. In the
‘dynamic’ case of a stratified flow where density differences actively modify the velocity
field, the homogeneity and isotropy assumptions break down. Typically, in that case
parcels of fluid – and, hence, Lagrangian tracers carried by these parcels – are subject to
restoring buoyancy forces. At least in the case where density is not allowed to irreversibly
mix, i.e. when the molecular diffusivity of the scalar setting density κ is zero, such
buoyancy forces tend to bring parcels back to their initial (equilibrium) position when
vertically displaced, even in the presence of turbulent fluctuations that tend to disperse
the parcels. In this case, we expect (eddy) diffusion by turbulent motion to be limited and
the emergence of a stationary probability distribution describing the restricted spreading
of tracers away from their initial position, in the same way that the diffusive spreading of
Brownian particles is constrained when subject to confining potential forces.

On the other hand, when κ /= 0, (irreversible) mixing through molecular diffusion alters
the density of a vertically perturbed parcel. As a result, the expected equilibrium position
of such a parcel dynamically and irreversibly changes as it comes back to rest. The
relevant time scale (or mixing time, denoted tM in what follows), after which mixing
substantially alters the density of a fluid parcel is primarily controlled by the rate of
kinematic deformation of the parcel (and, hence, by gradients in the macroscopic velocity
field that stirs it), molecular diffusion coming into play as logarithmic or weak power-law
corrections (Villermaux 2019). As a result, stirring motions increase the rate of mixing
(that otherwise would be controlled by the relatively slow molecular diffusion time scale),
which itself affects the driving buoyancy forces of the stirring motions (Caulfield 2021).
How is this intricate two-way coupling affecting the dispersion of Lagrangian tracers?
Kimura & Herring (1996) and Venayagamoorthy & Stretch (2006) empirically showed the
emergence of a stationary distribution for the vertical displacement of tracers in stratified
turbulent flows in the case κ /= 0. Lindborg & Brethouwer (2008) analytically showed that
the root-mean-square vertical displacement in freely decaying stratified turbulent flows
indeed has a finite limit as time increases, and predicted this limit up to a free parameter
corresponding to the time-integrated fraction of potential energy that is dissipated. These
studies focused on the effect of the stratification on the dispersion of Lagrangian tracers.
Here, we focus on the effects of the molecular properties of the flow.

Our goal is to develop a minimal model describing the (stochastic) path of Lagrangian
tracers in stratified turbulent flows. As discussed above, in addition to turbulent
fluctuations, the dynamics of Lagrangian tracers is affected by restoring buoyancy forces
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Dispersion in stratified turbulent flows

and by mixing. We here model restoring buoyancy forces as a resetting process (Evans &
Majumdar 2011; Evans, Majumdar & Schehr 2020) constraining the otherwise diffusive
spread of a cloud of tracers. Mixing is modelled as a memory process (Boyer, Evans
& Majumdar 2017). Indeed, as a parcel of fluid with Lagrangian tracers settles towards
its equilibrium position, it mixes with the surrounding environment and, hence, keeps
track of the density levels seen along its path, emphasising the fact that ‘history matters’
(Villermaux 2019). Especially, its density will equilibrate with that of the surrounding fluid
at mixing time tM , as experimentally shown in Petropoulos et al. (2023). As a result, the
parcel will tend to equilibrate at the position it had at tM .

Various parameters arise when building the model and we constrain them by studying a
reduced-order model for the vertical displacement of an elementary (Lagrangian) density
structure carrying Lagrangian tracers (similar to the one developed in Petropoulos et al.
2023). Importantly, the stochastic model arising from this analysis is simple enough so
that an analytical study can be conducted. More precisely, we show the emergence of a
stationary probability distribution. We derive scalings for the properties of this distribution
as a function of the molecular properties of the fluid (via the Prandtl number Pr := ν/κ ,
where ν is the kinematic viscosity) as well as the turbulent characteristics of the flow.
We compare the theoretical prediction of the model with the numerical data, both from
Riley & de Bruyn Kops (2003) and from new, never previously reported simulations at
various Pr /= 1.

Note that one-dimensional stochastic models have been successfully used in the past to
reproduce turbulence characteristics in various flows. Notably, Kerstein (1999) formulated
a concise model for turbulence in buoyancy-driven flows that takes into account the
interplay of advection, molecular transport and buoyancy forces using random mappings
applied to one-dimensional velocity and density profiles. The random mappings, whose
characteristics are controlled by flow energetics, model the effect of turbulent eddies on
the velocity and density fields. The philosophy of the model presented here is similar.
However, the tools used, and in particular the formulation of the interplay between
advection, molecular diffusion and buoyancy forces, based on stochastic resettings, as well
as the purpose of this work are different.

The rest of this work is organised as follows. We first present a numerical experiment
that shows the emergence of a stationary distribution of Lagrangian tracers’ vertical
displacements in freely decaying stratified turbulent flows (§ 2). We then present a model
for the vertical displacement of Lagrangian tracers in stratified turbulent flows that aims
to describe the emergence of such a stationary distribution (§ 3). We also compare the
model’s output to the numerical data. We highlight some limitations of the model in § 4.
Conclusions are drawn in § 5.

2. Numerical experiment

In this section we present the methodology used throughout the paper. We start by
describing the flow examined here. We consider fully resolved (three-dimensional) direct
numerical simulations of stably stratified turbulence building on the simulation campaign
originally reported by Riley & de Bruyn Kops (2003). The flow field satisfies the following
(dimensionless) Navier–Stokes equations under the Boussinesq approximations:

∂tu + u · ∇u = −∇p + 1
ReL

∇2u −
(

2π

FrL

)2

ρ′ê3, ∇ · u = 0,

∂tρ
′ + u · ∇ρ′ − u3 = 1

PrReL
∇2ρ′.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.1)
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Name FrL ReL Pr Domain size Grid size

P1F4 4 3200 1 4π × 4π × 2π 512 × 512 × 256
P7F4 4 3200 7 4π × 4π × 2π 1280 × 1280 × 640
P50F4 4 3200 50 4π × 4π × 2π 3584 × 3584 × 1792

Table 1. Description of the three simulations described in this work.

Here ê3 is the (upward) vertical unit vector, ρ′ is the density deviation from a linear
background density profile characterised by a buoyancy frequency N, p is the pressure
perturbation away from hydrostatic balance and u = (u1, u2, u3) is the velocity vector.
Note that throughout the simulation, the (linear) background density profile is held
constant. The dimensionless parameters are: the above-defined Prandtl number Pr, the
Froude number FrL := 2πU/(NL) and the Reynolds number ReL := UL/ν. Here, U and
L are characteristic velocity and length scales associated with the initial conditions. The
initial velocity field is of the form

u(t = 0) = U cos(kx3) [cos(kx1) sin(kx2), − sin(kx1) cos(kx2), 0] , (2.2)

corresponding to Taylor–Green vortices ((x1, x2, x3) is the position vector), where L :=
1/k determines the length scale of the initial flow field. A broad-banded noise (with a
level of approximately 10 % of the initial Taylor–Green vortex energy) is added on top of
the velocity field (2.2). Note that no density perturbation was initialised so that density
fluctuations only appear due to the action of the flow field on the ambient density gradient,
taken to be constant initially. No forcing is applied to sustain the turbulence generated by
the initial condition and the flow naturally restratifies after the bursting of a turbulent event.
In this work, the Froude and Reynolds numbers are fixed to FrL = 4 and ReL = 3200 and
the Prandtl number varies from Pr = 1 to Pr = 50. The three simulations considered here
are summarised in table 1. Boundary conditions are triply periodic.

We define the dissipation rate of turbulent kinetic energy ε as the volume average of
the pointwise local dissipation rate of turbulent kinetic energy, defined in terms of the
symmetric part of the strain-rate tensor sij as (in dimensional form, 〈·〉V denotes a volume
average)

ε := 〈
2νsijsij

〉
V ; sij := 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
. (2.3a,b)

This quantity appears in the buoyancy Reynolds number Reb, effectively a measure of the
intensity of the stratified turbulence, i.e.

Reb :=
(

LO

LK

)4/3

= ε

νN2 ; LK :=
(

ν3

ε

)1/4

, LO :=
( ε

N3

)1/2
, (2.4a–c)

where LK is the Kolmogorov scale and LO the Ozmidov scale. We also define the
(dimensional) destruction rate of buoyancy variance χ as the volume average

χ =
〈

g2κ

ρ2
0N2

∇ρ′ · ∇ρ′
〉

V

, (2.5)
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Figure 1. Time evolution of Reb (a), ε (b), χ (c) and Γ (d) for the three simulations studied in this work.

with ρ0 denoting a reference density and g the acceleration of gravity. Howland,
Taylor & Caulfield (2021) noted that, scaled in this way (i.e. considering that the
appropriately averaged density gradient against which turbulence is acting corresponds to
the background density gradient), χ provides a good approximation to the mean diapycnal
mixing rate (and, more precisely, to the destruction rate of available potential energy), even
in flows with significant variations in local stratification.

The time evolution of Reb, ε, χ and the turbulent flux coefficient Γ := χ/ε are
presented in figure 1. As Pr increases, ε increases, leading to an increase in buoyancy
Reynolds number Reb. Conversely, χ decreases and, hence, the flux coefficient decreases.
Similar behaviours have been reported for both decaying and forced stratified turbulent
flows (Riley, Couchman & de Bruyn Kops 2023; Petropoulos et al. 2024).

We are here interested in a Lagrangian description of mixing and ask the following
question: How is mixing (of density) and its aforementioned dependence on the Prandtl
number affecting the vertical dispersion of Lagrangian tracers? To answer this question,
32 000 Lagrangian particles are released at t = 7. The initial positions of the particles
are randomly chosen in the simulation domain, determining the density of the parcels of
fluid embedding the particles, which can then change subsequently due to (irreversible)
diffusive mixing where κ /= 0. A second-order Adams–Bashforth scheme is used to
advance the particles in time. The time evolution of the three components of the mean
square displacement of the particles 〈x2(t)〉 (defined as the position of the particles
at time t minus their initial position) is presented in figure 2 (〈·〉 denotes a statistical
average). Whereas the horizontal components of the displacements showcase a diffusive
behaviour (with eddy diffusivities given by the slope of the mean square displacement
curves), the mean and variance of the vertical displacement seem to reach a steady state.
This suggests the existence of a stationary probability distribution describing the vertical
displacement of Lagrangian particles in decaying stratified turbulence. Note that a similar
result was observed by Kimura & Herring (1996); see, for instance, Kimura & Herring
(1996, figure 5). Similar observations were made by Venayagamoorthy & Stretch (2006).
These two studies focused on the effect of the stratification on the vertical dispersion of
Lagrangian particles. Here, we focus on the effect of the molecular properties of the flow.
We aim to describe and model the emergence of such a stationary distribution in the next
section.
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Figure 2. Time evolution of the mean square displacement in (a) the horizontal and vertical directions and
(b) the vertical (only) direction. Note the different vertical axes. A straight line is shown in panel (a) to
demonstrate the (close to) diffusive behaviour in the horizontal. The different colours represent different Prandtl
numbers.

3. Description of the model

3.1. Model without diffusion and a frozen density field
Let us first briefly consider the case without diffusion of density (i.e. κ = 0 or equivalently
Pr → +∞). In that case, the density field is advected by the velocity field and, hence,
the density carried by a Lagrangian parcel of fluid is constant in time. As a result, one
could assume that a Lagrangian parcel in a linearly stratified turbulent flow is subject to
Brownian motion in a quadratic potential (modelling the buoyancy forces on this parcel of
constant density) provided that the background density profile that the parcel is exploring
is and stays linear. Such dynamics admit a stationary state described by a Gaussian
distribution. This method has however some drawbacks. It assumes that the density levels
that the parcel sees on its stochastic path correspond to the density levels of the initial
linear density profile, i.e. that the density field is frozen in time. This assumption might
break down for vigorously turbulent flows and for κ /= 0, i.e. when vigorous stirring and/or
mixing obscure the initially linear background density field. Extending the above method
to the case κ /= 0 also requires the introduction of a model for the time evolution of the
density carried by the Lagrangian parcel of fluid. This added complexity might make the
analysis relatively complex. In the next section we hence develop a simpler approach,
based on stochastic processes subject to resetting.

3.2. Model with diffusion
In this section we model the stochastic trajectories of the Lagrangian parcels of fluid
bringing together ideas from stochastic processes subject to resetting (Evans & Majumdar
2011) and memory (Boyer et al. 2017). The main modelling assumption of this work is
that buoyancy forces eventually act to collapse a fluid parcel’s stochastic trajectory onto
the neutrally buoyant position of the parcel. In terms of probabilities, this translates into
an increased chance of finding a fluid parcel in the neighbourhood of its neutrally buoyant
position after a given (resetting) time.
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z(tM)

Resetting to z(tM)

at tR

Resetting at tR

t

Mixing at tM
z

Figure 3. Schematic description of the model for the vertical displacement of Lagrangian particles in stratified
turbulent flows, showing the two limiting regimes (i.e. ‘dispersing’ and ‘settling’) discussed in the text.
A Lagrangian particle, represented by a grey cross, is initially in a density structure (depicted in green or
pink). This structure is kinematically stretched by the flow. This stretching enhances the rate at which the
density inside the structure adjusts to that of the surrounding fluid, hence defining a mixing time tM . Because
of restoring buoyancy forces, the structure also tends to come back to its initial position on a resetting time scale
tR. The competing effects of mixing and resetting will influence the equilibrium position of the structure at tR
(vertical dotted line). For the green structure, mixing (schematically represented by shades of green) happens
before resetting and, hence, the structure comes to equilibrium at the height it has at mixing time, demonstrating
the ‘dispersing’ behaviour of moving away from its initial position. For the pink structure, mixing does not have
time to happen before resetting and, hence, the structure comes back to its initial position, demonstrating the
‘settling’ behaviour.

3.2.1. Stochastic process with resetting
Let us start by considering a tracked parcel of fluid whose vertical position z(t) is subject to
Brownian motion with diffusion coefficient D and is reset to its initial (neutrally buoyant)
position z0 = 0 with a given probability (see pink trajectory on figure 3). The diffusion
process models the ambient turbulence whereas the resetting events mimic the restoring
effect of stratification in the absence of mixing (i.e. κ = 0 and, hence, the parcel’s density
remains constant). For simplicity, we assume that the resetting events follow a Poisson
process. Hence, the probability of resetting the parcel between t and t + dt is equal to
rdt (where r is the resetting rate) and the position of the parcel is updated as (Evans &
Majumdar 2011)

z(t + dt) =
{

z(t) + ξ(t)
√

dt, with probability 1 − r dt,
0, with probability r dt,

(3.1)

where 〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = 2Dδ(t − t′) and δ is the Dirac δ function. The associated
‘forward master’ equation for the probability p(z, t) of finding a parcel in a neighbourhood
of z at time t is

∂tp(z, t) = D∂2
z p(z, t) − rp(z, t) + rδ(z). (3.2)

On the right-hand side, the first term expresses the diffusive spread of probability, while
the last two terms express the loss of probability of finding the parcel at position z and the
gain of probability of finding it at its neutrally buoyant position, respectively.

Let us now consider mixing. As the parcel moves along its stochastic path, its density
changes at a rate that is controlled by the interplay between kinematic stretching and
molecular diffusion (Villermaux 2019). This interplay is modelled through a mixing
time tM at which the density of the parcel starts equilibrating with the density of the
surrounding fluid, as shown by Petropoulos et al. (2023). Furthermore, the authors
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showed experimentally that the parcel’s position at mixing time z(tM) provided a good
approximation of its neutrally buoyant position after being mixed. Hence, instead of
resetting the parcel’s position to its initial position, it is natural to reset it at the position
it had at tM (see green trajectory on figure 3). This strategy allows us to bypass the
modelling of the time evolution of the ‘background’ density field that the parcel sees on its
stochastic path, at least if the density field does not evolve drastically between the mixing
and resetting times. The mixing time tM is sampled from the probability density function
TM(tM) that we assume to be of exponential form with mean mixing time 〈tM〉:

TM(tM) = exp(tM/〈tM〉)
〈tM〉 . (3.3)

Two reasons justify this choice. First, it enables an analytical analysis of the problem.
Second, it has been shown to describe accurately the distribution of mixing times for
passive scalar mixing in freely decaying turbulence (Duplat, Innocenti & Villermaux
2010). For completeness, we briefly recall their main arguments here. We assume that
a fluid parcel carrying a given scalar content experiences successive random stretching
of decaying rate but over increasing periods of time, modelling the effect of decaying
turbulence. Therefore, the time tM for this parcel to mix (i.e. for its scalar content to
diminish significantly) follows a non-inhomogeneous Poisson process whose last step is
the most important, in the sense that the distribution of tM can be well approximated by the
distribution of waiting times during the last step of the process. As a result, it is reasonable
to assume that tM follows an exponential distribution.

Therefore, (3.2) needs to be modified as follows (Boyer et al. 2017):

∂tp(z, t) = D∂2
z p(z, t) − rp(z, t) + r

∫ t

0
K(tM, t)p(z, tM) dtM. (3.4)

Here

K(tM, t) := TM(tM)∫ t
0 TM(τ ) dτ

(3.5)

is the truncated version of TM between 0 and t, as the parcel cannot be reset to a position
it has not yet explored. Note that the resetting time 1/r and the mean mixing time 〈tM〉
are not necessarily equal here; inertia and ambient turbulence potentially allow parcels to
overshoot their equilibrium.

The above model (3.4) is however incomplete since it now neglects the restoring action
of buoyancy forces for long mixing times. More precisely, if the mixing time is larger
than the natural time for the parcel to come back to its initial position in the absence
of mixing, then the parcel will in fact come back to its initial position, since its density
did not have time to change before the reset. This effect is modelled as follows: if the
mixing time associated with a parcel is larger than the waiting time between two resets,
it is reset to its initial position. As discussed later in § 4, this is an approximation. Due to
the exponential nature of the distribution of times between resets (recall that the resetting
process is assumed to be Poissonian) and of mixing times, a resetting event happens with
probability l such that

l = r〈tM〉
1 + r〈tM〉 . (3.6)
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The overall forward master equation is the weighted linear combination of (3.2) (pink
trajectory on figure 3) and (3.4) (green trajectory) with weights l and 1 − l, respectively:

∂tp(z, t) = D∂2
z p(z, t)︸ ︷︷ ︸

Dispersion

− rlp(z, t) + rlδ(z)︸ ︷︷ ︸
Settling back to initial position

− r(1 − l)p(z, t) + r(1 − l)
∫ t

0
K(tM, t)p(z, tM)dtM︸ ︷︷ ︸

Memory

. (3.7)

Interestingly, this equation can be solved analytically and has a stationary solution of the
form

p∞(z) =
+∞∑
m=0

Ame−√
(r+m/〈tM〉)/D|z|; (3.8)

see the Appendix for the derivation and the coefficients Am. We closely follow Boyer et al.
(2017) who considered the case l = 0. This stationary distribution behaves as e−√

r/D|z|
for large |z|. Hence, this model exhibits a screening length

√
D/r that parcels and, hence,

Lagrangian tracers will rarely cross. The stationary mean square vertical displacement is

〈z2(t → +∞)〉 = 4
+∞∑
m=0

Am

[
D

r + m/〈tM〉
]3/2

. (3.9)

3.2.2. Physical interpretation
The model presented above (3.7) involves various parameters: the resetting rate r, the
mean mixing time 〈tM〉 and the effective diffusivity of the Lagrangian tracers D. Here,
we establish connections between these abstract quantities and measurable properties of
a real flow. To do so, it is instructive to first think about a simple case. Let us consider
a Lagrangian tracer that is embedded into a density structure (a lamella) of initial size
s0. We assume that the dynamics of the lamella is viscously dominated. The lamella is
stretched at a given rate γ that determines its mixing time tM := F(Pe)/γ , where the
Péclet number Pe := γ s2

0/κ . As a result, its length along the direction of stretching 

increases with time. The (increasing) function F is a ‘weak’ diffusive correction that
depends on the stretching protocol at hand (Villermaux 2019). The (vertical) position
of the lamella zb has been shown to satisfy the following (dimensionless) equation (see
Petropoulos et al. 2023 for more details):

d2zb

dt2
= − α

Re
(t)

dzb

dt
−

(
1

Fr2ρb

)
zb − β

(
1 − 1

ρb

)
. (3.10)

Here ρb denotes the (maximal) density of the lamella,  its length (that increases with
time t, the functional form of (t) depending on the stirring velocity field) and α is an
O(1) − O(10) drag coefficient. Time t has been scaled by the shear time 1/γ , zb by s0 and
ρb by the initial (maximal) density of the lamella and, hence, Re := γ s2

0/ν, Fr := γ /N
and β := g/[s0γ

2].
In the viscous regime Re � 1, the vertical trajectory of the lamella is well approximated

by assuming that the density of the lamella ρb is constant (ρb = 1 in dimensionless units)
before the mixing time and then equal to the density of the surrounding fluid at the position
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zb(tM). If the mixing time is larger than the natural time for the lamella to return to its initial
position (without mixing), it ‘settles’ back at its initial position, justifying the resetting
strategy presented in the previous section. In the absence of mixing (i.e. ρb = 1 at all
times), two important quantities can be inferred. First, considering the balance between
friction and buoyancy and neglecting the inertial term (a balance that inevitably happens
when Re � 1 and  becomes large at late times) the natural (damping) time it takes for the
lamella to settle (in the absence of mixing) is of order ∼ αFr2/(γ Re) in dimensional form
(Petropoulos et al. 2023).

Second, considering the oscillatory behaviour due to the (early time) balance between
inertia and buoyancy forces, we find that the maximal excursion of the lamella (again, in
the absence of mixing) is of order ∼ √

2EkFr/γ (where Ek is the initial kinetic energy
per unit mass of the lamella). Since 1/r corresponds to the natural time it takes for a
Lagrangian tracer to come back to its initial position and

√
D/r defines the maximum

excursion of the tracer, we can therefore infer, in the viscous regime considered here, that

r ∼ γ Re
αFr2 ,

√
D
r

∼
√

2EkFr
γ

. (3.11a,b)

We now extend the above reasoning to the turbulent regime. In Petropoulos et al. (2023)
the size s0 of the lamellae was externally imposed in the experiment. In a turbulent flow,
it is reasonable to think that this size, or at least its statistical mean, will emerge as a
property of the turbulence. Here, we assume that the lamellae form on scales such that
Re ∼ 1, i.e. scales such that stretching balances viscous dissipation and, more specifically,
scales at which vorticity starts to be viscously dissipated so that the kinematics of the
lamellae are mainly affected by local strain. Therefore, s0 ∼ √

ν/γ and Pe ∼ Pr (Duplat
et al. 2010). Finally, an estimate of the shear rate γ is still required. In a turbulent regime,
this quantity is statistically distributed. However, recalling that it is defined as the norm
of the symmetric part of the strain tensor, the mean shear rate scales as

√
ε/ν (Batchelor

1959). Therefore,

γ ∼
√

ε

ν
, r ∼ γ

αReb
,

√
D
r

∼
√

1
5

LT
√

Reb, 〈tM〉 = 1
γ
F(Pr), (3.12a–d)

and the parameters of the model presented above can therefore be estimated from
measurable quantities of the flow and molecular properties of the fluid. The length LT
is the Taylor length scale defined as LT 
 √

10νEk/ε. Equivalently, this can be rephrased
as a function of the buoyancy time scale 1/N and Reb as follows:

γ ∼ N
√

Reb, r ∼ N√
Reb

,

√
D
r

∼
√

1
5

LT
√

Reb. (3.13a–c)

(We assume α to be an order O(1) quantity here, and in what follows.)
These estimates are presented in figure 4 for the three simulations. Note that the

screening length
√

D/r varies like 1/N and, hence, we expect that the mean squared
vertical displacement of the particles varies as N−2 (a scaling confirmed in figure 5b),
as suggested empirically by Kimura & Herring (1996) and Venayagamoorthy & Stretch
(2006) and derived theoretically by Lindborg & Brethouwer (2008) in the case of freely
decaying stratified turbulence.

3.2.3. Limit cases
In the model presented above (3.7), the product r〈tM〉 plays a key role; it controls the ratio
l/(1 − l) and, hence, the importance of the resetting term relative to the memory term.
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Figure 4. Parameters inferred from the scaling laws (3.11a,b): (a) shear time scale γ −1, (b) resetting rate r,
(c) eddy diffusivity D, (d) screening length
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Figure 5. (a) Mean square displacement 〈z2〉 of the stationary probability distribution p∞(z) solution of (3.7)
as a function of r〈tM〉, highlighting the differences between the ‘dispersive’ and ‘settling’ regimes discussed
in the text. (d) The probability distribution p∞ in the regime r〈tM〉 � 1 for various values of the mean mixing
time 〈tM〉 (the inset corresponds to the same figure in log-linear coordinates). As 〈tM〉 increases, extreme events
are (slightly) favoured. (e) The analogous plots to panel (d) in the regime r〈tM〉 � 1 for various values of 〈tM〉.
As 〈tM〉 increases, extreme displacements are prevented and the particles cluster around z = 0, i.e. no net
displacement is favoured. Note that in order to ensure that the screening length

√
D/r is always constant, r =

0.1 and D = 10−4. (b–c) Mean square displacement 〈z2〉 as a function of N (b) or Pr (c) (all other parameters
being fixed; here ε = 1, LT = 1 and ν = 1).

Let us first consider the case r〈tM〉 � 1. We refer to this regime as the ‘settling’ regime.
If the mean time between resets 1/r is small compared with the mean mixing time 〈tM〉,
statistically mixing does not have time to happen between resets and the particles (for
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which the density of the structures that carry them does not have time to change) will
favourably be reset to their initial position and so ‘settle’ (back). As 〈tM〉 increases, the
condition r〈tM〉 � 1 becomes stronger and the statistics of mixing times shift towards
large values; we then expect more particles to settle back to their initial position before
mixing and, hence, the probability distribution p∞(z) to be more peaked around z = 0. In
terms of the physical parameters of the problem, the condition r〈tM〉 � 1 can be rephrased
as F(Pr)/Reb � 1, i.e. the flow is in the settling regime. In that regime, the above-listed
aspects suggest that as Pr increases (and, hence, 〈tM〉 increases), more particles cluster
around z = 0.

Let us now consider the case r〈tM〉 � 1, which we refer to as the ‘dispersive’ regime.
In that regime, the mean time between resets 1/r is large compared with the mean mixing
time 〈tM〉 and the stochastic dynamics is mainly controlled by the memory term. As the
particles evolve on their stochastic paths, they are preferentially reset (when that happens)
to the position at their mixing time rather than at their initial position, with mixing having
time to occur in between the two resetting events. As a result, as 〈tM〉 increases (but is
still small enough so that r〈tM〉 � 1), we expect particles to travel longer distances in a
statistical sense, and so they are likely to ‘disperse’. Indeed, as particles are dispersed
away from their initial position by turbulent fluctuations, those with large mixing times
(an event that is more likely for large 〈tM〉) will have time to travel longer distances before
mixing. Therefore, they will be reset further away from their initial position compared with
particles with small mixing times when reset happens (at the actual position at mixing
time). Reformulated in terms of the physical parameters of our problems, this means that
in this ‘dispersive’ regime F(Pr)/Reb � 1, as Pr increases (and, hence, 〈tM〉 increases),
we expect – everything else being kept equal – that the particles will statistically travel
longer vertical distances, turbulent fluctuations winning over restoring buoyancy forces. In
other words, in that regime, since the particles with large mixing times have more time
to be dispersed by turbulent fluctuations away from their initial position before mixing,
they will be reset further away from their initial position when they start ‘feeling’ the
stratification and are reset at the position they had at mixing time.

We can summarise these observations as follows. At a fixed screening length
√

D/r, as
r〈tM〉 increases, we move from a ‘dispersive’ regime where the variance of the stationary
process increases to a ‘settling’ (back) regime where the variance decreases, as shown in
figure 5. In terms of the physical parameters of the problem, the Prandtl number Pr plays a
role (through the weak diffusive correction F(Pr)) in defining the boundary between the
‘dispersive’ and ‘settling’ regimes; for N and ε fixed, there exists a large enough Pr so that
the regime is ‘settling’.

3.2.4. Comparison with numerical data
Let us now compare the stationary probability distributions of vertical displacements
predicted using (3.8) and the empirically determined distributions from our numerical
data. Figure 6 summarises the numerical data and the model predictions for the three
simulations considered here. The model parameters used here are D 
 0.01, r 
 0.8 and
γ −1 
 0.3, values that are in relative agreement with the theoretical predictions presented
in figure 4, at the time when the turbulence is the most energetic. The weak diffusive
correction for the mean mixing times 〈tM〉 is assumed to be logarithmic, corresponding to
exponential stretching (Duplat et al. 2010; Villermaux 2019). This seems to be a reasonable
choice in stratified turbulence where fluid parcels are elongated at an exponential rate in
the two horizontal directions. The model’s prediction seems to fit the data relatively well,
the main discrepancies coming from the small displacement data z 
 0.
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Figure 6. Stationary probability distribution of vertical displacement p∞(z) for the simulation data (dots) and
the model (3.7) (coloured lines) and (3.4) (black lines). The vertical axis is presented in both linear (panel a)
and logarithmic (panel b) scales. A zoom on the z 
 0 region is presented in panel (c). Dotted lines correspond
to Pr = 7 and dashed lines correspond to Pr = 50. The inset in panel (a) shows the logarithm of the right tail of
the stationary distribution, plotted in log coordinates. Our model predicts a purely exponential tail, a prediction
that seems consistent with the data. For reference, we also plot a line with slope 2, corresponding to a Gaussian
tail, e.g. arising when considering a Brownian process in a quadratic potential.

The following trends are observed. As Pr increases from Pr = 1 to Pr = 7, smaller
displacements are favoured, whereas from Pr = 7 to Pr = 50, larger displacements are
more likely. A tentative explanation is given here, since, unfortunately, not only Pr
changes but also ε, making any comparative analysis challenging. As the Prandtl number
Pr increases, F(Pr) as well as the dissipation rate of turbulent ε increases. Increasing
F(Pr) tends to increase the mean mixing time 〈tM〉, hence allowing particles to travel
longer vertical distances in the ‘dispersive’ regime, as described in § 3.2.3 and considered
here, everything else being fixed. Conversely, increasing ε tends to decrease 〈tM〉, thus
preventing particles from travelling long distances. Further complicating interpretation,
an increase in ε also tends to decrease the resetting rate r and, hence, potentially allows
particles to travel further (at fixed 〈tM〉). In summary, in the regime considered here,
turbulent energetics (ε) and the molecular properties of the fluid (Pr) have competing
effects on dispersion. Note also that the eddy diffusivity D (slightly) decreases, a decrease
that compensates for the decrease of r so that the screening length

√
D/r remains constant,

as shown in figure 4(d). Therefore, diffusion by turbulent fluctuations is more limited
in the case Pr = 7 than in the case Pr = 1. In other words, we are here witnessing the
opposite effects of turbulence energetics on mixing times and resetting rates (increasing
ε and, hence, Reb decreases the mean mixing time, allowing particles to travel shorter
vertical distances in the ‘dispersing’ regime considered here, but increases the mean time
between resets 1/r, allowing particles to travel longer distances). The story is made even
more complex by the fact that r〈tM〉 is O(1) rather than in one of the limit cases studied
earlier (§ 3.2.3). Hence, the regime studied here is in fact in the transition between the
‘settling’ regime and the ‘dispersive’ regime described in § 3.2.3. All in all, between
Pr = 1 and Pr = 7, increases in Pr and ε lead to particles travelling less in the Pr = 7
case. When Pr increases from Pr = 7 to Pr = 50, ε is relatively constant and, hence, the
mixing time increases due essentially to changes in Pr with the other parameters remaining
approximately constant. As a result, in the marginal case studied here, particles travel
longer distances in the Pr = 50 case in comparison with the Pr = 7 case.
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4. Comments on the model

In this section we discuss the different assumptions used to build the model presented
above.

4.1. Distribution of resetting times
The main assumption concerns the distribution of resetting events and mixing times.
Resetting (or settling) events are assumed to follow a Poisson process with parameter
r. More generally, we could have defined the resetting process through a waiting time
distribution between resetting events (Eule & Metzger 2016). However, it then becomes
difficult to write down a forward master equation as one must keep track of the time
since the last reset. Since the resetting events are introduced to mimic the restoring
forces experienced by particles due to density differences, a perhaps better model would
consider the waiting time between two passages at the minimum potential energy level of a
particle subject to Brownian motion in a quadratic potential. For the sake of simplicity and
analytical solvability, we restricted ourselves to the well-studied Poissonian resetting case.
This can perhaps explain the discrepancy between the model and the data around z = 0,
and especially the Gaussian-like distribution near the origin rather than exponential-like
distribution as predicted by the model.

4.2. Resetting strategy
On a similar note, we have assumed that if the mixing time associated with a particle is
larger than the waiting time between two resets, then the particle should be reset to its
initial position, i.e. it should ‘settle’ back. This is an oversimplification; indeed, it would
then in fact be more accurate to reset the particle to the position it had at last reset, i.e. its
last equilibrium position. This involves keeping track of the resetting times. In the case of
Poissonian resetting, this might be possible, since the number of resets up to time t follows
a Poisson distribution and the time of the nth reset follows a gamma distribution, but adds
significant complexity to the model.

We could, for instance, change the term rlδ(z) in (3.7) into

r

[
lP(R(t) = 0)δ(z) +

+∞∑
n=1

lnP(R(t) = n)

∫ t

0
Kr(tr, t; n, r)p(z, tr) dtr

]
, (4.1)

with R(t) the number of resets up to time t, following a Poisson distribution of parameter
rt, where Kr(tr, t; n, r) is the truncated distribution of the nth reset time between times
0 and t (recall that the nth reset time follows a gamma distribution of parameter n,
r) and ln is the probability of the nth resetting time being smaller than the mixing
time. The other terms in (3.7) should also be changed accordingly, i.e. weighted by
lnP(R(t) = n) or (1 − ln)P(R(t) = n). Compared with the rlδ(z) resetting term, (4.1) does
not enforce the particles to settle back to their initial position z = 0 and, hence, might
correct the discrepancies between the predictions of (3.7) and the simulation data for small
displacement z 
 0. Indeed, as a rule of thumb, the first correction in (4.1) is of the form
P(R(t) = 0)δ(z) = e−rtδ(z) and, hence, the particles lose memory of their initial position
on a time scale 1/r. It is therefore instructive to compare the stationary solutions of models
(3.7) and (3.4), i.e. the models with or without memory of the initial position, respectively,
with the data. As can be seen in figure 6, the data are indeed (slightly) better fitted when
considering the stationary solution of (3.4), giving good hope that the full correction
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(4.1) corrects the model for small displacement z. However, this correction prevents any
analytical treatment and we therefore limit ourselves here to what is effectively the first
step of the (resetting) Poisson process. Such added complexity might (for example) be
needed in the case of forced turbulence, which is beyond the scope of this work.

Another important question is whether the resetting term in our model is suitable for
modelling the effect of buoyancy force. Note that we are here working with the stochastic
paths of the fluid parcels rather than their physical paths and, hence, it seems reasonable to
think that restoring buoyancy forces will eventually (i.e. at a randomly sampled resetting
time) collapse the fluid parcels’ stochastic paths onto their neutrally buoyant positions.
This plausible argument motivated our modelling assumptions.

4.3. Mixing as a single-step Poisson process
Here, we have modelled mixing as a single-step process or, more precisely, as one step
in a Poisson process. One could consider more involved multistep processes for which a
parcel of fluid can mix, i.e. adjust its density towards that of the surrounding fluid, many
times before being reset, especially in the case 1/r � 〈tM〉. In that case, the ‘settling’ and
‘memory’ terms of (3.7) can be replaced, for instance, by the more complex terms

−rp(z, t)+r

[
P(M(t)=0)δ(x)+

+∞∑
n=1

P(M(t)=n)

∫ t

0
KM(tM, t; n, 1/〈tM〉)p(z, tM) dtM

]
,

(4.2)

where M(t) is the (stochastic) number of mixing events encountered by the parcel up
to time t, KM(tM, t; n, 1/〈tM〉) is the truncated distribution of the nth mixing time,
respectively Poisson and gamma distributed if one assumes that mixing events follow a
Poisson process. For the sake of simplicity and analytic resolution, we restricted ourselves
to the first term of the above series.

4.4. Slowly evolving density field
We have constructed our model around the key idea that particles come back to their
position at mixing time. There is an underlying assumption to this, namely that the
density field does not evolve significantly between the mixing time of the fluid parcel
containing the particles and its resetting time: otherwise, the position of the parcel at
mixing time might not be its equilibrium position at resetting time. In other words, we
have assumed that the density field a fluid parcel explores on its stochastic path is only
slowly evolving on time scales of the order |tM − 1/r|. This assumption might well break
down in the presence of a high-frequency background internal wave field for instance.
To remove this reversible contribution to the evolution of the density field, one could
work in sorted density coordinates z∗ instead of physical coordinates z for instance, and
especially reset particles in the sorted rather than physical coordinates. However, it is
somewhat challenging to interpret the physical meaning of a stochastic path in sorted
density coordinates.

5. Discussion

We have developed a model for the dispersion of Lagrangian particles in stably stratified
turbulent flows. Whereas the horizontal displacements seem well described by a diffusive
process, the vertical displacements arise from the competing effects of an eddy diffusivity
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that tends to ‘disperse’ particles away from their initial position and restoring buoyancy
forces that tend to cause the particles to ‘settle’ back towards their initial positions.
These competing effects allow the statistics of vertical displacements to reach a stationary
distribution, as suggested by Kimura & Herring (1996) and Venayagamoorthy & Stretch
(2006).

Our model is built around the following ideas. Lagrangian tracers are embedded
into density structures or ‘lamellae’ that are energised by turbulent fluctuations.
Simultaneously, restoring buoyancy forces tend to dampen the dynamics of the ‘lamellae’
by bringing them back to equilibrium positions that depend on their integrated mixing
history. Turbulent fluctuations are modelled as a diffusive process that disperses lamellae.
Restoring forces are modelled as a resetting stochastic process that causes the particles to
settle back to their initial locations. Mixing of density, that influences the velocity field
dispersing the particles, is introduced in the model via a memory term. This term keeps
track of the position explored by the lamellae (and the Lagrangian particles that they carry)
along their stochastic paths and takes into account the fact that the equilibrium position
of a lamella dynamically changes as a consequence of mixing of the density field and is
determined by its position at mixing time, as shown experimentally by Petropoulos et al.
(2023).

The different parameters of the model are constrained through the study of a
reduced-order model for the vertical displacement of an elementary (Lagrangian) density
structure (a lamella) carrying the Lagrangian particles. Importantly, this allowed us to
find scaling laws for the different parameters of the model as functions of measurable bulk
quantities of the flow; namely measures of the stratification, turbulent kinetic energy and its
dissipation rate and the molecular properties of the scalar being mixed. To our knowledge,
this is the first attempt to describe dispersion in stratified turbulent flows without free
parameters. Many simplifying assumptions have been made, but the overall reasonable
agreement between the model’s output and the numerical data considered in this work is
encouraging. We certainly do not claim that we have solved the problem of dispersion in
stratified turbulent flows but rather showed how simple ideas about the intricate coupling
between buoyancy and mixing in such flows can be taken into account and incorporated in
a simple (toy) model to gain insight into this complex problem. Especially, we hope that
the model is flexible enough to stimulate discussion.

Importantly, our model is simple enough so that it can be solved analytically.
A stationary probability distribution emerges from the proposed model. The width of
this distribution, characterising a length scale that particles are unlikely to cross, is
primarily controlled by the buoyancy Reynolds number Reb and is (weakly) modulated
by the molecular Prandtl number Pr. More precisely, in the ‘dispersive’ regime r〈tM〉 � 1
described in § 3.2.3, as Pr increases and, hence, 〈tM〉 increases, particles are allowed to
travel (slightly) longer distances. Indeed, in this regime where buoyancy restoring forces
play a secondary role compared with turbulent fluctuations, particles with large mixing
times are more likely to travel longer distances before the density structure in which they
are embedded mixes with the surrounding fluid and subsequently settles, at least according
to the single-step mixing process considered here; see the discussion in § 3.2.3. Conversely,
in the ‘settling’ regime r〈tM〉 � 1, buoyancy forces are now playing a critical role as the
mean resetting time 1/r is small compared with the mean mixing time, and hence, density
structures do not have time to mix before a resetting event. Particles are then preferentially
reset to their initial position, to which they ‘settle’ (back). As Pr increases and mixing
becomes less efficient, this phenomenon becomes more dominant and particles are less
likely to travel long distances.
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Note that the above discussion holds when the molecular Prandtl number Pr alone is
varied, everything else being held constant. In practice, changes in Pr have an impact on
the buoyancy Reynolds number Reb. As Pr increases, ε and, hence, Reb increases (see
figure 1). As a result, mixing times decrease, preventing particles from travelling long
distances in the ‘dispersive’ regime, but the screening lengths increase. In other words, we
witness here the complex and intricate effects of increasing Pr on the vertical displacement
of particles. Increasing Pr makes the turbulence more energetic, hence reducing mixing
times through the 1/γ ∝ 1/

√
Reb term while still diffusing particles more ‘vigorously’.

Conversely, increasing Pr makes the mixing less efficient by increasing mixing times
through the weak diffusive correction F(Pr).

We believe it is appropriate to mention some future directions and open questions.
An important assumption of our work is that the Lagrangian tracers themselves do not
diffuse since their associated ‘molecular’ diffusivity κtracer is formally 0. How should the
model be modified to account for the potential intrinsic diffusivity of marked tracers? This
could potentially offer insight into how dye, nutrient and climatically relevant tracers such
as carbon (three tracers for which it seems reasonable to assume that they passively follow
the flow while diffusing at a rate controlled by their associated ‘molecular’ diffusivity)
disperse in stratified turbulent flows. This might lead to an important insight into
interpreting tracer release experiments (Ledwell, Watson & Law 1993) for example. The
need to understand the case κtracer /= 0 is exacerbated by the fact that the tracer’s mixing
time, formally taken to be infinite in this study, is primarily controlled by the inverse shear
rate γ ∼ √

ε/ν, diffusive corrections being usually weak (typically logarithmic). Hence,
even a relatively small but non-zero diffusivity of the tracer might drastically impact our
modelling assumptions. Similarly, whether resetting processes can be used to interpret
vertical distributions of buoyant particles, such as plastic in the ocean, is an interesting
avenue of research. For instance, the observed exponential distribution of buoyant plastic
debris in the ocean surface boundary layer (Kukulka et al. 2012) is consistent with a
balance between turbulent dispersion and resetting at the surface due to buoyancy.

Similarly, we neglected in this work the relatively large-scale organisation of the
flow (and especially its inherent anisotropy and inhomogeneity) that is thought to
arise inevitably in the so-called ‘strongly stratified turbulence’ or, more specifically, the
‘layered anisotropic stratified turbulence’ regime (Brethouwer et al. 2007; Falder, White
& Caulfield 2016; Petropoulos et al. 2024). Indeed, we considered bulk-averaged turbulent
statistics as meaningful measures of the turbulence at hand. Is this assumption always
valid, especially as we increase the Froude number FrL? If not, what is the most suitable
model? We believe that our model can still be used in this setting, at least locally,
provided relevant measures of the different parameters of the model, and especially of
the background stratification N, are considered. In the well-mixed regions of a layered
density ‘staircase’, N is relatively low and, hence, the resetting rate r (recall that r was
found to be an increasing function of N) is small and the density structures effectively do
not feel stratification. On the other hand, in the more strongly stratified interfaces, N is
relatively large and so is the resetting rate r and so density structures are not allowed to
travel long vertical distances between resets (they are ‘trapped’).

We conclude this section with some further comments on the usefulness of the
model presented here to probe mixing. By comparing the final and initial positions of a
Lagrangian parcel of fluid (and assuming both that these positions correspond to neutrally
buoyant positions and that the initial and final background density profiles are known),
we can infer the overall (time-integrated) density change of the parcel and, therefore, the
amount of mixing it experienced. This is in itself a useful measure of mixing. However, if
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Figure 7. (a) Horizontally averaged density profiles (symbols) at the end of the simulations for various Prandtl
numbers. The initial background density profile is depicted in black. (b,c) Climbing a density profile ρ̄(z) in
one (b) or two (c) steps.

one wants to dig into the details of the energetics of mixing, the full history of p(z, t) is
needed, as noted by Caulfield (2021). We believe that our model, because of its simplicity,
might give insight into this time evolution, as we demonstrate using a simple thought
experiment. For the simulations considered here, the initial and final background density
fields are almost identical regardless of the Prandtl number Pr (see figure 7a) and the final
vertical distributions of the Lagrangian parcels are only slightly different, suggesting that
fluid elements have experienced the same amount of (time-integrated) density changes
between the onset of turbulence and its end when the density field restratifies to the
background density profile. However, in the ‘dispersive’ regime considered here (in the
sense of § 3.2.3), mixing happens at a slower rate as Pr increases and the associated
instantaneous ‘mixing efficiency’ – well approximated by Γ/(1 + Γ ) (Howland et al.
2021) – decreases; see figure 1. To resolve this potential (semantic) paradox, one needs
to remember the truism that ‘history matters’ when defining mixing (Villermaux 2019;
Caulfield 2021).

Let us consider the following thought experiment: a parcel is climbing a density profile
ρ̄(z) from z0 to zf as depicted in figure 7. In the first case (case 1) it climbs the gradient
in one step, corresponding to a high-Prandtl-number case, the parcel having more time to
climb before mixing since large mixing times are favoured. In the second case it climbs in
two steps, corresponding to a low-Prandtl-number case. Whereas the change in background
potential energy (per unit volume) is identical in both cases (and equal to g[ρ̄(zf )zf −
ρ̄(z0)z0]), the available potential energy (per unit volume) that is injected in the system is
gρ̄(z0)[zf − z0] in the first case and gρ̄(z0)[zf ,1 − z0] + gρ̄(zf ,1)[zf − zf ,1] ≤ gρ̄(z0)[zf −
z0] in the second. Therefore, whereas the overall parcel’s density change is identical in
cases 1 and 2, the time-integrated or cumulative mixing efficiency, defined here as the
ratio of change in background and available potential energy, is smaller in case 1 than in
case 2, since a greater amount of energy has to be input in the system to achieve the same
change in background potential energy. In a nutshell, we can expect that in the ‘dispersive’
case described in § 3.2.3, as the Prandtl number Pr increases (everything else being held
fixed), extreme vertical displacements are favoured because mixing happens at a slower
rate, potentially enabling extreme changes in fluid parcels’ density between the onset of
turbulence and restratification. However, such extreme displacement comes at a greater
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energy cost, reducing the cumulative (time-integrated) mixing efficiency. This example
shows how mixing (i.e. irreversible changes in the density of a parcel of fluid), (energetic)
mixing efficiency and dispersion are not necessarily related and emphasises again that
history really matters when considering mixing.
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Appendix. Analytic solution of the forward master equation

In this appendix we derive the solution to the forward master equation (3.7) with initial
condition p(z, t = 0) = δ(z). Our derivation closely follows the one from Boyer et al.
(2017) that considered the case l = 0. More precisely, taking the Fourier transform (in
space) of (3.7), differentiating with respect to time and making the change of variable
p̂(k, t) = W( y = e−λt) (where p̂(k, t) is the Fourier transform of p(z, t) and λ := 1/〈tM〉),
one obtains the following differential equation for W:

y(1 − y)
d2W
dy2 ( y) + [c − (a + b + 1)y]

dW
dy

( y) − abW( y) = rl
λ

. (A1)

Here

ab = −r + k2D − r(1 − l)
λ

, c := a + b = 1 − r + k2D
λ

. (A2a,b)

As a result, W can be expressed in terms of the hypergeometric function F, i.e.

W( y) = AF(a, b, c; y) + By1−cF(1 + a − c, 1 + b − c, 2 − c, y) − rl
λab

, (A3)

where A and B constrain the initial condition W( y = 1) = 1. Exactly as in Boyer et al.
(2017), we can show that

A =

(
1 + rl
λab

)
Γ (1 − a − b)

Γ (1 − a)Γ (1 − b)
, B = −A

Γ (a + b)Γ (1 − a)Γ (1 − b)

Γ (a)Γ (b)Γ (2 − a − b)
. (A4a,b)

Here Γ is the gamma function. Since we are interested in the steady state, we take the limit
t → +∞ and get

p̂∞(k) := p̂(k, t → +∞) = A − rl
λab

. (A5)
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Since A has poles at integer values of 1 − a − b and at ab = 0, we have, by inverse Fourier
transform,

p∞(z) =
+∞∑
m=0

Ame−√
(r+mλ)/D|z|︸ ︷︷ ︸

Pole 1−a−b=m

−
√

rl

2
√

D
e−√

rl/D|z|

︸ ︷︷ ︸
Pole ab=0

+
√

rl

2
√

D
e−√

rl/D|z|

︸ ︷︷ ︸
Inverse Fourier transform of − r

λab

(A6)

=
+∞∑
m=0

Ame−√
(r+mλ)/D|z|, (A7)

with

Am :=
(

1 + rl
mλ+ r(1 − l)

)
1

2π

λ√
D(mλ+ r)

(1 − am)m

m!
sin(πam), (A8)

am := 1
2

[
(1 + m) +

√
(1 − m)2 − 4

r(1 − l)
λ

]
(A9)

and (d)m = d(d + 1) · · · (d + n − 1).
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