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THE NEAR-RING OF GENERALIZED

AFFINE TRANSFORMATIONS

SHALOM FEIGELSTOCK

Blackett and Wolfson studied the near-ring Aff(V) consisting

of all affine transformations of a vector space V. This

notion is generalized here, and the rear-ring Aff(G)

consisting of affine-like maps of a nilpotent group G is

introduced. The ideal structure, and the multiplication rule

for Aff(G) are determined. Finally a near-ring S is

introduced which generalized both Aff(G)3 and Gonshor's

abstract affine near-rings. The ideals of S are determined.

1. Blackett [ 7 ], and then Wolfson [4] studied the near-ring Aff(V)

consisting of all affine transformations of a vector space V. A more

general structure, the abstract affine near-ring, was introduced by

Gonshor [2]. Aff(V) is a subnear-ring of the near-ring M(V) consisting

of all maps V -*• V. When viewed as an additive group, the structure of a

vector space V is very restrictive; either V is isomorphic to the

direct sum of copies of the additive group of the field of rational

numbers, or V is the direct sum of cyclic groups of order a fixed prime

p. In this note a subnear-ring Aff(G) of M(G) will be considered

for G an arbitrary nilpotent group. Aff(G) consists of affine-like

maps G -*• G , however the ideal structure of Aff(G) i s much more

complicated than that of Aff(V). I t will be shown that both the ideal
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structure and the multiplication of Aff(G) are similar to those of

Gonshor's abstract affine near-rings. A generalized affine. near-ring

structure will be defined for which Aff(G) and Gonshor's abstract

affine near-rings are special cases.

2. All near-rings are assumed to be associative and right

distr ibutive. Terminology follows [3] . The additive group of a

near—ring R will be denoted i? 3 and the centre of a group H by

Z(H). Let G be a group nilpotent of class n, and G be the tt-th

term in the lower central series of G. The subnear-ring of M(G)

generated by the endomorphisins of G will be denoted by E(G) , and

the subnear-ring of M(G) consisting of the constant functions

is(x) = a for a l l xe.G, ceG by C. Put Aff(G) = the subnear-ring

M(G) generated by E(G)+C.

LEMMA 1. For all feAff(G), ceC, f+c = c+f.

Proof. For xeG, (f+c)(x) = f(x)+o. Since aeG < Z(G),

f(x)+o = o+f(x) -

LEMMA 2. Let feAff(G). Then feE(G) if and only if f(0) = 0.

Proof. I t follows from Lemma 1 that / = g+c with geE(G) and

aeC. Therefore f(0) = g(0)+o(0) = a = 0 if and only if o = 0, which

occurs i f and only i f / = geE(G).

THEOREM 3. Aff(G)+ = E(G)+ 9 C+, and multiplication in Aff(G)
satisfies (f^c^Cf^c^ = f1f2 + f^c^ + 3^ for all f^f^EiG), and

~G1> S2 C-

Proof. The fact that (f^t-c^ifj-cj = fj?2+$f 2^° 1 c a n b e

verified by direct calculation. The equality Aff(G)+ = E(G)+ + C+ i s a
simple consequence of Lemma 1. Let ceE(G)nC. By Lemma 2, c(0) = 0.

However c(0) = a, and so a = 0, that i s , Aff(G)+ = E(G)+=E(G)+ 9 C+.

LEMMA 4. For all feAff(G), and ceG , f(o)eG . For all

feE(G), and c^cfC, fCefcJ = f
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Proof. Let feAff(g). By Theorem 3, f = g+d with geE(G) and

deC. Since G i s a fully invariant subgroup of G, g(c)eG for al l

aeG . Therefore f(.a) = g(c)+df.G . Let feE(G) and let e.,.,30
 £C.

For XECJ fCc^o^Cx) = fCc1+G^J while (fo^fc^ix) = f(oJ) + f(oj.

Since G < Z(G), the restriction of / to G i s a homomorphism,

and so f(c1+o2)=f(a1)+f(c2).

THEOREM 5. A is an ideal in Aff(G) if and only if A = I 0 D

with I an ideal in E(G), and D a subgroup of C+ satisfying

E(GJD c Dj and IC c D.

Proof. Let A be an idea l in Aff(G). By Theorem 3, every feA

can be uniquely wri t ten f = g+a with ge.E(G), ceC. Let T\n,T\0 be the

project ions T-,(f) = g, ^9(f) = <?• Clearly A <= -n (A) 9 •no(A). To prove

the Inverse inclusion if suffices to show that TIO(A) C A. Let eeir AA).

Then there exists feE(G) such that f+eeA. Since A i s an ideal in

Aff(G), a = (f+c)0e.A, and so rro(A) <= A. I t i s readily seen that ir (A)

is a subgroup of E(G) and that TTp(A) i s a subgroup of C . Let

fzvAA), gcE(G). There exists aeC such that f+oeA. The fact that A

i s an ideal in Aff(G) yields that h = -y-hf+o+geA. However

h = (-y+f+g)+c by Lemma 1. Hence -g+f+g = ITAh)e.vAA)y and so IT (A)

is a normal subgroup of E(G)+. Let fev (A), cev.(A), and let
J. a

g^,goeE(G). Since A i s an ideal in Aff(G) i t follows that

gAg2+f+b)-g 1g2eA. By Lemma 1 and Theorem 3, g Jg2+g+c)-g^2

= g1(g2+f)-g192 +gf. Since g1(g2+f)-g1g2eE(G) and gfeC i t follows

that for a l l fe-nAA) and al l g^g^EiG), g Jg2+f)-g J}2ev JA), and for

all cev2(A) and g^EiG), gfe.-n (A), that is E(G)-T*2(A) C I Mj. For

fe.it^(A) , and geE(G), f-geAnE(G) = T\AA). Consolidating these results,

we have that A = -a^AJQn^A) with ir̂ f/U an ideal in SfGJ and v (A)

a subgroup of C satisfying E(G)-v-(A) c ir MJ. For feu (A) and
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i Mj a subgroup of C satisfying E(G)- vAA) c-n^fA). For fen (A)

and eeC the fact that A i s an ideal in Aff(G) yields that fceA*

However fa = f(a) e C, and so foeAnC = nJ.A), that is r.MJ-C c y (A).

Conversely, le t A = I ® D with J an ideal in E(G) and D a

subgroup of C satisfying E(G)'D c D, and IC c D. Clearly A i s a

normal subgroup of Aff(G) . Let fel, deD, geE(G), and eeC. Then by

Theorem 3, (f+d) (g+e) = fg+fo+d . Since J is an ideal in E(G), fgel,

and the fact that IC c D yields that fe+deD. Therefore multiplying

an element in A on the right by an element in Aff(G) yields an

element in A. To prove that A is an ideal in Aff(G) i t suffices to

show that for fel, deD, and f^f^Aff(G), g = f^fff+dl-f^^A. Now

f. = g-+G. with g.eJE(G), and e.eC, i = 1,2. Lemma 1 and Theorem 3

yield that g = g^g2+f)-g^^+g^o^cD-g^^ Since I is an ideal in

E(G), g2(g2+f)-g 1g2
eI- B v l £ I M a 4 - 92^2+^ = 9i°2+g^' a n d s o

g^Cc^+dl-g^On = gJle.E(G)-D <=• D. Therefore geA, and so A i s an ideal

in Aff(G).

Theorems 3 and 5 show that Aff(G) resembles Gonshor's abstract

affine near-ring very closely. In fact both these structures are

examples of the following: Let J? be a near-ring, (M, + ) an abelian

group, and let ij>:i? ->• End(M) be a near-ring homomorphism from R into

the ring of endomorphisms of M . For re.R, and meM, the product rm

wil l signify tfr)(m). Put S = R+ 9 M, and define multiplication in S

v ia (r.,m)(r,m) = (r p^r m +mJ for a l l (r ,171^, (r>g,m )eS . These

products induce a rear-ring structure on S. If R is chosen to be

E(G)3 and M to be C, with E(G) and C as above, then S = Aff(G)

with (f3a) identified with f+a. If R is a ring, then 5 is

Gonshor's abstract affine near-ring.

An argument similar to that used in proving Theorem 5 yields:

THEOREM 6. A -is an ideal in S if and only if A = 19 N with I

an ideal in R, and N a subgroup of M satisfying RN c N and IM c N.
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