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THE NEAR-RING OF GENERALIZED

AFFINE TRANSFORMATIONS

SHALOM FEIGELSTOCK

Blackett and Wolfson studied the near-ring Aff(V) consisting
of all affine transformations of a vector space V. This
notion is generalized here, and the rear-ring Aff(G)
consisting of affine-like maps of a nilpotent group G is
introduced. The ideal structure, and the multiplication rule
for Aff(G) are determined. Finally a near-ring S is
introduced which generalized both Aff(G), and Gonshor's

abstract affine near-rings. The ideals of S are determined.

1. Blackett [ 1], and then Wolfson [4] studied the near-ring Aff(V)
consisting of all affine transformations of a vector space V. A more
general structure, the abstract affine near~ring, was introduced by
Gonshor [2]. Aff(V) is a subnear-ring of the near-ring M(V) consisting
of all maps V » V. when viewed as an additive group, the structure of a
vector space V 1is very restrictive; either V is isomorphic to the
direct sum of copies of the additive group of the field of rational
numbers, or V is the direct sum of cyclic groups of order a fixed prime
p. In this note a subnear-ring Aff(G) of M(G) will be considered
for G an arbitrary nilpotent group. Aff(G) consists of affine-like
maps G + G , however the ideal structure of Aff(G) is much more

complicated than that of Aff(V). It will be shown that both the ideal
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structure and the multiplication of Aff(G) are similar to those of
Gonshor's abstract affine near—-rings. A generalized affine near-ring
structure will be defined for which Aff(G) and Gonshor's abstract

affine near-rings are special cases.

2. All near-rings are assumed to be associative and right
distributive. Terminology follows [3] . The additive group of a
near-ring A will be denoted R+, and the centre of a group H by
Z(H). Let (G be a group nilpotent of class n, and Gn be the n-th

term in the lower central series of (. The subnear-ring of M(G)
generated by the endomorphisms of (G will be denoted by E(G) , and
the subnear-ring of M(G) consisting of the constant functions

a(xz) = ¢ for all zeG, ceGn by (. put Aff(G) = the subnear-ring
M(G) generated by E(G)+C.
LEMMA 1. For all feAff(G), ceC, f+e = ctf.
Proof. For zeG, (f+e)(x) = f(x)+e. Since cel, < 2(G),
flx)+e = ctf(x) - (c+f)(z).
LEMMA 2. Let feAff(G). Then feE(G) <if and only 1f f(0) = 0.

Proof. It follows from Lemma 1 that f = g#c with geE(G) and
GeC. ‘Therefore f(0) = g(0)+c(0) = ¢ = 0 if and only if ¢ = 0, which
occurs if and only if [ = geE(G).

THEOREM 3. aff(@)? = E(c)? 8 ¢*, and multiplication in AFF(G)
satisfies (f1+31) (f2+22) = f'zfz + fzéz + 31 for all fl,fZeE(G), and

~ -~

€y 02 c.

Proof. The fact that (f te,)(fyte,) = f f #f é,#e; can be
verified by direct calculation. The equality Aff(G)+ = E’(G)+ + C+ is a
simple consequence of Lemma 1. Let ce¢E(G)"C. By Lemma 2, e(0) = 0.
However c¢(0) = ¢, and so e = 0, that is, Aff(G)+ = E'(G)+=E’(G)+ @ C+.

LEMMA 4. For all feAff(G), and ceG , f(c)eG,. For all

feE(G), and 01,0260, f(cl+c2) =fc1+f02.
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Proof. 1Let feAff(g). By Theorem 3, f=g+a with geE(G) and
deC. since Gn is a fully invariant subgroup of G, g(c)EGn for all

ceG . Therefore f(el = g(c)+deG . Let feE(G) and let 51,62 eC.
For xz€G, f(,51+52) (z) = fle tey), while (,f51+f52) (z) = fle)) + fley).
Since G < 2(G), the restriction of f to G  is a homomorphism,
and so f(c1+02) = f(cl)+f(02).

THEOREM 5. A is an ideal in Aff(G) if and only if A =1 €D

with I an ideal in E(G), and D a subgroup of c* satisfying
E(G)D < D, and IC < D.

Proof. Let A be an ideal in Aff(G). By Theorem 3, every feA

m be the

can be uniquely written f = g+¢ with geE(G), ceC. Let 2

1,
projections Tl'l(f) =g, 112(]") = &. Clearly 4 < 1r1(.4) & 'rrg(A). To prove
the Inverse inclusion if suffices to show that 'nZ(A) c A Let éeﬂz(A).

Then there exists feE(G) such that frocd. Since A is an ideal in

PN

Aff(G), e = (f+&)5eA, and so TrZ(A) € A. It is readily seen that T (4)
is a subgroup of E(G)" ana that 112(/1) is a subgroup of . Let
fenl (4), geE(G). There exists ceC  such that f+ced. The fact that A4

is an ideal in Aff(G) vyields that h = -g+f+otged. However
h = (~y+f+g)+ec by Lemma 1. Hence -g+ftg = nz(h)enl(A), and so ﬂl(/l)

is a normal subgroup of E(G)T. Let fenI(A), 36112(44), and let
91’92€E(G)' Since A4 is an ideal in Aff(G) it follows that
97 (gZ+f+a)-glggeA. By Lemma 1 and Theorem 3, gl(g2+g+&)—glg2

= g (g2+f)-g1g2 +g15. Since gl(gz+f)—gngeE’(G) and gléec it follows
that for all fenl(A) and all gl,ggeE'(G), gl(g2+f‘)-glgge1r1(A), and for
all Egng(A) and gleE(G), gléeng(A), that is E(G)'TTZ(A) < 1!2(/1). For
fenl (A) , and geE(G), f-geAnE(G) = nl(A). Consolidating these results,

we have that A=Tr1(.4)0112(A) with TI’Z(A) an ideal in E(G) and nZ(A)

a subgroup of ( satisfying E'(G)'ﬂz(A)Sﬂg(A). For fETI’J(A) and
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L (A) a subgroup of C satisfying E'(G)-nz(.A) gnZ(A). For fenl(A)

and c¢eC the fact that A is an ideal in Aff(G) yields that fceA.
~ AN ~
However fe = f(e) e C, and so feeAnC = TrZ(A), that is nl(A)-C e m, (4).

Conversely, let A =7 & D with I an ideal in EZ(G) and D a
subgroup of C satisfying E(G):Dc D, and IC cD. Clearly 4 is a

normal subgroup of Aff(G)+ . Let fel, c}eD, g€E(G), and ¢e€C. Then by
Theorem 3, (f+d) (g+8} = fg+fe+rd . since I is an ideal in E(G), fgel,
and the fact that I{ ¢ D yields that f5+21€D. Therefore multiplying
an element in A on the right by an element in Aff(G) yields an
element in A. To prove that A is an ideal in Aff(G) it suffices to
show that for JfeI, deD, and fl,f'zéAff(G), g = fl(f2+f+21')—f1f2€/1. Now

fi = gi+c7; with gieE'(G), and cieC, 7 =1,2. Lemma 1 and Theorem 3

yield that g = gl(g2+f)—glg2+g1(62+21)—g132. Since I is an ideal in
E(G), gl(g2+f)—glgzeI. By lemma 4, 91(824-8) = 9152+g13 and so
gl(&2+a)-g152 = glc’ZeE(GﬁD c D. Therefore ged, and so A is an ideal

in Aff(G).

Theorems 3 and 5 show that Aff(G) resembles Gonshor's abstract
affine near-ring very closely. 1In fact both these structures are
examples of the following: Let R be a near-ring, (M,+) an abelian
group, and let ¢&R - End(M) be a near-ring homomorphism from R into
the ring of endomorphisms of M . For »reR, and meM, the product rm
will signify &r)(m). Put S = R @ M, and define multiplication in S

via (r'l,ml)(r'g,mz) = (rlrg,r']m2+mz) for all (rl,mz), (r2,rn2)eS . These

products induce a rear-ring structure on S. If R 1is chosen to be
E(G), and M to be (, with E(G) and C( as above, then S = Aff(G)
with (f, 8) identified with f¥e¢. If R is a ring, then S is
Gonshor's abstract affine near-ring.

An argument similar to that used in proving Theorem 5 yields:

THEOREM 6. A <s an tdeal in S <f andonly if A= I® N with I
an itdeal in R, and N a subgrowp of M satisfying BV < N and IM c N.
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