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We consider the global existence for the following fully parabolic chemotaxis system
with two populations

Oru; = kiAu; — x; V- (uiVu), i€{1,2}, =z€Q, t>0,
v = Av — v+ uyp + ug, zeQ, t>0,
ui(z‘,t:(]):uio(tc), U(‘T:t:O):UO(‘T)u $€Q7

where Q = R? or Q = B (0) C R? supplemented with homogeneous Neumann
boundary conditions, k;, x; > 0, ¢ = 1, 2. The global existence remains open for the
fully parabolic case as far as the author knows, while the existence of global solution
was known for the parabolic-elliptic reduction with the second equation replaced by
0=Av—v+u; +uz or 0= Av + uj1 + uz. In this paper, we prove that there exists
a global solution if the initial masses satisfy the certain sub-criticality condition. The
proof is based on a version of the Moser—Trudinger type inequality for system in two
dimensions.
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1. Introduction

Chemotaxis is a common phenomenon in mathematical biology. Since Keller and
Segel [14] suggested a mathematical chemotaxis model for chemotactic aggregation
of the cellular slime mold Dictyostelium discoideum in the early 1970s, a large
number of theoretical (mathematical) models, including the chemotactic movement
of multi populations along with multiple stimuli in the environment, have been
proposed by many researchers (see [12]). In this paper, a chemotaxis system for two
populations interaction via the same chemical signal will be considered as follows:

5‘tu1 = HlAul — le . (u1Vv), xr € Q, t> 0,
Opug = KaAug — X2V - (u2 Vo), xEN, t>0, (L1)
vy = Av — v+ uy + uo, e, t>0, '

ui(x,t =0) = up(x), v(x,t=0)=1v9(x), i=1,2, z€,
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where u; denotes the population density for the i-th population, and v represents
the chemical signal concentration. x; > 0 is the diffusion coefficient for the i-th
population and the chemotactic coefficient x; > 0 measures the strength of the
chemical signal with respect to u;. Here the domain €2 is

either the whole space R? or a disk Q = Br(0) C R? with some R > 0.  (1.2)

When € is the above bounded domain, the system (1.1) is supplemented with
homogenous Neumann boundary condition

Ou;/0v =0v/ov =0, i=12. (1.3)

For a two-dimensional domain, one of the most interesting and important ques-
tion for the chemotaxis system in both biological and mathematical contexts is
to determine critical mass phenomenon, namely, the behaviour of the solutions is
only dependent on the initial mass of the system. This mass threshold phenomenon
was exactly confirmed in the well-known Keller-Segel chemotaxis model for one
population:

Opur = K1Auy — x1V - (u1 Vo), xEN, t>0,
v =Av —v+u, r e, t>0, (1.4)
ui(z,t =0) =wp(z), v(z,t=0)=uv(z), zec.

Let m1(u10; D) = |luolls = [, uio0(z) dz for D € R?. Consider (1.4) with bound-
ary condition (1.3) in a bounded domain € C R?. An application of the
Moser-Trudinger inequality to (1.4) ensures that the solution exists globally in
time provided mq (u10; Q) < 47k /x1 for arbitrary smooth domain or mj(u19; ) <
8mk1/x1 for radial domain [21]. Conversely, if mq(u10;€2) > 87k /x1, then there
exists a blow-up solution in finite time [10]. Similar to [10], there also exists a
blow-up solution for (1.4) for Q = R? when m1 (u10; R?) > 87k /x1. However, it was
shown in [3] that the solution with m; (u10; R?) < 87k /x1 exists globally over time
under the following conditions uiglog(l + |z|?) € L'(R?) and ujgloguig € L' (R?).
While these additional initial data conditions have been completely removed in
[15] by terms of the Moser—Trudinger inequality. Moreover, the critical case
m1 (u10; R?) = 8mk1/x1 was also studied in [15], the solutions exist globally or
the blow-up set of solutions equals R?. Because chemicals diffuse much faster than
population then it is feasible to study a simple parabolic-elliptic version of (1.4),
i.e., the second parabolic equation is replaced with an elliptic form

0=Av—v+4u, or 0=Av+uy, ifQ=R?
or
0=Av—v+u;, or 0=Av—pu+u;, ifQcR?isabounded domain,

where p := [|u1pl|1/|2|]. We refer the readers to the papers [2, 11, 13, 17-19] for
a similar and satisfactory analytical description about the critical mass for these
situations in two dimensions. The above results show that 8mkq/x1 is the critical
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mass for (1.4), and determines that the solutions exist globally or blow up if 2
satisfies (1.2).

For multi-population chemotaxis system, a natural question arises: do there exist
critical numbers such that whenever the initial masses for populations are smaller
than them then the solution will exist globally, whereas the masses are larger then
the solution will blow up? Espejo et al. [5, 7-9] consider a simplified parabolic-
elliptic version of two-population system likes

Oruy = k1Aug — x1V - (u1 Vo),

Opug = KpAug — x2V - (u2 Vo),

0= Av+ u; + ug, if r € Q=R2, or
0=Av—pu' +uj +us, if z € Q C R? is a disk,

(1.5)

where 1/ := (||u1oll1 + [Juzol]1)/[€2|. The proof of blow-up solutions is based on a
suitable adaptation of the moments technique [5, 7]. To see the known results
for the global existence, based on the expression for v in terms of w; and wus
through the fundamental solution or the Green function associated to the Laplace
operator, the main tool used in the paper by Espejo et al. is the logarithmic
Hardy-Littlewood—Sobolev (HLS) inequality for system (see [4, 22, 23]): the

function
1
P(p) = Z/Rz pilog pidz + — Z aij //RZX]RQ pi(z)log |z — ylp;(y) dz dy
€L i,j€T
(1.6)
over the class
P () ={p = (1o 25> 0, [ pilogpide <.
R
/ pidr = Mi,/ pilog (1+ |a:|2) dr < oo, ViEI}
R2 R2
is bounded from below if and only if Az(M) = 0 and
if Ay(M) = 0 for someJ, then a;; + A3 (M) >0, VieJ, '

where 7 :={1,2,...,n}, M :={My,...,M,} € (Ry)", A:=(a;;)nxn IS anxn
symmetric matrix with nonnegative elements, i.e., a;; >0, i,7 € Z, and the
quadratic polynomial is given by

Ag(M) =87 M;— > ai;M;M;, VJCZ, J#0.
ieJ ,j€T

While replacing the —(1/27)log |« — y| in (1.6) by the Green function Gq(z,y) for
the Laplace operator, then another version of the HLS inequality for system is given
when  is a bounded domain (see [23, theorem 5]). Here we summarize the main
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results for (1.5) obtained by Espejo et al. through above methods for convenience
(see [5, 8]): the system admits a globally bounded solution if

87TI<61 87T/€2
< mo <

X1 X2

(1.8)

KR1m KoM
, (m1+m2)2<87f (114_“)7

X1 X2

on the other hand, the solution blows up if m1, mo satisfy any of the inequalities

8K 8TK K1m Kom
my > 1, mo > 2, (m1+m2)2>8ﬂ'<11+“>,
X1 X2 X1 X2
where m; = m;(uio; R?) = |lul|1, i = 1,2. Similar results for Dirichlet boundary

problem (1.5) was obtained in [25] by Wolansky. Hence in the plane, the critical
curve of initial masses for (1.5) had been achieved.

However, there is still no available result for the parabolic-parabolic chemotaxis
system (1.1) as far as the authors know. In this work, we will show that any solution
of the system (1.1) exists globally in time under the sub-criticality condition (1.8).
The main tool for the analysis is a version of the Moser—Trudinger inequality for
system in a bounded domain Q C R? [4, 22], that is, for V p; € H}(Q2), i € Z,

1
U(p) = 3 Z / a; jVpi-Vp;de — ZMi log / exp Zai,jpj dz | (1.9)
Q Q

i,jeT i€z jeT

is bounded from below if and only if (1.7) holds, where the matrix A = (a; j)nxn 18
a positive definite matrix with nonnegative elements, see [23, theorem 5(7)].

We list two basic facts about the solution of (1.1). In the case that €2 is a bounded
domain, the boundary condition (1.3) should be added. The first one is the formal
conservation of the total mass:

my = |lur ()l @) = lluollzi@)y, m2 = llua(t)llL1@) = lJuaollr(@) forallt >0,

due to the integration (1.1); and (1.1)y over the domain, respectively. For v,
integrating over the domain yields that

||’U(t)HL1(Q) = 67t||’l)0HL1(Q) + (1 — eft) (HUlO”Ll(Q) + ||u20||L1(Q)) for all £ > 0.
(1.10)

Secondly, the system (1.1) always admits a unique nonnegative (local) solution
under some mild assumptions on the nonnegative initial data if Q = R? or Q C R?
is a bounded domain with smooth boundary. This fact can be proved by using some
similar arguments as in one-population chemotaxis model [6, 21]. However we omit
the proof for simplicity since our main interest is to find optimal conditions on
the initial data, which guarantee the local solution to be global one. Through this
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paper, we assume that the initial data satisfies
uip € LN(Q)NL®(Q), vo € LYY NHY(Q), i=1,2, ifQ=R?>  (1.11)
or
up € CO(Q), vo € CH(Q), i=1,2, if QC R?isabounded domain. (1.12)

Let Tiax > 0 be a maximal existence time of (u1,us2,v) to (1.1). The first result
states that

THEOREM 1.1. Let Q = Br(0) C R? with R > 0. Assume that nonnegative func-
tions u;o(x), i = 1,2, and vo(z) satisfy (1.8) and (1.12). Then there exists a unique
triple (u1,us2,v) of non-negative bounded function which solves (1.1) with boundary
condition (1.3) globally, i.e., Tax = 00.

Now, we would like to extend the global result of bounded domain to the whole
space. More precisely,

THEOREM 1.2. Let Q) = R2. Assume that nonnegative functions uo(z),i = 1,2, and
vo(x) satisfy (1.8) and (1.11). Then Tiyax = 00.

The paper is organized as follows. In § 2, compared with (1.9), we give another
version of the Moser-Trudinger inequality for system if p; € HY(Q), i € Z. The
third section is dedicated to the global existence in bounded domain. Section 4 is
contributed to show the solution exists globally in the whole space.

2. Preliminaries

In this section, let us recall the following well-known Moser’s inequality given by
[16] as

1
5/§1\Vp|2dz—87rlog </Qexppdz> > —C, Vpec Hy(Q),

where  C R? is a domain with finite Lebesgue measure. In [22, theorem 3] or [23,
theorem 5(7)], there exists an analogous inequality for system defined on a bounded
domain of R2.

LEMMA 2.1. LetT ={1,...,n}, and let M = (M,..., M,) € (Ry)". Assume that
A = (@i j)nxn is a positive definite matriz with nonnegative elements. Then for any

P = (pla <o 7/)71) € (H(%(Q))n7
1
5 Z /Qam-Vpi.ij dx—ZMi log /Qexp Zam-pj dx
i,j€T ieT jeT
is bounded from below if and only if

Az (M) =0, VO£ J CT,
if Ag(M) =0 for some J,then a;; + Ay 3 (M) >0, Vie J.
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Inspired by [21, theorem 2.1], for radially symmetric functions we extend the
Moser-Trudinger inequality for system to the Sobolev space H'(Q) with trace
boundary.

LEMMA 2.2. Let Q= Br(0) C R* with R >0, and let A= (a;j)nxn be a pos-
itive definite matrix with nonnegative elements. Then for nonnegative w =
(wi,...,wy,) € (HY(Q))™ and n > 0, then there exists a constant C(n) such that

1
5 Z /Qai,iji-ij dz +1n Z aiﬁjMi‘/Q‘ijFdx

i,J€EL i,J€T

2
+@ Z ai,jMi/ w; dx—ZMi log /exp Zaiijj dz | > C(n)

1,J€T €T JET
if and only if

Ag (M) =0, VO #£J CT,
if Ag(M) =0 for someJ, then a;; + A\ 3 (M) >0, VieJ.

Proof. We only consider nonnegative w € (C'(Q))" because C'(Q2) is dense in
HY(Q). Define

zi(x) := w;(x) —wi(R), i€
Thanks to z = (21,...,2,) € (H3(Q))", lemma 2.1 implies that
1
3 Z / a; jVz;-Vzjde — ZMl log / exp Zai,jzj dz | > -C (2.1)
i,jeT i€T Q@ jez

holds if and only if

{AJ(M)>O, V0 #£J CT, 22)

if Ay(M) = 0 for some J, then a;; + Ay 3 (M) >0, Vie J.

It is clear that

log /exp Zamzj dx
Q

jez

= log /Qexp Zai’j(wj(x)—wj(R)) dz

JET
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=log |exp —Zai,jwj(R) /exp Zai,jwj(x)
je€T Q je€T

= log |exp fZai,jwj(R) + log /exp Za”wj

L JET JET
= log / exp E a; jw;(x) | de| — g a; jwi(R
JeT JjET

Then

ZMilog /eXp Zawwj

i€l jeET

:ZMilog /exp Zam-zj dz| + Zai’jMiwj(R). (2.3)

icT Q jeT ijE€T

Now we proceed to estimate the boundary value w;(R). Fixed r9 € (R/2, R) such

that
9 (R
wj(ro)<ro—R R/ij(p)pdp
[ wma Al
mroR Jo 7“0|Q\ el
then from

R
w;(R) = wj(ro) +/ wi(p) dp,

0

applying Holder’s inequality and Young’s inequality with i > 0, then it yields that

R 1/2 R 1/2
w;(R) < w;(ro) + (/ p~! dp) (/ w;—(p)lzpdp)
R 1/2 R 1/2
< wj(ro) + (/ p! dp) (/ Iwﬁ-(p)l%dp>
R/2 R/2

log 2
2w

1/2
<wj<ro>+( ) .

2||lwjll ) log?2
< Vw1220 + J|Q|

8
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By (2.3), we have

ZMilog /exp Zai_jwj(x) dz

i€l £ jez

§ZM¢10g /eXP Zai,jzj dw +nzai,jMi”ijH%2(Q)

i€l jeT i,jET

2llwjllLr) log2

LM, .

+.Za” [ o S
i,j€T

Observing that
Z / ai,ijZ- . ij dz = Z / ai’sz,- . VZ]' d{E7
iger’? ijez”

it implies that

%Z/ai,iji-ijdx—ZMilog /exp Zam‘wj dx
Q Q

i,jeT i€l jeT

1
> 3 Z /ai,szi~szdw—ZMilog /exp Zam-zj dx
Q Q

i,j€T €T JET

2|wjlli) | log2
= X M |V gy + A 1 B2
i,jEL l

After a simple arrangement, we finally have

1
5 Z /Qam»Vwi . VU}j de‘+77 Z ai,jMi/Q|ij|2 dz

ijeT ijeT
2
+ﬁ Z ai,jMZ-/ w; dw—ZMilog /exp Zaiijj dx
i ijeT Q ieT @ jeT
1
> 2 Z /Qaw-Vzi -Vz;dr — ZMi log / exp Zamzj dx
i,j€T €L JET
log 2
_ Tn Z a; j M;
i.jE€T
Therefore, this lemma has been proved by (2.1)—(2.2). O

As a consequence of lemma 2.2, we have
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LEMMA 2.3. Let T ={1,2}, Q = Br(0) C R? with R > 0, and let A = (a; ;)2x2 be
a positive definite matriz with nonnegative elements. Then for nonnegative w =
(w,w) € (HY(Q))? and n > 0, then there exists a constant C(n) such that

1 2
Z aj,j <2 JrMm) /Q |V’LU|2 dz + @ Z am-Mi/dex

i.jE€T i,j€T
- ZMi log / exp Zai,jw dz | > C(n)
i€z Q2 jeT
if and only if
A7 (M) =0, VO£ J CT,
if Ag(M) =0 for some J,then a;; + Ay 3 (M) >0, VieJ.
3. The bounded domain

The global existence of solution to (1.1) in a bounded domain Q2 = Br(0) C R? will
be considered in this section. The proof of theorem 1.1 will be divided into several
lemmas.
3.1. Free energy functional

The free energy functional

Fluy, ug, v] ::ﬂ/ulloguldx—kﬁ/
X1 Jo X2 Jo

1 1
—&—f/ |Vv|2dx+f/v2dx
2 Jo 2 Ja

plays an important role in the analysis of the global existence.

ug log usg dx—/(ul + ug)vdx
Q

LEMMA 3.1. Consider the local smooth solution (uy,us,v) to (1.1), subject to initial
data (u10, u20,v9). Then

d 1
— Fluy, uz, v) —|—/ vide = —— [ wup |k Viegu; — ><1V11|2 dx
Q

dt X1 Jo
1 2
— — | ug|kaViogus — x2Vo|~ dz.
X2 Ja

Proof. Multiplying (1.1); by ;logu; — x;v,4 € {1,2}, respectively, we see that

/(Ul)t (k1loguy — x1v)da = */ uy |1V loguy — x, Vol* dz (3.1)
Q Q
and

/(ug)t (k2 logug — xov)da = —/ us |kaV1ogug — X2VU|2 dz. (3.2)
Q Q
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Testing (3.1) by 1/x1 and (3.2) by 1/x2, respectively, it is easy to obtain that

d
(/ﬂ/mloguldx—i—/uzlogugdx—/(ul —i—ug)vdx)
—|—/(u1 + ug)vp da
Q
1 2 1 2
=—— [ wuy|kiViogus — x1Vu|” de — — [ wus|keViogus — x2 V|~ da,
X1 Jo X2 Jo

where we have used the fact that (d/dt) [, u; dz = 0. Notice that

/(u1 + ug)vy da = / (ve — Av 4+ v)vy da
Q Q

_ lda 2
—/Q dx+2dt(/|Vv| dx-i—/ﬂv dm)

Hence

d
(Kl/ulloguldx—i—/uglogugdx—/(ul + ug)vdax

1 1
+7/ |V02dx+/v2dx) —&—/vfdx
2 2 Ja Q

1
= X u1 |k1V1ogu, — le”| dz — —/ ug |kaVlog ug — XQVU| dz,
1
which implies that we have finished the proof of this lemma. O

A simple fact from lemma 3.1 yields an upper bound for F.

LEMMA 3.2. Assume that (up,us,v) is a local smooth solution to (1.1) in Q X
(0, Timax) with initial data (uig,u20,vo) satisfying (1.12). Then

Fluy,ug,v] < Fluio, uz0, Vo).

3.2. An upper bound for the entropy

In two-dimensional case, the natural way to prove the global existence of solutions
to chemotaxis system is to give a bound for the entropy |lu;logu| p1(q), i = 1,2.
From lemma 3.2, this can be actually achieved if the term

/Q (ur + uz)v da. (3.3)

can be controlled by the entropy. To see this, we derive a general form as follows.
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LEMMA 3.3. Let oy, ki, xi > 0,1 = 1,2. For any nonnegative functions ¢; € L*(Q) N
Llog L(Q),v € L>*(Q) satisfying m; = [, ¢idx >0, i =1,2, it holds that

ar [owds+as [ Grids
Q Q
< E/ ¢11og ¢ do + @/ ¢ log ¢ da + aalil} log [/ exp <X1a1w>dx]
X1 Ja X2 Ja X1 Q K1
+ 522 0 [/ exp <X2a2¢>dx] y g2 (3.4)
X2 Q K2 exX1  ex2

Proof. 1t follows from the Jensen’s inequality that

K
041/¢11/1d95—*1/¢110g¢1d$
Q X1 Jo

Sl [/ o1 (Xlalw—logm) dw}
X1 LJa K1

X1
K1y $1 exp( flmlw)

= —log ———~dx
X1 Q mi 01
_ e
Kimi exp( o ql)) o1
< log — . dz
X1 Q o1 mi
_ i log / exp (Xlal w> dx} _mm log my
X1 L/ K1 X1
< ekl log / exp <X1a1 7,/}) dw} + ﬁ, (3.5)
X1 L/ K1 exX1

where we have used the fact that m; = fQ ¢1dx, and xlogx > —1/e for all = > 0.
Similarly, given any as > 0 we also have

ag/ P2t dax — @/ @9 log ¢ da < fr2ie log [/ exp <X2a2¢>dx} + ﬂ'
Q X2 Jao X2 Q K2 €X2

Putting the above inequalities together, it yields (3.4). |

LEMMA 3.4. Let (uy,us,v) be the local smooth solution to (1.1), subject to ini-
tial data (uio,usg0,v0) satisfying (1.12). Assume that k; >0, x; >0 and m; =

Jowioda,i = 1,2, fulfill

mi <8’/TK)1/X1, mo <871'/<62/X27 (ml +m2)2 <87T(K21m1/X1+I€2m2/X2).
(3.6)
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Then there exists a; > 1 and ag > 1 such that

al/ulvdx—i—ag/uwdx
Q Q

X1

for some C > 0.

Proof. In view of (3.6), we can choose small € > 0 such that

87 > my {Xl—&-e(Xl—l—m)}(l—i—Qe),
K

1 K1 R2
87 > m {XQ+ <X1 X2 ﬂ (1+ 2e),
K2 K1 K2

and

X1 X2

1
< — a ulloguldm—l——/uzloqudx—f— /|Vv|2dx+C

2117

(3.7)

s (S 222 ) g e (S 22 ) (22422 | (14 20
1

X1 X2

Choose o1 > 0 and s > 0 in lemma 3.3 as
] = Qg =: 1-+e.

Denote

KR1m KoM
M1—11<X1+X2> (1+ 2¢), MQ—“<X1+X2) (1+ 2¢),

X1 R1 R2 X2 K1 K2
X1 X1X2 X2
a o X1 K1 +e a —a K1K2 a o X2 K2
11 — —— ) 12 = a21 = ) 22 — —
X1 X2 X1 X2 X1
K1 K1 + Ko K1 + K2 k2 K1 +

then it is clear that aj; 4+ a12 = x101 /K1, G21 + a2z = X202/ka and

gk

(3.9)

is a positive definite matrix. Fixed a positive constant > 0 small enough such that

X1 X2
€ K1 K2

(€+ 1) X1M1 + X2 Ms *

K2

n <
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Since we have

A{l}(M) = 87TM1 — a11M12 = Ml (871' — allMl)

Kr1m R1
= 1 L (Xl+> (1+2€) |:8’/T(111X <X1+
1

X1 K1 K2 K1
K1m
_ M 1(X1+X2>(1+26)
X1 K1 K2
X1 X2 o
X |81 — — 4 == —m 1+2
[7‘( m1<lﬂ+1€2) [ﬁ+i§z+€ ( * 6)
> 0,
A{Q} (M) = 87TM2 - a22M22
KoM
=22 2(X1+X2>(1+26)
X2 K1 K2
X1 X2 =
X |8m — =4 = a 1+2
[W m2<m+/€2) x—&-ﬁ (142¢)
> 0,

K2

) (1+ 26):|

A{l,g}(M) = 87T(M1 -+ Mg) — a11M12 — (a12 -+ agl)Mle — a22M22

—8r <n1m1 I l<62m2> <Xl T XQ) (1+ 2¢)
X1 X2 K1 K2

ol ()]

X1 K1 K2
K1m
— (a12 + az1) [ — (Xl + X2) (1+ 26)]
X1 K1 K2

x {'{sz (Xl + XQ) (1+ 26)]
X2 K1 K2

()]

K1 K2

K1m KoM
:71'(1 1y222 2><X1+Xz>(1+26)
X1 X2 K1 R2

— {14#'””1 <X1+X2> e] (Xl+X2) (14 2€)*m3
X1 \ k1 K2 K1 K2

— 2myms (’“ + X2> (1 + 2¢)2
K1 Ko
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{1 + — (Xl + Xz) e} (Xl + X2> (1 + 2¢)?m3
X2 R2 K1 K9
<X1 + XQ) (1 + 2¢) {877 (’W + W)
K1 K2

X1 X2

e et 20) (-2

2119

K1 K9

by (3.7) and (3.8), applying lemma 2.3, then there exists a positive constant C' > 0
such that
M, log [/ exp [(a11 + ai2)v] de] + Ms log {/ exp [(az1 + as2) ]dx]

Q Q

Kimy (><1 N X?) (1 +20)log { / exp <X1a10> dx}
X1 K1 R2 Q

R1
Koo

T (Xl + X2> (14 2¢)log {/ exp <X2a2v> dx}
2

R2
ZZa” —|—M77 /|Vv|2dx+|Q| ZZ(L” /vdx+C’
i=1j=1 Q

i=1 j=1
2

Z( +M7)>X /|Vv|2dx

+<XM +X2M2>(1+e)/vdx+c,
€2 f2 Q

which together with (3.10) implies that

fomy log [/ exp (X1041 v) dx] + fam2 log [/ exp (X2a2 v) dx}
X1 Q K1 X2 Q

(1+e€)

K2

My x2M>
1 2(14¢) MO 4 X2l
<= [ Vol de + u ”2/d+C
2/9' Pt gy mre 00

1
<f/|Vv|2dx+—
2 Ja

max{ M, Mg}/ vdz + C.
1€ o

Then lemma 3.3 tells that

al/ulvdx—&—ag/uwdx
Q Q
< — M ulloguldx—i——/quoguzdx—i— /|Vv|2d;v
X1

2
+—max{Ml,M2}/vdx+C,
12| Q

which proves the lemma by (1.10).
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LEMMA 3.5. Under the same assumptions in lemma 3.4, then there exists C' > 0
such that

||’LL1 In Uul ||L1(Q) + ||’LL2 In ’LLQ”Ll(Q) < C.
Proof. Lemma 3.1 asserts that
Flui, uz,v] < Fluio, ugo, vo]

in the sense that

1 1
o ullogulder@/quoquderf/ |Vv|2d:z:+f/v2dx
X1 Ja X2 Jo 2 Ja 2 Ja

< /(u1 —|—U2)’U d$+f[U10,U20,Uo]. (311)
Q

According to the choices of @y > 1 and ap > 1 in lemma 3.4, we may find C' > 0
such that

011/u11)dx+cw/uwdx<ﬂ ulloguldx+@/quoqudx
Q Q X1 Jo X2 Jo

1
+ = / |Vo|? dz + C,
2 Ja
which yields that

(al—l)/ulvdx—k(ag—l)/ulvdxgc
Q Q

by (1.10) and (3.11). From (3.11), this in turn shows that there exists C' > 0 such
that

/ulloguldx—i—/uglogugdxgc. O
Q Q

Proof of theorem 1.1. Assume that (uq,usg,v) is a local classical solution of (1.1)
over (0, Tinax) with the following blow-up criterion: either Tiax = 00, or if Thax <
00, it should satisfy:

lur (-, t) || Loe ) + lua(-,t)|| Lo (@) — 00, ast — Thax.

A version of the Gagliardo—Nirenberg inequality in two-dimensional bounded
domain shows that for each e > 0, there exists a positive constant C. > 0 such
that (see [21, lemma 3.5], [24, lemma A.5))

9lZ20) < €l VOlT2 ()@ log [l Li(0) + Cellglli) +Cey ¥ ¢ € H(Q). (3.12)

By means of (3.12) and lemma 3.5, we follow a similar argument in [21, lemma 3.6]
to find C' > 0 such that

Hul(’t>||L2(Q) + ||u2(at)HL2(Q) < C7 Vite (OaTmax)~

By the well-known Moser—Alikakos iteration procedure [1], the solutions of (1.1)
must be uniformly bounded for all ¢ € (0, Tinax), that is, Tiax = 0. O

https://doi.org/10.1017/prm.2022.88 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2022.88

On the global existence of solutions 2121
4. The whole space

The proof of global existence for the whole space R? also relies on the
Moser—Trudinger inequality for system given in lemma 2.1. Similar to the bounded
domain case, it is possible to control (3.3) by the entropy. For this purpose, we have

LEMMA 4.1. Consider a local solution (uy,us,v) to (1.1) in R? x (0,T) with T > 0,
subject to initial data (u1g,us20,v0) satisfying (1.11). Suppose that m; = fQ ;o de,
1=1,2, fulfills

my < 87'(/{1/)(1, mo < 87TI€2/X2, (m1 + TfLQ)2 < 81 (/ﬁml/xl -+ IiQmQ/XQ) .
(4.1)
Then there exists € > 0 such that

R1
+ der < ——— + 1)1 +1)d
/RQ(Ul ug)v da X1 (1+e) /RZ(Ul ) log(uy ) dz
K2
_ 1)1 1
+ (1+€) /RZ‘(UQ+ )log(ug + 1) dx

/ \Vol2dz+C, t>0,
1+e

for some C > 0.

Proof. Inspired by lemma from [15, lemma 2.1] for a single-species chemotaxis
system, we use the similar argument to deal with multi-species scenario on the base
of the Moser-Trudinger inequality for system. For any initial data (u19,u20,v0)
satisfying (1.11), we

m = |luiollL1 g2y + w0l w2y + llvoll1(®2)-

Choose € > 0 small enough and s> 0 large enough, then the assumption (4.1)
ensures that

81 > (my +m/s) Rﬁl +€ (:1 + ?)} (1+2e),
1 1 2

(4.2)
81 > (my + /) {:2 +e (:i + :zﬂ (1+ 2e),
and
S5 |+ 71/5) 4 22 a4+ 70)
> {(ml + ma + 2m/s)?
+e [; (my + 7/5)2 + %(m2 + ﬁ@/s)z] @1 + X;) } (1+2).  (4.3)
Let

O(x,t) = max{v(z,t) — 5,0}, V(z,t) € R?* x (0,T),
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and
Qt) ={z eR*:v(x,t) > s}, Vte(0,T).

Note that the Lebesgue measure of Q(t) denoted by |Q(t)] is finite, because (1.10)
and

s- QO] < o)l < [Jwaollprwey + lluzollLr w2y + vollrwzy = m, V€ (0,7),

imply that
Q) <m/s, Vte(0,T). (4.4)

Moreover, we see that
/ (uq +u2)vdx:/ (ul—l—ug)(ﬁ—l—s)dx—i—/ (u1 + ug)v de
R2 Q(t) R2\Q(t)
< / (u1 +uz)vde + s (|lurollr + [Juzoll1) -
Q(t)
A similar computation as (3.5) and utilizing (4.4), we obtain that
ai/ (u; + 1)vde
Q)

< (u; + 1) log(u; + 1) dz
Xi JQ(t)

N Hi(mi(t)xj' 2D g [ /Q Lo (x: 5) dx]

_ ki(ma(t) + ()
Xi

log(mi(t) + |2(t)])

< (u; + 1) log(u; + 1) dz
Xi Ja(t)

+ 7Ri(mi +m/s) log / exp (Xiai 5) dx
Xi Q(t) Ki

where a; > 1, m;(t) = fQ(t) u;de <my, i =1,2, and

el (4.5)

Ki(m; +m/s)

Xi

C= log(m; +m/s).

Without loss of generality, we assume that [Q(£)| > 1, otherwise we may take €2(t)
such that |Q(¢)] > 1 and Q(t) C Q(t). Define My, Mz > 0 as

K ~
My = 2 (my + /s (Xl + X2> (1+ 2e),
X1 R1 K2

K ~
My = —2(ms + m/s) (Xl + X2> (1 + 2¢).
X2 K1 K2
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Let A = (a;,7)2x2 be a positive definite matrix with elements from (3.9) and oy =
as =1+ €. According to (4.2)—(4.3), we have

A7(M)>0, VYTCZI={12}, TJ#0,

then applying lemma 2.1 to see that

+ Ms log [/ exp [(az1 + a22)v] dx]
Q(t)

M, log l/ exp [(a11 + a12)v] dz
Q(t)

— %(m1 +/s) (Xl + X2> (1 + 2¢)log [/Q@ exp (:1(1 + 6)5) dx]

aat K2 1

/Q oo <:z(1 + 6)5) dx]

2 2
1 ~ 1 /x1 X2 / 19
< = E E ii VilPde == (2= 422 ) (1+ Vo|* dz.
5 ajj / |U‘ x 2(#&1 l<62>( 6) Q(t)| 11| x

i=1 j=1 Q(t)

K ~
+ 2 (my + i/s) (Xl + XQ) (1+ 2¢) log
X2 K1 K2

Then we have the following inequality

ﬂ(ml +m/s)log / exp <X1041 ’17> dz
X1 Q(t) K1
+ @(mg +m/s)log l/ exp (X20é2g) dl‘}
X2 Q(t) K2

1+e / ~2 1/ 9
<—— Vol de < - |Vul© de.
2(1 + 2¢) Jog 2 Jaw

Inserting the above into (4.5) yields that

(l—l—e)/ﬂ(t)(ul—f—l)idx—i—(l—i-e) /Q(t)(uzﬂ)adx

< (w4 1) log(uy + 1) da
X1 JQ(t)

1
+ 22 (u2+1)log(u2+1)dx+§/

|Vo|? dz + C
X2 Ja(t) Q(t)

for all t € (0,T), so we have
/z(m +ug)vdr < / (ur +ug)vde + s ([Jurolls + lluzollr)
R

Q(t)

< / (uq +1)5d:17+/ (ug + D)vdx + s (JJutollr + |Juzol1)
0 Q)
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R1
< — (ur + 1) log(uy + 1) da
xi1(1+e€) /Q(t)
K2
+ -
X2(1 -+ 6)

1 / —
+ — Vol|7dx 4+ C

K1
< ———— + 1)1 +1)d
X1(1+€) /Rz(U1 ) Og(ul ) €

R2
+ — ug + 1) log(ug + 1) dx
X2(1+€)/]R?(2 ) g(2 )

1 2
—_ d t T).
toigg f Ve de O Ve @)

/ (ug + 1) log(ug + 1) da
Q(t)

This lemma is complete. O

The following proposition could be regarded as an analogue of the result for
one-single Keller—Segel chemotaxis model (see [20, proposition 4.1]).

LEMMA 4.2. Consider a local solution (uy,us,v) to (1.1), subject to initial data
(u10, u20,vo) satisfying (1.11). Then

d
ag[ul,ug,v} + /]Rz v? dx

= _Xl/ U1
R2

2 2

\Y <K2 log(ug + 1) — v)
X2

\Y <K1 log(ug +1) — v)
X1

- X2/ u2
]R2

2 2
K1 1 K9 1
- v - o) - V(2 - -
X1 /IRZ <X1 og(uy +1) 2“) )(2/]R2 <X2 og(uz +1) 2”)
+M+m/ﬁwﬁm7 (4.6)
4 Je
where

K K
Gluy,ug,v] = —1/ (u1 + 1) log(uy + 1) daz + —= | (ug + 1) log(us + 1) dz
X1 Jr2 X2 JRr2

1 1
—/ (uq +u2)vdm—|—7/ |Vv|2dx+f/ v? da.
R2 2 R2 2 R2

Proof. We adopt the similar arguments as lemma 3.1 to prove this lemma. Mul-
tiplying (1.1); by &;/xilog(u; +1), i = 1,2, and integrating over R?, it induces
that

Ki K2 |V, |2
- w; +1)¢ 1o ui—l—lz——’/ L dz
Xi Rz( Jelog( ) Xi Jr2 ui +1
er-/ i Vu; -Vodz, i=1,2.
Rz Ui +1
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Moreover, we have

d
{’“/ (ur + 1) log(us + 1) da + 22 [ (us + 1) log(us + 1) dz
]RZ

dt ; X2 JR2
_/ (uy + ug)v d:v] + / (uy + ug)vy da + / (uy + ug)ivde
R? R2 R2
2 2 2 2
_ k1 [V | qo_ 2 [Vus| da
X1 Jr2 ur +1 X2 Jr2 uz +1

Ui U2
+ K Vui - Vode + K
1/]R2U1+1 ! 2/Rzu2—|—l

where we use the fact that (d/dt) [p.(u; +1)daz =0, i = 1,2. Since
/ (ug + ug)vy da = / (vy — Av + v)vg de
R2 R2

1d
= vzdx—i-( VUQd.’L‘—I-/ v2dx)
/Rz t 2 dt R2| | R2

Vus - Vo de,

and
/(u1+uQ)tvdz:x1/ u1|Vv|2dz+X2/ uz|Vo|? dx
R? R? R?

— K1 Vui - Vodr — ko Vus - Vodx
R2 R2

hold out, then it is obvious that

d (”‘1/ (u1+1)1og(u1+1)dx+@/ (uz—|—1)log(uz—|—1)dx>
R2 R2

dt X1 X2
d 1 2 1 2 2
- = (u1 +ug)vde + = [Volde+ = [ v*da )+ [ vfde
dt R2 2 R2 2 R2 R2
2 \V4 2 2 \V4 2
= [V do — 22 [Vuo| dSC*X1/ uy | Vo|* de
X1 Jr2 u1 +1 X2 Jr2 u2 +1 R2

—X2/ us|Vo|? dz
R2
Qus + 1

2 1
+/£1/ U+ Vul-Vvdx—l—fig/ Vus - Vodx
R Rz Uz +1

2 up+1
2
—X2/ U2
]R2

=—X1/ U1
R2
2
—X2/
]RQ

K1 1
—x1 /}R2 \V4 ()ﬁlog(U1 +1)— 21})

+X1+X2/ (Vo2 da.
TR

Therefore, we have finished the proof of this lemma.

\Y (Hl log(ug +1) — U)
X1
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\Y <KL2 log(ug + 1) — v>
X2

)

\Y <K2 log(ug +1) — v
X2

2
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LEMMA 4.3. Consider a local solution (ui,us,v) to (1.1) in R? x (0,T), subject to
initial data (u19,uz20,v0) satisfying (1.11). Under the same assumptions in lemma
4.1, then there exists a positive constant C' > 0 such that

/ (u1 + 1) log(uy + 1) dx —|—/ (ug + 1) log(ug + 1)de < C, Vte (0,T), (4.7)
R2 R2

and
t
/ / vZ(s)dzds < O, Vte (0,7). (4.8)
0 JR2
Proof. Invoking the definition of G and lemma 4.1, we firstly obtain

Gluy, uz,v] = ﬂ/ (ug + 1) log(uy + 1) dx + @/ (uz + 1) log(ug + 1) da
X1 JRr2 X2 JRr2

1 1
—/ (uq —‘rUg)UdLL‘-‘r*/ |Vv|2dx+f/ v? dx
R2 2 R2 2 R2

K1€
> uy + 1) log(u; +1)dx
X1(1+€)/R?(1 ) g(l )

K€

x2(1+€)

€ 2 1 2
P Ea— — T). 4.
+2(1+6)/RZ|VU| dx+2/sz de+C, Vte(0,T) (4.9)

+ / (ug + 1) log(ug + 1) dx
R2

Moreover, lemma 4.1 ensures that there exist € > 0 and C' > 0 such that

/ (u1 + ug)vda < ﬂ/ (up + 1) log(uy + 1) dx + @/ (us + 1) log(us + 1) dz
R2 X1 JRr2 X2 JRr2

1

it e

/ |Voldz+C, Yte (0,T).
R2

Reversely, it implies that

1 9 K1

3 [Voul?de = Gluy,ug,v] — — Rz(ul + 1) log(uy +1)dz

X1

1
2 (uz—l—l)log(ug—&—l)dm—i/ v2dx+/ (u1 + u2)vde
R2

X2 JRr2 R2

1
< b b a7/1 1\ 2d N
Gluy,ug ’U]+2(1+€)/RQ|VU‘ z+C

Hence, one can see that

2(1+e) 2(1+6)O.

€

|Vo|? dz < Glu, uz,v] +
R2
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Combining it with (4.6) yields that

d (1+e)(x1 + x2)
dtQ[m,uQ,v] +/Rz vf dr < %Q[ul,uz,v]
L1H9Cat+x)C (0, 7).

2€

Using Gronwall’s inequality to above inequality, it means that

t
g[ul,uQ,v](t)—i—//vfdxdsgc, Vte(0,T).
o Jr2

Then we obtain (4.7)—(4.8) by terms of (4.9). O

Proof of theorem 1.2. Prove by contradiction. Under the assumptions in theorem
1.2, suppose that there exists a solution (u1,us,v) of (1.1) which blows up at finite
time 7' < oo. Lemma 4.3 tells us that there exists C' > 0 such that

t
/ (u1 + 1) log(us + 1) dzx —|—/ (ug + 1) log(ug + 1) dx —|—/ / vZ(s)drds < C.
R2 o JRr2

R2

Based on the following inequality in two-dimensional domain

161175 g2y < €Vl T2y lI(6+ 1) 10g(d + Dl L1 (r2) + Celldllii ey, Vb € H'(R?),
we have
ur (s )l L2 me) + luz( ) lz2@ey < O, Ve (0,7T)

by a similar argument in [20, proposition 5.1]. However, through the standard
theory of the parabolic regularity, it is straightforward to show that the solution
(u1,uz,v) remains in L>(R?) for all ¢ € (0, 7). It is a contradiction with the blow-up
criteria, which implies the solution (uq,us,v) exists globally in time. O
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