

Summer Meeting, 11–14 July 2016, New technology in nutrition research and practice

Advanced glycation end products and the pathogenesis of nonalcoholic fatty liver disease in non-diabetic adults

S.A. Palma-Duran¹, M.D. Kontogianni², A. Vlassopoulos¹, S. Zhao¹, G.V. Papatheodoridis³ and E. Combet¹

¹Human Nutrition, School of Medicine, University of Glasgow, G31 2ER, UK, ²Department of Nutrition & Dietetics, School of Health Science and Education, Harokopio University, Kallithea, Greece and ³2nd Department of Internal Medicine, Athens University Medical School, Hippokration Hospital of Athens, Athens, Greece

Non-alcoholic fatty liver disease (NALFD) is considered as the hepatic manifestation of the metabolic syndrome, with insulin resistance (IR) as key underlying pathophysiological mechanism. NAFLD comprise a wide range of liver damage, from simple fatty liver to non-alcoholic steatohepatitis (NASH), including cirrhosis⁽¹⁾. Hyperglycemia, IR and oxidative stress increase advance glycation end products (AGEs) that may contribute to the pathophysiology of NAFLD through the AGE-RAGE axis. AGEs such pentosidine, N^{\varepsilon}-carboxyethyl-L-lysine (CEL) and N^{\varepsilon}-carboxymethyl-L-lysine (CML) exert pathological effects by binding to AGEs receptors (RAGE), triggering inflammation, cellular dysfunction and cell death. Soluble RAGE (sRAGE) may protect by preventing AGEs/ RAGE interaction⁽²⁾. The aim of the study was to evaluate the association of AGEs and sRAGE levels in a case (NAFLD)-control cohort with markers of liver function (ALT, AST, and GGT) and IR.

The study included 131 non-diabetic adults in age, sex and BMI matched pairs based on the presence/absence of NAFLD (liver enzymes and ultrasound hepatic steatosis)⁽³⁾. AGEs were analysed by liquid chromatography-mass spectrometry (CML, CEL), fluorescence (pentosidine, AGE fluorescence), colorimetry (fructosamine) and ELISA (sRAGE).

	Cases $(n = 73)$		Controls $(n = 58)$		Total (n = 131)	
	Mean	SD	Mean	SD	Mean	SD
ALT (IU/L) ^a	77.3*	47.6	14.9	5.9	50.6	47.6
AST(IU/L)	42.3*	21.1	24.6	6.7	34.8	18.7
GGT (IU/L) ^a	94.1*	116.3	20.1	12.0	62.3	95.3
HOMA-IR ^a	3.6*	2.5	1.9	1.5	2.8	2.3
Fructosamine (mM DMFE)	1.12*	0.2	0.97	0.96	1.05	0.2
AGE fluorescence (AU) ^a	523.5*	130-9	414-3	63.88	475-1	119-3
sRAGE (pg/L)	397.9*	263.9	695-1	288-43	527.5	311.1
CML(mmol/mol)	10-6	3.7	9.9	9.69	1.3	3.2
CEL (mmol/mol)	124.0*	32.5	93.4	30.81	110.2	35.1
Pentosidine (mmol/mol) ^a	1.7*	0.4	1.5	0.8	1.6	0.3

Mean values of cases were significantly different from the controls (independent t-test, *P < 0.01 selecting cases if match by age, sex and BMI). a Data are not normally distributed.

Patients' mean age was 45 year with a BMI of 29 kg/m². Glycation biomarkers were significantly higher in cases compared to controls, except for CML (p = 0.19). The absence of difference could be explained by the suppressed CML plasma levels observed in overweight subjects, thereby reducing our ability to detect an effect⁽⁴⁾. Compared to controls, AGEs were 36 % higher in cirrhosis patients, 18 % higher in NASH and 27 % higher in fatty liver patients (p < 0.01). Two-fold lower sRAGE levels were present in cases and were inversely associated with CEL and AGE fluorescence (r = 0.59, p < 0.01). sRAGE levels were inversely associated with the severity of NAFLD based on liver function and IR (r = 0.44, p < 0.01), and the stage of the disease (r = 0.38, P < 0.001). These findings support the hypothesis that AGEs-RAGE axis is associated with the reduction of hepatic function and highlight their potential as markers of NAFLD progression.

The cross-sectional study was financially supported by the Hellenic Foundation of Gastroenterology & Nutrition. S.P acknowledges receipt of a CONACyT Ph.D. scholarship.

- Ratziu V, Bellentani S, Cortez-Pinto H, et al. (2010). Journal of hepatology. 53, 372-384.
- Yilmaz Y, Ulukaya E, Gul OO, et al. (2009). Clin Biochem. **42**, 802–807. Georgoulis M, Kontogianni MD, Tileli N, et al. (2014). Eur J Nutr. **53**, 1727–1735.
- 4. Delgado-Andrade C (2016). Food Funct. 7, 46-57.