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The initial flow past an impulsively started rotating and translating circular cylinder is
asymptotically analysed using a Brinkman penalization method on the Navier–Stokes
equation. In our previous study (J. Fluid Mech., vol. 929, 2021, A31), the asymptotic
solution was obtained within the second approximation with respect to the small
parameter, ε, that is of the order of 1/λ. Here, λ is the penalization parameter. In addition,
the Reynolds number based on the cylinder radius and the translating velocity is assumed
to be of the order of ε. The previous study asymptotically analysed the initial flow past
an impulsively started translating circular cylinder and investigated the influence of the
penalization parameter λ on the drag coefficient. It was concluded that the drag coefficient
calculated from the integration of the penalization term exhibits a half-value of the results
of Bar-Lev & Yang (J. Fluid Mech., vol. 72, 1975, pp. 625–647) as λ→ ∞. Furthermore,
the derivative of vorticity in the normal direction was found to be discontinuous on the
cylinder surface, which is caused by the tangential gradient of the pressure on the cylinder
surface. The present study hence aims to investigate the variance on the drag coefficient
against the result of Bar-Lev & Yang (1975). First, we investigate the problem of an
impulsively started rotating circular cylinder. In this situation, the moment coefficient is
independent of the pressure on the cylinder surface so that we can elucidate the role of the
pressure to the hydrodynamic coefficients. Then, the problem of an impulsively started
rotating and translating circular cylinder is investigated. In this situation, the pressure
force induced by the unsteady flow far from the cylinder is found to play a key role on
the drag force for the agreement with the result of Bar-Lev & Yang (1975), whereas the
variance still exists on the lift force. To resolve the variance, an alternative formula to
calculate the hydrodynamic force is derived, assuming that there is the pressure jump
between the outside and inside of the cylinder surface. The pressure jump is obtained in
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this analysis asymptotically. Of particular interest is the fact that this pressure jump can
cause the variance on the lift force calculated by the integration of the penalization term.

Key words: vortex dynamics, computational methods

1. Introduction

Computational fluid dynamics for simulating of a flow past complicated time-varying
geometries is still a challenging issue and requires advanced numerical techniques. In
a computational procedure the no-slip boundary condition is enforced on the surface
of a bluff body and in, e.g. the vortex particle method, the boundary element method
is employed to satisfy the no-slip condition (see Koumoutsakos, Leonard & Pépin
1994; Koumoutsakos & Leonard 1995). To overcome the difficulty of enforcing the
no-slip condition, the Brinkman penalization strategy has been introduced together
with grid-based numerical methods such as the volume penalization method (see, e.g.
Schneider & Farge 2002; Kadoch et al. 2013; Engels et al. 2015; Uchiyama et al. 2020)
and the vortex penalization method (see, e.g. Gazzola et al. 2011; Rasmussen, Cottet &
Walther 2011; Hejlesen et al. 2015). In these studies, the penalization methods are shown
to be a fruitful technique for the simulation of a complicated geometry.

As cited in our previous study (see Ueda & Kida 2021), the convergence analysis
of the penalization methods for the Navier–Stokes flow is given by Angot, Bruneau &
Fabrie (1999), and the error is estimated to be of the order of 1/λ1/4, where λ is the
penalization parameter. In their paper, the numerical and theoretical results are given
for the two-dimensional flow past a square cylinder in a channel. Also, Angot (2011)
proposed a well-posed model for the Stokes flow with jump boundary conditions. Bost,
Cottet & Maitre (2010) showed the convergence analysis, extending the analysis of Angot
et al. (1999). Feireisl, Neustupa & Stebel (2011) showed the convergence for compressible
flows. Kadoch et al. (2013) analysed a one-dimensional diffusion equation, and the
error of the L2-norm is shown to be O(1/

√
λ) in a fluid domain and O(1/λ1/4) in a

solid domain. Furthermore, they verified the computed flows around moving circular
cylinders. Carbou & Fabrie (2003) analysed the penalization model of the viscous
incompressible Navier–Stokes equations for a small parameter of ε = 1/

√
λ using the

Wentzel–Kramers–Brillouin method, and the error estimation in a fluid domain is shown
to be of the order of ε unlike Angot et al. (1999). Carbou (2004) studied the porous
thin layer model for the interface of a solid boundary on the penalized Navier–Stokes
equations and the error is shown to be of the order of ε in a fluid domain. Furthermore,
Carbou studied the double penalization model in which one adds the penalization term
to the thin porous layer, and showed that the error is ε in a fluid domain. Nguyen van
yen, Kolomenskiy & Schneider (2014) analysed the Laplace and Stokes operators with
Dirichlet boundary conditions of the volume penalization using a spectral approach and
carried out the dipole–wall collision numerically (see Nguyen van yen & Farge 2011). In
their studies, they derived the Navier boundary condition for the tangential velocity.

In the numerical studies of the volume and vortex penalization methods, the initial
flow past an impulsively started circular cylinder is often selected as a benchmark
target (see, e.g. Schneider & Farge 2002; Rasmussen et al. 2011; Hejlesen et al. 2015;
Rossinelli et al. 2010; Verma et al. 2017; Mimeau, Cottet & Mortazavi 2015). This flow
is solved analytically by Bar-Lev & Yang (1975) using the method of matched asymptotic
expansions based on the conventional Navier–Stokes equations. Also, Collins & Dennis
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Asymptotic analysis for a Brinkman penalization method

(1973) investigated the flow that is valid for time beyond the first separation. In their
analysis, the Fourier series, employed with respect to two space variables and time, was
truncated to a finite number of terms. The initial stage of a flow caused by an impulsively
started rotating and translating circular cylinder was solved by Badr & Dennis (1985)
along the lines of the methodology of Collins & Dennis (1973). In unsteady flow past
an impulsively started rotating and translating circular cylinder, we also obtained the
asymptotic solutions at a low Reynolds number (see Ueda et al. 2001; Ueda & Kida
2002a) and high Reynolds number but at the early stage of motion (see Ueda & Kida
2002b). Chang & Chern (1991) computed the vortex shedding from the cylinder that is
impulsively started with translating and rotating velocities, employing the hybrid vortex
method. The flow around a rotating cylinder was studied by Mittal & Kumar (2003).
Al-Mdallal (2012) and Mittal, Ray & Al-Mdallal (2017) treated the initial stage of a
circular cylinder impulsively started with rotational oscillation. Rotational oscillating flow
around a circular cylinder was studied by Lu & Sato (1996) numerically. Dennis, Nguyen &
Kocabiyik (2000) also studied the flow caused by a rotationally oscillating and translating
circular cylinder using the same approach as Collins & Dennis (1973).

The present study investigates the initial flow past an impulsively started rotating and
translating circular cylinder from rest, employing the same approach as our previous
study (see Ueda & Kida 2021), i.e. the method of matched asymptotic expansions for the
Brinkman penalization model of the full Navier–Stokes equations. A particular finding
of our previous study is the fact that the drag coefficient obtained from the integration
of the penalization term exhibits the half of the results of Bar-Lev & Yang (1975) as
the penalization parameter λ→ ∞. Also, this variance was deduced to arise from the
discontinuity of the gradient of vorticity on the cylinder surface. This study aims to
elucidate the reason of the variance. The gradient of vorticity on the cylinder surface is
known to be related to the pressure force on the cylinder and, furthermore, the pressure
force is independent of the moment. Therefore, this study first considers the problem that
a circular cylinder impulsively rotates from rest. The second problem of an impulsively
started rotating and translating circular cylinder from rest is then investigated. In this
analysis, the drag and lift forces are obtained for λ→ ∞ and t � 1. On the basis of the
analytical results, the above-mentioned variance will be discussed.

This paper organizes as follows. In § 2 we briefly address the governing equations of
the Brinkman penalization method. In this study the relative coordinate system fixed
with the cylinder is taken for the translating movement of the cylinder along the lines
with our previous study and Bar-Lev & Yang (1975). The problem of an impulsively
started translating and rotating cylinder can therefore be replaced by the problem that the
cylinder is impulsively immersed in a uniform flow and impulsively rotates with a constant
angular velocity. The asymptotic solutions are obtained using the Laplace transform to the
governing penalization equation of motion in § 3. In § 3.2 the impulsive rotation problem
is analysed, and the moment due to the force on the cylinder is obtained: (I) from the time
derivative of the tangential component of the momentum of the entire fluid, (II) from the
shear stress on the cylinder surface, (III) by integrating the penalization layer. The results
of the moment obtained by these three approaches are shown to be the same, and it can
therefore be found that the pressure field plays a key role to the variance on the drag force
against the result obtained by integrating the penalization layer. The second problem of an
impulsively rotating and translating circular cylinder is then investigated using the method
of the matched asymptotic expansion in § 3.3. In § 3.4 the drag and lift forces are obtained
for λ� 1 and t � 1 by the following: (i) the momentum of the whole fluid domain and
the pressure sufficiently far from the cylinder, (ii) the integration of the penalization layer.
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Although the unsteady pressure force of the fluid domain is found to cause the variance
for the drag force in § 3.4, the variance between the two approaches still exists and the
difference is not so small. To resolve the variance, the alternative formula to calculate
the fluid force for a solid cylindrical body with the continuous boundary is derived based
on the fact that there is the pressure jump on the cylinder surface. The accuracy for the
impulsively started translating and rotating case is verified asymptotically in § 3.5. Taking
into account the pressure jump, the variance can be reduced to a sufficiently small quantity.
In § 4 we summarize our conclusions.

2. Governing equations based on the Brinkman penalization

We consider an unsteady incompressible viscous flow that is governed by the
Navier–Stokes equation. In the Brinkman penalization model the governing equation
based on the Navier–Stokes equation is written as

∂u
∂t

+ u · ∇u = − 1
ρ

∇p + ν∇2u + λχ(uS − u), (2.1)

where u is the velocity that fulfils the divergence-free condition of ∇ · u = 0, p is the
pressure, ρ is the fluid density that is assumed to be constant and ν is the kinematic
viscosity. In addition, uS denotes the velocity of a solid body. The present study adopts
the relative coordinate system fixed with the centre of a body that moves with a translating
velocity. We can therefore replace it by the problem that the body rotates with respect
to the centre of the body without the translating motion, i.e. uS = Ωez × x. Here, the
third term on the right-hand side of (2.1) accounts for the penalization term to enforce the
no-slip boundary condition. The characteristic function, χ , defines the domain of active
penalization, i.e.

χ =
{

1, x ∈ S̄ ,

0, x ∈ F ,
(2.2)

in which S denotes the domain occupied by the solid body and F is the domain occupied
by the fluid. In addition, λ is the penalization parameter. The conventional Navier–Stokes
equations are found to be recovered in the fluid domain. The penalization approach regards
a solid body as a porous media with the permeability being vanishingly small. This results
in the fluid velocity being zero at a solid/fluid interface so that the penalization parameter
can be required to be a sufficiently large value. The present two-dimensional flow is
considered on the orthogonal (x, y) plane, and the normal unit vector ez is the z direction
perpendicular to the (x, y) plane.

In the penalization method the total hydrodynamic force F is calculated by the
integration of the penalization term (e.g. Angot et al. 1999; Hejlesen et al. 2015)

F = −ρ
∫

D

Du
Dt

dV = −ρ
∫

D
λχ(uS − u) dV = −ρ

∫
S
λ(uS − u) dV, (2.3)

where the domain D indicates D = S ∪ F . The moving velocity uS of the solid body is
obtained as the average velocity inside the domain S , i.e.

uS = 1
M

∫
S
ρχu dV, (2.4)

where M is the mass of the solid body. As shown in the previous work (see Ueda &
Kida 2021) that investigates an impulsively started translating circular cylinder without
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x

y

r

θ

lo = 1

ΩH(t)

UoH(t) O

Figure 1. Notations for a circular cylinder impulsively immersed in a constant uniform stream Uo with a
constant angular velocity ΩH(t).

rotation, the drag coefficient calculated by (2.3) exhibits a half-value of the result obtained
by Bar-Lev & Yang (1975). It is found that a special notice, whether (2.3) is available or
not, is required. This study therefore aims to elucidate this variance. To do so, we set the
assumption that the velocity and the vorticity are continuous at the interface between S
and F . As will be shown in § 3.5 later, we will require the terms in addition to (2.3) due
to the pressure jump between the outside and the inside of the cylinder.

3. Asymptotic analysis of an initial flow

3.1. Problem settings and statement
This section addresses the problem settings and the asymptotic analysis for the present
target situations, i.e. initial flows around (1) an impulsively started rotating circular
cylinder, and (2) an impulsively started rotating and translating circular cylinder. The
governing equation for both problems is written by the nonlinear penalization equation
of motion (2.1) with respect to time.

Similar to our previous study (see Ueda & Kida 2021), a small parameter, ε = UtTo/lo,
is introduced in the present analysis, where lo, To and Ut are the reference length, time and
velocity, respectively. The angular velocity, Ωlo, is selected as the reference velocity Ut
for the first problem (pure rotating motion of a circular cylinder). The translating velocity
Uo is also selected for the second problem (an impulsively started rotating and translating
circular cylinder). In this study the radius of a cylinder is selected as the reference length lo.
Then, the actual time t∗ is non-dimensionalized as t = (Ut/lo)t∗ with respect to lo and Ut.

This study considers an initial flow past an impulsively started rotating and translating
circular cylinder from a quiescent state. On the relative coordinate system fixed with the
centre of the cylinder, this flow is replaced by the situation that the circular cylinder is
impulsively immersed in the uniform flow UoH(t) with a constant angular velocityΩH(t)
at t = 0. Here, the Heaviside step function H(t) is defined as H(t) = 0 for t ≤ 0 and H(t) =
1 for t > 0. The problem setting is then illustrated as figure 1, where (x, y) denotes the
orthogonal coordinate system and (r, θ) denotes the polar coordinate system.

The present target problem mentioned in § 2 is formulated within a singular perturbation
framework with respect to a perturbation parameter ε for the penalized Navier–Stokes
equation (2.1). The time t is then stretched as T = t/ε (see Bar-Lev & Yang 1975). Because
the penalization parameter λ is taken to be proportional to the inverse of the time increment
δt (i.e. λ = α/δt with the relaxation coefficient α in Hejlesen et al. 2015), it is set as λ =
λo/ε with λo = O(1). To compare with the analytical results of Bar-Lev & Yang (1975),
the Reynolds number Re is taken as a sufficiently large value so that the kinematic viscosity
ν can be set as ν = ενo with νo = O(1). The penalized governing equation (2.1) is then
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written as, on the polar coordinate system,

∂ur

∂T
+ ε

(
ur
∂ur

∂r
+ uθ

∂ur

r∂θ
− u2

θ

r

)
= − ε

ρ

∂p
∂r

+ λoχ(usr − ur)

+ ε2νo

(
∇2ur − ur

r2 − 2
r2
∂uθ
∂θ

)
, (3.1a)

∂uθ
∂T

+ ε

(
ur
∂uθ
∂r

+ uθ
∂uθ
r∂θ

+ uruθ
r

)
= − ε

ρ

∂p
r∂θ

+ λoχ(usθ − uθ )

+ ε2νo

(
∇2uθ − uθ

r2 + 2
r2
∂ur

∂θ

)
, (3.1b)

where ∇2 is given by

∇2 = ∂2

∂r2 + 1
r
∂

∂r
+ 1

r2
∂2

∂θ2 . (3.2)

In addition, the equation of continuity is written as

∂ur

∂r
+ ur

r
+ ∂uθ

r∂θ
= 0. (3.3)

Note that (3.1a)–(3.3) are written as the dimensionless form with respect to Ut and lo
and, therefore, νo is found to be the dimensionless kinematic viscosity. Furthermore, the
velocity of the solid body is written as uS = rΩeθH(T) on the relative coordinate system
fixed with the centre of the cylinder, where eθ denotes the unit vector in the θ direction.

3.2. First problem: an impulsively rotating circular cylinder
In this subsection we first consider the problem that a circular cylinder impulsively rotates
with a constant angular velocity Ω without translating motion. In this problem, the
moment exerted by the cylinder can be obtained from the tangential force acting on the
cylinder surface, i.e. the force due to the pressure is independent of the moment. This
problem makes it possible to investigate the contribution from the velocity field on the
hydrodynamic force acting on the cylinder because it is free from the pressure contribution.

3.2.1. Outer solutions
We attempt to obtain the outer solutions uo, denoted by the superscript ‘o’, of the
governing equations (3.1a)–(3.3). The outer domain is defined as the outside or the inside
of the cylinder with respect to ε, i.e. r − 1 = O(1). The outer solutions cannot satisfy the
boundary condition on the solid–fluid boundary, as mentioned below. The inner solution
near the boundary is therefore defined as r − 1 = O(ε) in the subsequent § 3.2.2.

Following our previous study (see Ueda & Kida 2021), the velocities, uo
r and uo

θ , in the
radial (r) and tangential (θ ) directions are asymptotically represented by

uo
r =

∞∑
n=0

εnuo
r,n, uo

θ =
∞∑

n=0

εnuo
θ,n. (3.4a,b)

Also, the pressure po is asymptotically written as

po =
∞∑

n=0

εnpo
n. (3.5)
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Then, (3.1a) and (3.1b) reduce to the following for the first two lowest-order solutions in
the r and θ directions, respectively;

∂uo
r0

∂T
= λoχ(−uo

r0), (3.6a)

∂uo
r1

∂T
+ uo

r0
∂uo

r0
∂r

+ uo
θ0
∂u0

r0
r∂θ

− uo2
θ0
r

= − 1
ρ

∂po
0

∂r
+ λoχ(−uo

r1), (3.6b)

∂uo
θ0
∂T

= λoχ(ΩrH(T)− uo
θ0), (3.6c)

∂uo
θ1
∂T

+ uo
r0
∂uo
θ0
∂r

+ uo
θ0
∂u0
θ0

r∂θ
+ uo

r0uo
θ0

r
= − 1

ρ

∂po
0

r∂θ
+ λoχ(−uo

θ1). (3.6d)

In the fluid domain, we have ∂uo
r,0/∂T = ∂uo

θ,0/∂T = 0, because of χ = 0. This gives
uo

r,0 = u0
θ,0 = 0 because uo

r,0 and uo
θ,0 are zero at T = 0. We can obtain the outer solutions

in the fluid domain by the recursive calculations for the higher-order approximation of
(3.1a) and (3.1b) such as

uo
r,i = uo

θ,i = 0 for i = 0, 1, 2, . . . . (3.7)

Assuming that the pressure sufficiently far from the cylinder is zero, we have also

po
i = 0 for i = 0, 1, 2, . . . . (3.8)

In contrast, since χ = 1 in the body domain S , we have uo
r,i = 0 and uo

θ,i = ΩrH(T)δi0
for i = 0, 1, 2, . . .. This relation gives, in the body domain,

uo
r = 0, uo

θ = ΩrH(T), po = ρ

2
Ω2r2H(T)+ C, (3.9a–c)

where C is an integral constant.

3.2.2. Inner solutions
The outer flow described by (3.7) and (3.9a–c) causes the slip velocity on the surface of
the cylinder (at r = 1) so that a non-uniform domain can exist near the cylinder surface.
To remedy this, the radial coordinate r is stretched as R = (r − 1)/ε where the solution in
the stretched domain is called the inner solution that is denoted by the superscript ‘i’. The
governing equations and the continuity equation of (3.1a)–(3.3) are then described as, in
the inner domain,

∂ui
r

∂T
+ ui

r
∂ui

r

∂R
+ ε

1 + εR
ui
θ

∂ui
r

∂θ
− ε

ui2
θ

1 + εR
= − 1

ρ

∂pi

∂R
− λoχui

r

+ νo

[(
∂2

∂R2 + ε

1 + εR
∂

∂R
+ ε2

(1 + εR)2
∂2

∂θ2

)
ui

r − ε2

(1 + εR)2

(
ui

r + 2
∂ui
θ

∂θ

)]
,

(3.10a)
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∂ui
θ

∂T
+ ui

r
∂ui
θ

∂R
+ ε

1 + εR
ui
θ

∂ui
θ

∂θ
+ ε

ui
ru

i
θ

1 + εR

= − 1
ρ

ε

1 + εR
∂pi

∂θ
+ λoχ [(1 + εR)ΩH(T)− ui

θ ]

+ νo

[(
∂2

∂R2 + ε

1 + εR
∂

∂R
+ ε2

(1 + εR)2
∂2

∂θ2

)
ui
θ − ε2

(1 + εR)2

(
ui
θ − 2

∂ui
r

∂θ

)]
,

(3.10b)

∂ui
r

∂R
+ ε

1 + εR
ui

r + ε

1 + εR
∂ui
θ

∂θ
= 0, (3.10c)

in which ui
r, ui

θ and pi are assumed to be asymptotically represented as

ui
r =

∞∑
n=0

εnui
rn, ui

θ =
∞∑

n=0

εnui
θn, pi =

∞∑
n=0

εnpi
n. (3.11a–c)

From (3.10c), we have ∂ui
r0/∂R = 0 and, therefore, the first-order solution of ui

r is found to
be independent of R. The matching procedure to the outer solution inside the body domain
(i.e. uio

r = uoi
r = 0) yields

ui
r0 = 0. (3.12)

Equation (3.12) is found to fulfil the matching condition to the outer solution of the fluid
domain. The first approximations of (3.10a) and (3.10b) are written as

0 = − 1
ρ

∂pi
0

∂R
, (3.13a)

∂ui
θ0
∂T

= λoχ(ΩH(T)− ui
θ0)+ νo

∂2ui
θ0

∂R2 . (3.13b)

From (3.13a), pi
0 is found to be independent of R. Furthermore, from the matching

procedure to po
i of (3.8) in the flow domain (i.e. pio = pi

0 + O(ε) = poi = 0), we have
pi

0 = 0 for R ≥ 0. For R < 0, (3.9a–c) becomes poi = (ρ/2)Ω2H(T)+ C and we have

pi
0 =

{
0 for R ≥ 0,
ρ

2
Ω2H(T)+ C for R < 0. (3.14)

For R ≥ 0, the governing equation of (3.13b) with respect to ui
θ0 is written as

∂ui
θ0
∂T

= νo
∂2ui

θ0
∂R2 . (3.15)

The matching condition to the fluid domain gives the following boundary condition:

ui
θ0 → 0 as R → ∞. (3.16)

To solve (3.15) with (3.16), we employ the Laplace transform, Uθ0 = L(ui
θ0) =∫∞

0 e−sTui
θ0(R, θ; T) dT , similar to our previous study (see Ueda & Kida 2021). Then,

the solution to (3.15) is easily derived as

Uθ0 = A(s, θ)e−aR with a =
√

s
νo
, (3.17)

where A is an integral constant that is a function of s and θ .
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Asymptotic analysis for a Brinkman penalization method

For R < 0, the governing equation of (3.13b) is also written as

∂ui
θ0
∂T

= λoΩH(T)− λoui
θ0 + νo

∂2ui
θ0

∂R2 . (3.18)

Taking into account the initial condition of ui
θ0 = Ω , the Laplace transform to (3.18) is

written as

sUθ0 −Ω = λo
Ω

s
− λoUθ0 + νo

∂2Uθ0

∂R2 . (3.19)

The boundary condition as R → −∞ is obtained from the matching condition to the outer
solution inside the body domain, i.e. ui

θ0 → ΩH(T). Then, the solution to (3.19) is written
as

Uθ0 = B(s, θ)eāR + Ω

s
with ā =

√
s + λo

νo
, (3.20)

where B is an integral constant that is a function of s and θ . The integral constants, A and B,
can be determined as A = B +Ω/s and −aA = āB by the enforcements of the continuity
of the velocity and its gradient with respect to R at R = 0. Therefore, we have, for (3.17)
and (3.20),

Uθ0 =

⎧⎪⎪⎨
⎪⎪⎩

ā
a + ā

Ω

s
e−aR for R ≥ 0,

− a
a + ā

Ω

s
eāR + Ω

s
for R < 0.

(3.21)

Using the relations of (A1) and (A2) in Appendix A, (3.21) becomes, for R ≥ 0,

ui
θ0 = Ω

{
erfc

(
R

2
√
νoT

)
− R

4
√

πνo

∫ T

0

exp
(

−λo

2
ξ

)
(T − ξ)3/2

[
I1(λoξ/2)+ I0(λoξ/2)

]

× exp
(

− R2

4νo(T − ξ)

)
dξ
}
, (3.22)

for R < 0,

ui
θ0 = Ω

{
1 − |R|

4
√

πνo

∫ T

0

exp(−λo(T − ξ/2))
(T − ξ)3/2

[
I1(λoξ/2)+ I0(λoξ/2)

]

× exp
(

− R2

4νo(T − ξ)

)
dξ
}
. (3.23)

Here, I0(z) and I1(z) are the zeroth- and the first-order modified Bessel functions of the
first kind, respectively.
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Let us carry out further analysis to the second approximation for seeking the solutions
of ui

r1 and ui
θ1. Taking into account (3.12) and (3.22)–(3.23), (3.10c) is written as

∂ui
r1

∂R
= −∂ui

θ0
∂θ

= 0. (3.24)

Hence, we find that

ui
r1 = C(T, θ), (3.25)

where C is an integral constant that is a function of T and θ . The matching to the outer
solution and the enforcement of the continuity of ui

r1 at R = 0 determine the integral
constant of (3.25) as

ui
r1 = 0. (3.26)

The second approximations of the governing equations (3.10a) and (3.10b) are written
as, taking into account (3.12) and (3.14),

ui2
θ0 = 1

ρ

∂pi
1

∂R
, (3.27a)

∂ui
θ1
∂T

= λoχ(RΩH(T)− ui
θ1)+ νo

(
∂2ui

θ1
∂R2 + ∂ui

θ0
∂R

)
. (3.27b)

The matching conditions to the outer solutions in the fluid and the solid domains
give pi

1 → 0 as R → ∞, and pi
1 → ρRΩ2H(T) and ui

θ0 → ΩH(T) as R → −∞. From
(3.27a), the pressure pi

1 is then described as

pi
1 =

⎧⎪⎪⎨
⎪⎪⎩

−ρ
∫ ∞

R
ui2
θ0 dR for R ≥ 0,

ρ

∫ R

−∞
[ui2
θ0 −Ω2H(T)] dR + ρΩ2RH(T) for R < 0.

(3.28)

Here, we introduce ûi
θ1 as

ui
θ1 =

⎧⎪⎪⎨
⎪⎪⎩

−1
2

Rui
θ0 + ûi

θ1 for R ≥ 0,

−1
2

R
[
ui
θ0 −ΩH(T)

]+ RΩH(T)+ ûi
θ1 for R < 0.

(3.29)

Then, (3.27b) reduces to

∂ ûi
θ1
∂T

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
νo
∂2ûi

θ1
∂R2 for R ≥ 0,

νo
∂2ûi

θ1
∂R2 − λoûi

θ1 for R < 0.

(3.30)

Employing the Laplace transform, the solution to (3.30) is obtained as

ûi
θ1 =

{L−1 (A1(s, θ)e−aR) for R ≥ 0,
L−1(B1(s, θ)eâR) for R < 0,

(3.31)

where A1 and B1 are respectively integral constants that are functions of s and θ . Here, for
obtaining (3.31), the matching condition to the outer solution, i.e. ûi

θ1 → 0 as R → ±∞,
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Asymptotic analysis for a Brinkman penalization method

is used. Equation (3.29) is therefore written as

ui
θ1 =

⎧⎪⎪⎨
⎪⎪⎩

−1
2

Rui
θ0 + L−1(A1(s, θ)e−aR) for R ≥ 0,

−1
2

R[ui
θ0 −ΩH(T)] + RΩH(T)+ L−1(B1(s, θ)eāR) for R < 0.

(3.32)

Here, the enforcements of the continuity of the velocity and its radial derivative at R = 0
determine the values of the integral constants A1 and B1 as follows:

A1 = B1 = −3
2

Ω

s(a + ā)
. (3.33)

Using the relations of

1
s(a + ā)

=
√
νo

λo

(
1√

s + λo
− 1√

s

)
+

√
νo

s
√

s + λo
(3.34)

and (A3) and (A4) in Appendix A, we finally obtain

ui
θ1 = −1

2
Rui

θ0 − 3RΩ
4λoπ

∫ T

0

exp(−λoξ)− 1√
ξ(T − ξ)3

exp
(

− R2

4νo(T − ξ)

)
dξ

− 3RΩ
4
√

πλo

∫ T

0

exp
(

− R2

4νo(T − ξ)

)
(T − ξ)3/2

erf(
√
λoξ) dξ for R ≥ 0, (3.35a)

ui
θ1 = −1

2
R
(

ui
θ0 −ΩH(T)

)
+ RΩH(T)

− 3|R|Ω
4λoπ

∫ T

0

exp(−λoξ)− 1√
ξ(T − ξ)3

exp
(

−λo(T − ξ)− R2

4νo(T − ξ)

)
dξ

− 3|R|Ω
4
√

πλo

∫ T

0

exp
(

−λo(T − ξ)− R2

4νo(T − ξ)

)
(T − ξ)3/2

erf(
√
λoξ) dξ for R < 0.

(3.35b)

Figure 2 shows the comparison of ui
θ0/Ω (first-order solution) and ui

θ1/(RΩ)
(second-order solution) among three values of λ with respect to η = R/(2

√
νoT). To plot

the data of figure 2, the numerical calculation of the following integral that is shown in
(3.36) is needed. To do so, the integral variable ξ is changed by ξ = Tx and, then, the
variable x is changed to y by x = 1 − η2/[(y + η)2];∫ T

0

f (ξ)
(T − ξ)3/2

exp
(

− R2

4νo(T − ξ)

)
dξ

= 2
exp(−η2)

η

∫ ∞

0
exp(−y2 − 2yη)f

(
1 − η2

(y + η)2

)
dy. (3.36)

In the numerical calculation of figure 2, the Hermite quadrature formula of n = 9 (see
table 25.10 in Abramowitz & Stegun 1954) is used for the quadrature of the integral on the
right-hand side of (3.36).
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Figure 2. Comparison of the tangential velocities ui
θ0 (first-order solution) and ui

θ1 (second-order solution)
among three values of λ with respect to η = R/(2

√
νoT).

3.2.3. Moment exerted by a cylinder
In this subsection we attempt to obtain the moment exerted by the circular cylinder, using
three kinds of approaches. Each approach is calculated (I) by the time derivative of the
tangential component of the momentum of the entire fluid, (II) by the integration of the
shear stress on the cylinder surface, and (III) by the integration of the penalization layer
based on (2.3).

In approach (I) we consider the control surface that surrounds a circular domain
having a radius of r∞ � 1. Then, we can define the fluid domain as F = [(r, θ)|1 ≤
r ≤ r∞, 0 ≤ θ < 2π]. The small fluid element dx dy has the momentum ρuθ dx dy in the
tangential direction. The moment induced by the fluid element is therefore described as
|x|ρ[(d/dt)uθ ] dx dy. The moment M1 of the flow exerted by the cylinder rotation is found
to be calculated by, noting that the pressure on the control surface does not affect the
moment,

M1 = −ρ d
dt

∫ 2π

0

∫ r∞

1
r2uθ dr dθ. (3.37)

To obtain M1, we employ the Laplace transform to (3.37) and take the limit of r∞ → ∞.
Then, we have, taking into account that the outer solution is described as uo

θ = 0 and ui
θ is

independent of θ ,

L(M1) = −2πρs
∫ ∞

0
[Uθ0 + ε(2RUθ0 + Uθ1)+ O(ε2)]dR, (3.38)

where Uθ1 = L(ui
θ1). Using (3.21) and the first equation of (3.32), M1 can be obtained as

L(M1) = −2πρΩ

[
ā

a(a + ā)
+ 3

2
ε

(
ā

a2(a + ā)
− 1

a(a + ā)

)
+ O(ε2)

]
. (3.39)

In approach (II) the moment M2 on the fluid is calculated by the integration of the shear
stress on the cylinder surface

M2 =
∫ 2π

0
1 × τrθ dθ = ρν

∫ 2π

0

(
∂uθ
∂r

− uθ + ∂ur

∂θ

)
r=1+0

dθ. (3.40)

The Laplace transform to (3.40) becomes, using the relations of Ur0 = Ur1 = 0,

L(M2) = 2πρνo

[
∂

∂R
(Uθ0 + εUθ1)− εUθ0 + O(ε2)

]
R=+0

. (3.41)
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Asymptotic analysis for a Brinkman penalization method

Substituting (3.21) and the first equation of (3.32) into (3.41), we have

L(M2) = 2πΩ

[
− ā

a(a + ā)
+ ε

(
−3

2
ā

a2(a + ā)
+ 3

2
1

a(a + ā)

)
+ O(ε2)

]
. (3.42)

Comparing the results between (3.39) and (3.42), it is found that M1 is identical with M2
within the order of ε, i.e. the moment calculated from the entire fluid domain is the same
as that calculated from the tangential force on the cylinder surface. Making use of the
inverse Laplace transform, the moment M1 (or M2) is obtained as

M1 = M2 = −2πρΩ

{√
νo

πT
+ 1

2

√
νo

πT3
1 − e−λoT

λo

+ 3
2
ενo[H(T)− e−λoT/2 (I0(λoT/2)+ I1(λoT/2))] + O(ε2)

}
. (3.43)

In approach (III) the moment M3 on the fluid is calculated by the integration of the
penalization layer, based on (2.3),

M3 = −ρλ
∫ 2π

0

∫ 1

0
r(rΩ − uθ )r dr dθ

= −ρλε
∫ 2π

0

∫ 0

−∞
[(1 + εR)Ω − ui

θ ](1 + εR)2 dR dθ. (3.44)

Similar to the calculation of M1 or M2, the Laplace transform to M3 is written as, using
(3.21) and the second equation of (3.32),

L(M3) = −2πρλoΩ

[
a

sā(a + ā)
+ 3

2
ε

(
− a

sā2(a + ā)
+ 1

sā(a + ā)

)]
. (3.45)

The inverse Laplace transform to (3.45) yields

M3 = −2πρΩ
√
νo

{
1 − e−λoT

√
πT

+ ε
3νo

2λo
[H(T)+ e−λoT − 2e−λoT/2I0(λoT/2)]

}
.

(3.46)

From the results of (3.43) and (3.46), each moment is found to behave like, as λo → ∞,

M1, M2 → −2πρΩ

√
νo

πT
, M3 → −2πρΩ

√
νo

πT
. (3.47a–c)

It can therefore be found that the moment M3 obtained by the integration of the
penalization layer is identical to M1 and M2 as λo → ∞. Because the pressure is
independent of the moment in this pure rotation problem, the pressure is found to play
an important role to the variance of the drag force, which is demonstrated in our previous
study (see Ueda & Kida 2021). Note that (3.47a–c) is the same as the result of Badr &
Dennis (1985). Figure 3 shows the comparisons of the values between M1 and M3 with
respect to t among the three values of λ at Re = 100 (i.e. ν = 1/100). It seems that the
variance between M1 (or M2) and M3 decreases exponentially with an increase in the
value of λ.
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Figure 3. Initial behaviours of the moments M1 and M3 with respect to t among the different values of λ at
ν = 1/100.

3.3. Second problem: an impulsively rotating and translating circular cylinder
In this subsection we consider the problem that a circular cylinder impulsively starts with
the angular velocity Ω and the translating velocity Uo. The velocity is normalized with
Uo and, then, the translating velocity and the rotational angular velocity of the cylinder
are non-dimensionalized as 1 and Ω , respectively. Similar to the analysis in § 3.2, the
governing equations (3.1a)–(3.3) are adopted in this problem.

3.3.1. Outer solutions
The outer solutions in the fluid domain are described by (3.6a)–(3.6d) in the same manner
as § 3.2.1, and the first approximation reduces to

∂uo
r0

∂T
= ∂uo

θ0
∂T

= 0. (3.48)

The velocities u0
r0 and uo

θ0 are then found to be independent of T . The first-order outer
solution in the fluid domain is known to exhibit a potential flow (i.e. inviscid solution).
This fact can be confirmed by performing the recursive calculation. Based on this fact and
the initial condition of the fluid velocity that uo

r = cos θH(T) and u0
θ = − sin θH(T) for

r ≥ 1, the outer streamfunction ψo can be described as

ψo = r sin θH(T)+
∞∑

n=1

1
rn (a

c
n cos nθ + as

n sin nθ), (3.49)

where ac
n and as

n are functions of T and ε, respectively.
The outer solutions inside the body domain are also described by (3.6a)–(3.6d). Taking

into account that the initial condition is given by uo
r = 0 and uo

θ = rΩH(T), we readily
have

uo
r = 0, uo

θ = rΩH(T),
po

ρ
= 1

2
Ω2r2H(T)+ C, (3.50a–c)

where C is an integral constant that is a function of T .
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Asymptotic analysis for a Brinkman penalization method

3.3.2. Inner solutions
The inner solutions are described by the same governing equations as (3.10a)–(3.10c). The
continuity equation (3.10c) gives

∂ui
r0

∂R
= 0, (3.51)

in which ui
r0 is found to be independent of R (i.e. a function of T and θ ). Because the outer

solutions inside the body domain were uo
r = 0 and uo

θ = rΩH(T) as obtained in (3.50a–c),
we have the following first-order inner solution, for R ≥ 0 and R < 0, taking into account
the matching condition to the outer solutions:

ui
r0 = 0. (3.52)

The first-order outer solution in the fluid domain described by (3.49) can be determined
from the matching procedure to the inner solution of (3.52) and, therefore, we have uoi

r0 =
uio

r0 = 0. Here, the inner (or outer) expansion of the outer (or inner) solution is denoted by
the superscript ‘oi’ (or ‘io’). Taking into account that the outer solution of ψo is written by
(3.49), the above-mentioned matching condition (i.e. uoi

r0 = uio
r0 = 0) yields the first-order

streamfunction in the outer fluid domain as

ψo
0 =

(
r − 1

r

)
H(T) sin θ, (3.53)

which is known to be the solution of an inviscid uniform flow past a circular cylinder. The
governing equations that describe the first-order solutions in the inner fluid domain are the
same as (3.13a) and (3.13b), i.e.

0 = − 1
ρ

∂pi
0

∂R
, (3.54a)

∂ui
θ0
∂T

= λoχ(ΩH(T)− ui
θ0)+ νo

∂2ui
θ0

∂R2 . (3.54b)

Here, let us consider ui
θ0 of (3.54b). From (3.53), the inner expansion of uo

θ0 in the fluid
domain is written as uoi

θ0 = −2 sin θH(T) and, therefore, we can write

ui
θ0 → −2 sin θH(T) as R → ∞. (3.55)

In contrast, since uo
θ0 = rΩH(T) inside the body domain, we can write

ui
θ0 → ΩH(T) as R → −∞. (3.56)

The Laplace transform to (3.54b) for R ≥ 0 is written as, taking into account the initial
condition of ui

θ0 = −2 sin θ ,

sUθ0 + 2 sin θ = νo
∂2Uθ0

∂R2 , (3.57)

where Uθ0 = L(ui
θ0). The solution to (3.55) can be then obtained as (see Appendix B for

the detailed derivation)

Uθ0 = −2
s

sin θ + A0(s, θ)e−aR with a =
√

s
νo
, (3.58)

where A0 is an integral constant that is a function of s and θ . For R < 0, the governing
equation is given in (3.54b) as χ = 1, and the initial condition is written as ui

θ0 = Ω .
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Therefore, the Laplace transform to the governing equation yields, for R < 0,

sUθ0 −Ω = λo

(
Ω

s
− Uθ0

)
+ νo

∂2Uθ0

∂R2 . (3.59)

The solution to (3.59) is obtained as, taking into account (3.56) (see Appendix B),

Uθ0 = B0(s, θ)eāR + Ω

s
with ā =

√
s + λo

s
, (3.60)

where B0 is an integral constant that is a function of s and θ . The indeterminate functions,
A0 and B0, are determined by the enforcements of the continuity of the velocity and its
derivative with respect to R at R = 0. Therefore, we can finally obtain

Uθ0 =

⎧⎪⎪⎨
⎪⎪⎩

ā
a + ā

Ω + 2 sin θ
s

e−aR − 2
s

sin θ for R ≥ 0,

− a
a + ā

Ω + 2 sin θ
s

eāR + Ω

s
for R < 0.

(3.61)

By virtue of the form of (3.61) in the Laplace space, the solution ui
θ0 in the real space is

found to be written as
ui
θ0 = û0

θ0 + ûs
θ0 sin θ. (3.62)

Here, û0
θ0 is the same as (3.22) and (3.23) that are the solutions for the pure rotation

problem analysed in § 3.2. In addition, ûs
θ0 is the same as the solution for the pure

translating motion that was derived in our previous study (see Ueda & Kida 2021).
For the second approximation, ui

r1 is described by (3.10c), and it reduces to

∂ui
r1

∂R
= −∂ui

θ0
∂θ

. (3.63)

Using the matching condition to the outer solution inside the body domain (ui
r1 → 0 as

R → −∞), (3.63) becomes

ui
r1 = − ∂

∂θ

∫ R

−∞
ui
θ0 dR. (3.64)

Making use of the Laplace transform and the first-order solution of (3.61) in the Laplace
space, (3.64) can be written as, for R < 0,

Ur1 = − ∂

∂θ

∫ R

−∞
Uθ0 dR = 2

a
ā(a + ā)

1
s

eāR cos θ, (3.65)

where Ur1 = L(ui
r1). For R ≥ 0, the function Ur1 is continuous at R = 0 and, therefore,

(3.64) can be written as

Ur1 = − ∂

∂θ

(∫ 0

−∞
Uθ0 dR +

∫ R

0
Uθ0 dR

)

= 2
a

ā(a + ā)
1
s

cos θ − 2
ā

a(a + ā)
1 − e−aR

s
cos θ + 2

s
R cos θ. (3.66)
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Asymptotic analysis for a Brinkman penalization method

By virtue of (3.65) and (3.66), the function ui
r1 is found to be expressed as the form of

ui
r1 = ûr1 cos θ. (3.67)

Here, we consider the matching to the outer solution. Equation (3.66) tends to, as
R → ∞,

Ur1 → 2
s

R cos θ + 2
a − ā
aās

cos θ. (3.68)

Taking into account that the outer streamfunction is asymptotically represented as ψo =
ψo

0 + εψo
1 + O(ε2), i.e.

ψo =
(

r − 1
r

)
H(T) sin θ + ε

∞∑
n=1

1
rn (a

c
n cos nθ + as

n sin nθ)+ O(ε2), (3.69)

the matching procedure between (3.68) and (3.69) determines the values of the coefficients
as

ac
n = 0, L(as

n) = 2
a − ā
aās

δn1. (3.70a,b)

The streamfunction in the outer fluid domain is therefore written as

ψo =
(

r − 1
r

)
H(T) sin θ + 2ε

A
r

sin θ + O(ε2), (3.71)

where A is defined by

A = L−1
(

a − ā
aās

)
. (3.72)

The inner expansion of the outer solution (3.71) is calculated as, in the Laplace space,

L(uoi
θ ) = −2

1
s

sin θ + 2ε
R
s

sin θ + 2ε
a − ā
aās

sin θ. (3.73)

The matching to (3.73) (i.e. L(uoi
θ ) = L(uio

θ )) gives the following boundary condition of
ui
θ1 as R → ∞:

L(ui
θ1) → 2

R
s

sin θ + 2
a − ā
aās

sin θ as R → ∞. (3.74)

Similarly, since uo
θ = rΩH(T) inside the body domain, we have

L(ui
θ1) → R

s
Ω as R → −∞. (3.75)

The second approximation of (3.10a) and (3.10b) are written as

∂ui
r1

∂T
− ui2

θ0 = − 1
ρ

∂pi
1

∂R
− λoχui

r1 + νo
∂2ui

r1
∂R2 , (3.76a)

∂ui
θ1
∂T

+ ui
r1
∂ui
θ0
∂R

+ ui
θ0
∂ui
θ0
∂θ

= − 1
ρ

∂pi
0

∂θ
+ λoχ(RΩH(T)− ui

θ1)+ νo

(
∂2ui

θ1
∂R2 + ∂ui

θ0
∂R

)
.

(3.76b)

The pressure pi
0 is found to be independent of R from (3.54a), and po is given by

(3.50a–c) in the outer domain inside the body. In the fluid domain, since the outer solution
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Y. Ueda and T. Kida

is described by a potential flow (inviscid solution), the following unsteady Bernoulli’s
equation is valid:

po

ρ
= − ∂φ

o

ε∂T
− 1

2
(|u|2 − 1). (3.77)

Here, φo is the velocity potential in the outer fluid domain, and it is given from (3.71), as

φo =
(

r + 1
r

)
H(T) cos θ − 2εA

1
r

cos θ + O(ε2). (3.78)

Substituting (3.78) into (3.77) yields

po

ρ
= 2

r
dA
dT

cos θ +
(

1
r2 − 1

2r4 − 2
r2 sin2 θ

)
H(T)+ O(ε). (3.79)

Setting r = 1 + εR, we have

poi

ρ
= 2

dA
dT

cos θ − 2H(T) sin2 θ + 1
2

H(T)+ O(ε). (3.80)

Since poi
0 = C + (ρ/2)Ω2H(T)+ O(ε) for R < 0 from (3.50a–c), the function pi

0 is
written as, taking into account (3.54a),

pi
0
ρ

=

⎧⎪⎪⎨
⎪⎪⎩

2
dA
dT

cos θ − 2H(T) sin2 θ + 1
2

H(T) for R ≥ 0,

C
ρ

+ 1
2
Ω2H(T) for R < 0.

(3.81)

Equation (3.76b) can then be rewritten as

∂ui
θ1
∂T

− νo
∂2ui

θ1
∂R2 + λoχui

θ1 =

⎧⎪⎨
⎪⎩

2
dA
dT

sin θ + 4H(T) sin θ cos θ for R ≥ 0

0 for R < 0

⎫⎪⎬
⎪⎭− ui

r1
∂ui
θ0
∂R

− ui
θ0
∂ui
θ0
∂θ

+ νo
∂ui
θ0
∂R

+ λoχ(ΩRH(T)). (3.82)

The second-order solution ui
θ1 is therefore found to be expressed as, with respect to θ ,

ui
θ1 = û0

θ1 + ûc
θ1 cos θ + ûs

θ1 sin θ + ûcs
θ1 sin θ cos θ. (3.83)

Substituting (3.83) into (3.82), we can write (3.82) separately:

∂ û0
θ1
∂T

− νo
∂2û0

θ1
∂R2 + λoχ û0

θ1 = νo
∂ û0
θ0
∂R

+ λoχRΩH(T), (3.84a)

∂ ûc
θ1
∂T

− νo
∂2ûc

θ1
∂R2 + λoχ ûc

θ1 = −ûr1
∂ û0
θ0
∂R

− û0
θ0ûs

θ0, (3.84b)

∂ ûs
θ1
∂T

− νo
∂2ûs

θ1
∂R2 + λoχ ûs

θ1 = νo
∂ ûs
θ0
∂R

+
⎧⎨
⎩2

dA
dT

for R ≥ 0

0 for R < 0

⎫⎬
⎭ , (3.84c)

∂ ûcs
θ1
∂T

− νo
∂2ûcs

θ1
∂R2 + λoχ ûcs

θ1 = −ûr1
∂ ûs
θ0
∂R

− ûs2
θ0 +

{
4H(T) for R ≥ 0
0 for R < 0

}
. (3.84d)
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Asymptotic analysis for a Brinkman penalization method

The boundary condition are written as, R → ∞,

û0
θ1 → 0, ûc

θ1 → 0, ûs
θ1 → 2RH(T)+ 2A, ûcs

θ1 → 0. (3.85a–d)

As R → −∞, the boundary conditions are also written as

û0
θ1 → RΩH(T), ûc

θ1 → 0, ûs
θ1 → 0, ûcs

θ1 → 0. (3.86a–d)

Using the Laplace transformation and the similar procedure for the derivation of the
first approximations, we finally obtain the following solutions (the detailed derivation is
described in Appendix C):

U0
θ1 =

⎧⎪⎪⎨
⎪⎪⎩

−1
2

Ω

s(a + ā)
(āR − 3) e−aR for R ≥ 0,

1
2

Ω

s(a + ā)
(aR − 3) eāR + Ω

s
R for R < 0.

(3.87)

The velocity, û0
θ1, is then found to be the same as the solution to the pure rotation problem

obtained in (3.32).
For us

θ1, we have

Us
θ1 =

⎧⎪⎨
⎪⎩

2
R
s

+ 2
a − ā
saā

− ā
s(a + ā)

Re−aR + Dse−aR for R ≥ 0,

a
s(a + ā)

ReāR + EseāR for R < 0,
(3.88)

where

Ds = 2
sa

− 3
s(a + ā)

, Es = 2
sā

− 3
s(a + ā)

. (3.89a,b)

It is then found that the velocity ûs
θ1 is the same as the solution to the pure translation

problem analysed in our previous paper (see Ueda & Kida 2021).
We define the following relations that are written as

Uc
θ1 = L(ûc

θ1) and Fc = L
(

ûr1
∂ û0
θ0
∂R

+ û0
θ0ûs

θ0

)
. (3.90a,b)

Then, we can have the following relations:

Uc
θ1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 1
2νoa

(
eaR
∫ ∞

R
Fce−aR dR + e−aR

∫ R

0
FceaR dR

)
+ Dce−aR, R ≥ 0,

− 1
2νoā

(
e−āR

∫ R

−∞
FceāR dR − eāR

∫ R

0
Fce−āR dR

)
+ EceāR, R < 0,

(3.91)
where Dc and Ec are respectively given by

Dc = ā − a
2νoa(a + ā)

∫ ∞

0
Fce−aR dR − 1

νo(a + ā)

∫ 0

−∞
FceāR dR, (3.92a)

Ec = − 1
νo(a + ā)

∫ ∞

0
Fce−aRdR + a − ā

2νoā(a + ā)

∫ 0

−∞
FceāR dR. (3.92b)
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Y. Ueda and T. Kida

We also define Ûcs
θ1 and Fcs as

Ucs
θ1 = L(ûcs

θ1) and Fcs = L
(

ûr1
∂ ûs
θ0
∂R

+
{

ûs2
θ0 − 4H(T) for R ≥ 0

ûs2
θ0 for R < 0

})
. (3.93a,b)

Then, we can obtain

Ucs
θ1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 1
2νoa

(
eaR
∫ ∞

R
Fcse−aR dR + e−aR

∫ R

0
FcseaR dR

)
+ Dcse−aR for R ≥ 0,

− 1
2νoā

(
e−āR

∫ R

−∞
FcseāR dR − eāR

∫ R

0
Fcse−āR dR

)
+ EcseāR for R < 0,

(3.94)

in which the constants Dcs and Ecs are respectively given by

Dcs = ā − a
2νoa(a + ā)

∫ ∞

0
Fcse−aR dR − 1

νo(a + ā)

∫ 0

−∞
FcseāR dR, (3.95a)

Ecs = − 1
νo(a + ā)

∫ ∞

0
Fcse−aR dR + a − ā

2νoā(a + ā)

∫ 0

−∞
FcseāR dR. (3.95b)

Based on the solutions obtained, each velocity component is found to asymptotically
behave like, for λo � 1,

û0
θ0 ∼

⎧⎨
⎩Ω erfc

(
R

2
√
νoT

)
: R ≥ 0,

ΩH(T) : R < 0.
(3.96a)

ûs
θ0 ∼

⎧⎨
⎩2 erfc

(
R

2
√
νoT

)
− 2H(T) : R ≥ 0,

0 : R < 0.
(3.96b)

ûr1 ∼
⎧⎨
⎩2RH(T)− 4

√
νoT
π

+ 4

√
νoT
π

exp
(

− R2

4νoT

)
− 2R erfc

(
R

2
√
νoT

)
: R ≥ 0,

0 : R < 0.
(3.96c)

û0
θ1 ∼

⎧⎨
⎩−1

2
ΩR erfc

(
R

2
√
νoT

)
: R ≥ 0,

ΩRH(T) : R < 0.
(3.96d)

ûs
θ1 ∼

⎧⎨
⎩2RH(T)− 4

√
νoT
π

+ 4

√
νoT
π

exp
(

− R2

4νoT

)
− 3R erfc

(
R

2
√
νoT

)
: R ≥ 0,

0 : R < 0.
(3.96e)
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Asymptotic analysis for a Brinkman penalization method
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Figure 4. Velocity distribution of ux on the y axis (a) and the vorticity distribution on the cylinder surface
(b) in the case of ν = 1/500 and Ω = 0.5.

ûc
θ1 ∼

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− 1
2
√

πνo

∫ ∞

0
dR′

∫ T

0

f c(ξ,R′)√
T − ξ

[
exp
(

− (R − R′)2

4νo(T − ξ)

)

− exp
(

− (R + R′)2

4νo(T − ξ)

)]
dξ : R ≥ 0,

0 : R < 0.

(3.96f )

ûcs
θ1 ∼

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− 1
2
√

πνo

∫ ∞

0
dR′

∫ T

0

f cs(ξ,R′)√
T − ξ

[
exp
(

− (R − R′)2

4νo(T − ξ)

)

− exp
(

− (R + R′)2

4νo(T − ξ)

)]
dξ : R ≥ 0,

0 : R < 0.

(3.96g)

Figure 4(a) shows the velocity distribution of ux on the y axis as λo → ∞ in the case of
ν = 1/500 and Ω = 0.5. Note here that the definition of the Reynolds number accounts
for the fact that the quantity 1/ν is replaced by 2/ν for the Reynolds number used in Badr
& Dennis (1985). Since the velocity ux on the y axis is equal to uθ at θ = π/2, it can be
obtained as the composite velocity, ui

θ + uo
θ − uoi

θ at θ = π/2, i.e.

ux ≈ (Ω + 2) erfc(η)− 1 − 1
r2 − Ω

2
(r − 1) erfc(η) (3.97)

+ 4

√
νt
π

(
e−η2 − 1

r2

)
− 3(r − 1) erfc(η) with η = r − 1

2
√
νt
. (3.98)

The vorticity distribution on the cylinder surface is shown on figure 4(b). The solid line
denotes the present results and the dotted line is the result of Badr & Dennis (1985) that is
written as

ω|r=1 = Ω√
νt

(
1√
π

−
√
νt

2

)
+
(

2√
πνt

+ 1
)

sin θ (3.99)

+Ωt
(

2.7844 − 8
3
√

πνt

)
cos θ + t

[
6.5577 − 2√

πνt

(
1 + 4

3π

)]
sin 2θ.

(3.100)
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Y. Ueda and T. Kida

Since the vorticity distribution is then obtained from the inner solutions, i.e.

ω = 1
ε

∂ui
θ0
∂R

+ ∂ui
θ1
∂R

+ ui
θ0 + O(ε), (3.101)

we have

ω|r=1 ≈ −Ω + 2 sin θ√
πνt

− 1
2
Ω − sin θ − 8Ω

√
t

πν
c1 cos θ − 2

√
t

πν
c2 sin 2θ, (3.102)

in which the coefficients c1 and c2 are given as c1 = 0.0452900 and c2 = −1.34657. We
find that the leading term of the vorticity distribution is equal to the results of Badr &
Dennis (1985).

We obtain the second-order solution of the pressure pi
1 that is governed by

∂ui
r1

∂T
− ui2

θ0 = − 1
ρ

∂pi
1

∂R
− λoχui

r1 + νo
∂2ui

r1
∂R2 . (3.103)

Inside the body domain (i.e. R < 0), the inner expansion of the outer solution of the
pressure is readily found to be written as

pio
1
ρ

= Ω2RH(T). (3.104)

Furthermore, because of uio
θ0 = ΩH(T) and uio

r1 = 0, (3.103) is rewritten as

pi
1
ρ

= − ∂

∂T

∫ R

−∞
ui

r1 dR − λo

∫ R

−∞
ui

r1 dR + νo
∂ui

r1
∂R

+
∫ R

−∞
(ui2
θ0 −Ω2H(T)) dR +Ω2RH(T). (3.105)

For R < 0, the functions ur1 and uθ0 are given by (3.96a)–(3.96c) for λo � 1. Therefore,
(3.105) can be calculated as

pi
1
ρ

∼ Ω2RH(T)+ O(1/
√
λo) for λo � 1. (3.106)

For R > 0, we find that ui
r1 ∼ 2(A + RH(T)) cos θ and ui

θ0 ∼ −2 sin θH(T) as R → ∞
from (3.61)–(3.68). Therefore, (3.103) is rewritten as

1
ρ

∂pi
1

∂R
= − ∂

∂T
[ui

r1 − (2A + 2RH(T)) cos θ ] + (ui2
θ0 − 4H(T) sin2 θ)

+ νo
∂2ui

r1
∂R2 − 2

dA
dT

cos θ + 4H(T) sin2 θ. (3.107)

Integrating (3.107) with respect to R, we have

pi
1
ρ

= ∂

∂T

∫ ∞

R
[ui

r1 − (2A + 2RH(T)) cos θ ]dR −
∫ ∞

R
[ui2
θ0 − 4H(T) sin2 θ ]dR

+ νo
∂ui

r1
∂R

− 2
dA
dT

R cos θ + 4RH(T) sin2 θ + C1(θ, T), (3.108)

where C1 is an integral constant that can be determined from the matching procedure to
the inner expansion of the outer pressure poi. The derivations of the pressure po

1 and poi
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Asymptotic analysis for a Brinkman penalization method
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Figure 5. Comparison of the pressure distribution �Cp = (p(θ)− p(π))/ρ on the cylinder surface between
the present results and Badr & Dennis (1985) in the case of ν = 1/500 and Ω = 0.5.

are described in Appendix D. Therefore, we have

C1 = −2νoH(T) cos θ + 4A sin2 θ − d
dT
(ac

1 cos θ + as
1 sin θ)− d

dT
(ac

2 cos 2θ), (3.109)

where ac
1, as

1 and ac
2 are given in Appendix D. Using (3.105) and (3.108), we have the

pressure jump of �p1 = pi
1|r=1+0 − pi

1|r=1−0 as

�p1

ρ
= ∂

∂T
pf
∫ ∞

−∞
ui

r1 dR + λo

∫ 0

−∞
ui

r1 dR − pf
∫ ∞

−∞
ui2
θ0 dR + C1, (3.110)

where the symbol pf denotes the integration in the finite part sense of Hadamard (see
Hadamard 1932).

Figure 5 shows the pressure distribution on the cylinder surface. The present result is
given by

p − p∞
ρ

≈ −2
√
ν

πt
cos θ + 1

2
− 2 sin2 θ

− 16

√
νt
π
(Ω + sin θ)

[
Ω

(
1 − 1√

2

)
− 1√

2
sin θ

]

− ν cos θ − 8

√
νt
π

sin2 θ +
[

4Ω

√
νt
π

f c
m − 4Ω

√
νt
π
(3 − 2

√
2)
]

sin θ

+
[

2

√
νt
π

f cs
m − 8

√
νt
π
(3 − 2

√
2)
]

cos 2θ. (3.111)
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Thus, we have the alternative expression to compare with the result of Badr & Dennis
(1985):

�Cp = p(θ)− p(π)
ρ

≈ −2
√
ν

πt
(1 + cos θ)− 2 sin2 θ − 16Ω

√
νt
π
(1 −

√
2) sin θ

− 8

√
νt
π

sin2 θ + ν(cos θ − 1)+
√
νt
π

[4Ωf c
m − 4Ω(3 − 2

√
2)] sin θ

+
√
νt
π

[2f cs
m − 8(1 − 2

√
2)](cos 2θ − 1). (3.112)

Here f c
m = 0.21483 and f cs

m = −2.69143. In contrast, the result of Badr & Dennis (1985) is
given by

�Cp ≈ −2
√
ν

πt
(1 + cos θ)−

(
1 −

√
νt

4
q2

)
(1 − cos 2θ)+ 1

2

√
νtΩq1 sin θ, (3.113)

in which the coefficients q1 and q2 are written as q1 = 5.79901 and q2 = 14.3122. Note
here that the leading term is found to be the same between both results.

3.4. Hydrodynamic forces
This section attempts to investigate the variance of the drag force against the results
of Bar-Lev & Yang (1975), which is demonstrated in our previous paper (see Ueda &
Kida 2021). We calculate the hydrodynamic force F = (Fx,Fy) by the following two
approaches: (i) by the time derivative of the momentum of the fluid flow and the pressure
on the control surface, and (ii) by the integration of the penalization layer given by (2.3).
In this section we intend to first investigate the drag force Fx and, then, the lift force Fy. In
the subsequent § 3.5 the relation between approaches (i) and (ii) will be presented for the
solid cylindrical body having a continuous contour.

In approach (i) we set the circular control surface around the circular cylinder, of which
the centre is set at the origin, with a large radius of r∞. The fluid domain is then defined as
F = [(r, θ)|1 ≤ r ≤ r∞, 0 ≤ θ < 2π]. The small fluid element dm = r dr dθ in the fluid
domain F has the momentum ρu dm and, therefore, the force of −(d/dt)

∫ r∞
1 ρur dr dθ

affects the fluid in F . Furthermore, the fluid experiences the force exerted by the pressure
on the control surface having the radius of r∞, i.e. − ∫ 2π

0 p(cos θ, sin θ)r∞ dθ . Therefore,
the hydrodynamic force F can be written as

F = (Fx,Fy) = − d
dt

∫ 2π

0

∫ r∞

1
ρ(u, v)r dr dθ −

∫ 2π

0
p(cos θ, sin θ)r∞ dθ, (3.114)

where u = (u, v) is the velocity defined on the (x, y) plane.
In the outer fluid domain for r > 1, we have, from (D11),

∂φo

∂T
= −2

1
r

dA
dT

cos θ + ε
1
r

d
dT
(ac

1 cos θ + as
1 sin θ)+ ε

1
r2

d
dT
(ac

2 cos 2θ)+ O(ε2).

(3.115)

Here, the r and θ components of the velocity (i.e. uo
r and uo

θ ) in the outer fluid
domain (for r > 1) are obtained by (D12a) and (D12b). Therefore, we find that
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Asymptotic analysis for a Brinkman penalization method

|u|2 = 1 + O(1/r2)+ O(ε2). Using (3.115) with (3.72), the Laplace transform to unsteady
Bernoulli’s equation yields the pressure for r � 1:

L
(

p
ρ

)
∼ 2

a − ā
aā

1
r

cos θ − ε[sL(ac
1) cos θ + sL(as

1) sin θ ]
1
r

+ O(1/r2). (3.116)

The drag force Fx of (3.114) is calculated as, taking the limit of r∞ � 1,

Fx = − d
dt

∫ 2π

0

∫ ∞

1
ρur dr dθ − 2ρ

√
νoπ

T

(
e−λoT − 1

)
+ πρνoε[(1 + e−λoT)H(T)− 2e−λoT/2I0(λoT/2)] + O(ε2). (3.117)

Note that sL(ac
1) = νo[1/s + 1/(s + λo)− 2/

√
s(s + λo)] from (D9a). The first term on

the right-hand side of (3.117), which is denoted by Fx1, is calculated as

Fx1 = −ρ d
dt

∫ 2π

0

∫ ∞

1
(ur cos θ − uθ sin θ)r dr dθ

= −ρ d
dt

∫ 2π

0

∫ ∞

1
(uo

r cos θ − uo
θ sin θ)r dr dθ

− ρ
d

dT

∫ 2π

0

∫ ∞

0
[(ui

r − uio
r ) cos θ − (ui

θ − uio
θ ) sin θ ](1 + εR) dR dθ. (3.118)

The first term on the right-hand side of (3.118) is calculated from the outer solution of the
velocity uo

r and uo
θ :

∫ 2π

0

∫ ∞

1
(uo

r cos θ − uo
θ sin θ)r dr dθ = 2π + O(ε2). (3.119)

It can be found that the outer solutions do not affect Fx1 within the order of ε. Therefore,
Fx1 is calculated as, using the Laplace transform,

L(Fx1) = −πρs
∫ ∞

0
{−Us

θ0 + Usio
θ0 + ε[Ur1 − Uio

r1 − Us
θ1 + Usio

θ1 − R(Us
θ0 − Usio

θ0 )]}dR

+ O(ε2). (3.120)

Here, the following relations are obtained from the inner solutions:∫ ∞

0
(Us

θ0 − Usio
θ0 ) dR =

∫ ∞

0

2ā
s(a + ā)

e−aR dR = 2ā
sa(a + ā)

,

∫ ∞

0
R(Us

θ0 − Usio
θ0 ) dR =

∫ ∞

0

2ā
s(a + ā)

Re−aR dR = 2ā
sa2(a + ā)

,

∫ ∞

0
(Ur1 − Uio

r1) dR =
∫ ∞

0

2ā
sa(a + ā)

e−aR dR = 2ā
sa2(a + ā)

,

∫ ∞

0
(Us

θ1 − Usio
θ1 ) dR = ā

sa2(a + ā)
+ Ds

a
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.121)
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Figure 6. Comparison of the drag coefficient CD with the result of Badr & Dennis (1985) in the case of
ν = 1/500 and Ω = 0.5.

Taking the inverse Laplace transform to (3.120), we obtain

Fx1 = πρ

{
2
√
νo

πT
−
√
νo

πT3
1 − e−λoT

λo

+ ενo[3H(T)− 2e−λoT/2(I0(λoT/2)+ I1(λoT/2))]
}

+ O(ε2). (3.122)

Substituting (3.122) into (3.117), we find that Fx behaves like

Fx ∼ 4ρ
√

πνo

T
for λo � 1. (3.123)

The result of (3.123) is found to be the same as that obtained by Bar-Lev & Yang (1975) and
our previous study (see Ueda & Kida 2021) for an impulsively started translating circular
cylinder without rotating motion. As found by the above analysis, the force exerted by the
pressure far from the body plays an important role for the calculation of the hydrodynamic
force. Figure 6 shows the comparison of the drag coefficient CD, which is calculated by
CD = Fx/ρ in the present paper, between the result of Badr & Dennis (1985) (i.e. CD =
4
√

πν/t + πν) and the leading term of the present result as λo → ∞. In the previous study
(see Ueda & Kida 2021), the drag force Fx was obtained by the following two equations:

Fx

ρ
= ν

∫ 2π

0

(
∂ω

∂r
− ω

)∣∣∣∣∣
r=1

sin θ dθ, (3.124)

Fx

ρ
= − d

dt

∫
F

yω dv. (3.125)

These relations are derived by imposing the no-slip condition on the cylinder surface. In
the penalization method the no-slip condition is not imposed. Therefore, these formulae
are not directly available for the penalization method. In Appendix F we note an additional
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Asymptotic analysis for a Brinkman penalization method

term to the above relations in the penalization method, i.e.

Fbx

ρ
= ν

∫ 2π

0

(
∂ω

∂r
− ω

)∣∣∣∣∣
r=1

sin θ dθ − d
dt

∫ 2π

0
uθ |r=1 sin θ dθ −

∫ 2π

0
ur|r=1 u|r=1 dθ.

(3.126)

Here, let us calculate the hydrodynamic force by approach (ii). The x component of the
hydrodynamic force is denoted by Fpx and, then, it is written as, from (2.3),

Fpx = πρλo

∫ 0

−∞
[−ûs

θ0 + ε(ûr1 − ûs
θ1 − Rûs

θ0)+ O(ε2)]dR. (3.127)

The outer solution inside the body domain is governed by the rotational motion of the
cylinder alone so that it cannot affect the x component of the force. Using the result of the
Laplace transform to (3.127), which is written as

L(Fpx) = πρλo

[
2

a
sā(a + ā)

+ ε
ā − a

sā(a + ā)2
+ O(ε2)

]
, (3.128)

we have

Fpx = πρ

[
2
√
νo

πT
− 2
√
νo

πT
e−λoT + ενo

(
H(T)+ e−λoT − 2e−λoT/2I0(λoT/2)

)
+ O(ε2)

]
.

(3.129)
Also, Fpx behaves like

Fpx → 2ρ
√

πνo

T
as λo → ∞. (3.130)

It can be found that the result of (3.130) exhibits the half-value of Fx, and this finding is
the same as our previous study (see Ueda & Kida 2021).

Let us calculate the lift force Fy by approach (i) that uses the force Fmy exerted by the
momentum of the fluid flow and the force Fy1 exerted by the pressure on the circular
control surface at r = r∞. The lift force Fmy exerted by the momentum of the fluid flow is
written as

Fmy = −ρ d
dt

∫ 2π

0

∫ ∞

1
(ur sin θ + uθ cos θ)r dr dθ

= −ρπ
d

dT

∫ ∞

0
[ε(ûc

θ1 − ûcio
θ1 )+ O(ε2)]dR. (3.131)

Making use of the Laplace transform to (3.131) and the integration by parts, we have

L(Fmy) = −ρπεs
[
− 1

2aνo

∫ ∞

0
eaR
(∫ ∞

R
Fce−aR′

dR′
)

dR

− 1
2aνo

∫ ∞

0
e−aR

(∫ R

0
FceaR′

dR′
)

dR + Dc

a

]
+ O(ε2)

= −ρπε

[
ā

a + ā

∫ ∞

0
Fce−aR dR −

∫ ∞

0
Fc dR − a

a + ā

∫ 0

−∞
FceāR dR

]
+ O(ε2).

(3.132)

988 A3-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

42
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.420


Y. Ueda and T. Kida

The lift force Fy1 exerted by the pressure on the circular control surface at r = r∞ is
calculated as, by the use of (3.116),

1
ρ
L(Fy1) = − 1

ρ

∫ 2π

0
L(p)|r=r∞r∞ sin θ dθ = πεsL(as

1)+ O(ε2)

= πεs
[
− 1
νo(a + ā)

(
1
ā

+ ā
a2

)∫ ∞

0
Fce−aR dR + 1

s

∫ ∞

0
Fc dR

+ 1
νo(a + ā)

(
1
a

− 1
ā

)∫ 0

−∞
FceāR dR + 1

s + λo

∫ 0

−∞
Fc dR

]
. (3.133)

Therefore, we have, for λo � 1,

Fmy

ρ
∼ Fy1

ρ
∼ πεL−1

(∫ ∞

0
Fc dR −

∫ ∞

0
Fce−aR dR

)

∼ πε

⎛
⎝∫ ∞

0
f c(T,R) dR − 1

2
√

πνo

∫ ∞

0
R dR

∫ T

0
f c(T − ξ,R)

exp
(

− R2

4νoξ

)
ξ3/2 dξ

⎞
⎠ ,

(3.134)

where f c = L−1(Fc).
Let us calculate the lift force Fpy by approach (ii) that uses the integration of the

penalization layer, as shown in (2.3). Then, the Laplace transform of Fpy is written as

L(Fpy) = ρπελo

∫ 0

−∞
Uc
θ1 dR + O(ε2)

= ρπελo

(
1

2νoā2

∫ 0

−∞
FceāR dR − 1

νoā2

∫ 0

−∞
Fc dR + Ec

ā

)
+ O(ε2)

= ρπελo

(
a

νoā2(a + ā)

∫ 0

−∞
FceāR dR

− 1
νoā2

∫ 0

−∞
Fc dR − 1

νoā(a + ā)

∫ ∞

0
Fce−aR dR

)
+ O(ε2). (3.135)

For λo � 1, we have

L(Fpy) ∼ −ρπε

(∫ 0

−∞
Fc dR +

∫ ∞

0
Fce−aR dR

)
. (3.136)

From (3.134) (note that Fy = Fmy + Fy1) and the inverse Laplace transform to (3.136), we
have, for λo � 1,

Fy ∼ 2ρπε

⎛
⎜⎝∫ ∞

0
f c(T,R) dR − 1

2
√
νoπ

∫ ∞

0
R dR

∫ T

0
f c(T − ξ,R)

exp
(

− R2

4νoξ

)
ξ3/2 dξ

⎞
⎟⎠ ,

(3.137a)
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Asymptotic analysis for a Brinkman penalization method

Fpy ∼ −ρπε

⎛
⎜⎝∫ 0

−∞
f c(T,R) dR + 1

2
√
νoπ

∫ ∞

0
R dR

∫ T

0
f c(T − ξ,R)

exp
(

− R2

4νoξ

)
ξ3/2 dξ

⎞
⎟⎠ .

(3.137b)

Note that the asymptotic behaviours, for λo � 1, of (3.137a)–(3.137b) are obtained by
using the result of Appendix E.

Here, let us consider the behaviour of Fy for λo � 1 and T � 1 to describe Fy explicitly.
To calculate (3.137a)–(3.137b), we need to obtain the function f c to which the Laplace
transform is given by (C11a,b). Using (3.96a)–(3.96g), f c (= ûr1(∂ û0

θ0/∂R)+ û0
θ0ûs

θ0) is
written as

f c(T,R) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 4Ω√
π

e−η2
(
η erf(η)+ e−η2 − 1√

π

)
−2Ω erf(η)(1 − erf(η))+ O(1/

√
λo) for R ≥ 0,

O(1/
√
λo) for R < 0,

(3.138)

where η = R/(2
√
νoT). To calculate (3.137a)–(3.137b), we define the functions S1 and S2

as

S1 =
∫ ∞

0
f c(T,R) dR, (3.139a)

S2 = 1
2
√

πνo

∫ ∞

0

∫ T

0
f c(T − ξ,R)

exp
(

− R2

4νoξ

)
ξ3/2 R dR dξ. (3.139b)

Substituting (3.138) into (3.139a), S1 is written as

S1 = −4Ω
√
νoT

∫ ∞

0

{ 2√
π

e−η2
(
η erf(η)+ e−η2 − 1√

π

)
+ erf(η)[1 − erf(η)]

}
dη

+ O(1/
√
λo). (3.140)

Using the relations, which are calculated by integration by parts,∫ ∞

0
ηe−η2

erf(η) dη = 1
23/2 ,

∫ ∞

0
erf(η)[1 − erf(η)] dη =

√
2 − 1√

π
, (3.141a,b)

the function S1 can be obtained as

S1 = −8Ω

√
νoT
π
(
√

2 − 1)+ O(1/
√
λo). (3.142)

Similarly, the function S2 is written as, substituting (3.138) into (3.139b) and taking into
account f c(T − ξ, 0) = 0,

S2 =
√
νo

π

∫ T

0

dξ√
ξ

∫ ∞

0

∂f c(T − ξ,R)
∂R

exp
(

− R2

4νoξ

)
dR + O(1/

√
λo)

= 1
2
√

π

∫ T

0

dξ√
ξ(T − ξ)

∫ ∞

0

∂f c(η′)
∂η′ exp

(
− R2

4νoξ

)
dR + O(1/

√
λo), (3.143)
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Figure 7. (a) Comparison of the lift force between Fy (by approach (i)) and Fpy (by approach (ii)) against the
asymptotic solution of Badr & Dennis (1985) at Re = 100 for λo � 1 and t � 1. (b) Comparison of the lift
coefficient CL with the result of Badr & Dennis (1985) in the case of ν = 1/500 and Ω = 0.5.

where η′ = η
√

T/(T − ξ). Note that the first integral in (3.143) is calculated by integration
by parts. Changing the integral variable ξ to x by x = ξ/T , the function S2 is rewritten as

S2 =
√
νoT
π

∫ 1

0

dx√
x

∫ ∞

0

∂f c(η)

∂η
exp
(

−1 − x
x

η2
)

dη + O(1/
√
λo). (3.144)

Using the relation, which is calculated by changing the variable x to y by x = η2/y2,

∫ 1

0

1√
x

e−η2/x dx = 2η
∫ ∞

η

e−y2

y2 dy = 2e−η2 − 2
√

πη[1 − erf(η)], (3.145)

the function S2 reduces to

S2 = 4

√
νoT
π

∫ ∞

0

df̂ c

dη
[e−η2 − √

πη(1 − erf(η))]eη
2

dη + O(1/
√
λo), (3.146)

where

df̂ c

dη
= 4√

pi
η2e−η2

erf(η)+ 2√
π

e−η2
erf(η)− 2√

π
e−η2 + 4

π
ηe−2η2 − 4

π
ηe−η2

. (3.147)

The value of the integral included in (3.146) can be estimated numerically by the Hermite
quadrature formula of n = 9:

S2 = 4Ω

√
νoT
π

so + O(1/
√
λo), so = −0.21578. (3.148)

The lift forces Fy and Fpy are therefore found to asymptotically behave like

Fy = 2ρπε(S1 − S2)+ O(ε2) ∼ −8ρΩ
√

πνt[2(
√

2 − 1)+ so], (3.149a)

Fpy ∼ −ρπεS2 + O(ε2) ∼ −4ρΩ
√

πνtso. (3.149b)

Figure 7 shows the comparison of the asymptotic behaviours of Fy/(ρΩ) and Fpy/(ρΩ)
given by (3.149a) and (3.149b) against the asymptotic solution obtained by Badr & Dennis
(1985): Fy/(ρΩ) ∼ −2

√
νt[1.4499π − 4/(3

√
π)+ 2.0 × 0.6961π

√
νt]. It seems that the
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Asymptotic analysis for a Brinkman penalization method

result of approach (ii) (by the integration of the penalization layer) is completely different
from the result of approach (i) (by the time derivative of the momentum of the fluid flow
and the pressure on the control surface) that is similar to the asymptotic solution of Badr
& Dennis (1985). In figure 7 the lift coefficient CL, which is calculated by CL = Fy/ρ
in the present paper, is also shown together with the result of Badr & Dennis (1985):
CL = −8Ω

√
πνt[2(

√
2 − 1)− 0.21578].

3.5. Alternative formula of hydrodynamic force
As seen in the preceding subsection § 3.4, the lift force calculated by approach (ii) yields
a completely different value from the result of approach (i). In particular, the result of
approach (ii) exhibits the opposite sign against the result of approach (i) and the asymptotic
solution of Badr & Dennis (1985) (see figure 7). To resolve the variance, we attempt to
derive an alternative formula to calculate the hydrodynamic forces.

In general, let us consider a two-dimensional domain D that consists of two closed
boundaries Co and Ci such that Ci ⊂ Co. The hydrodynamic force due to the momentum
of the fluid flow in the domain D is defined as (Fx,Fy)D and, then, it is written as(

Fx

ρ
,

Fy

ρ

)
D

= − d
dt

∫
D
(u, v) dx dy = −

∫
D

(
Du
Dt
,

Dv
Dt

)
dx dy. (3.150)

Substituting (2.1) into (3.150), we have(
Fx

ρ
,

Fy

ρ

)
D

=
∫

D

1
ρ

∇p dx dy − λχ
∫

D
(us − u) dx dy − ν

∫
D

∇2u dx dy. (3.151)

Using Green’s theorem, we have the following relations with respect to the first and third
terms on the right-hand side of (3.151):∫

D

(
∂p
∂x
,
∂p
∂y

)
dx dy =

∫
Co−Ci

(p dy,−p dx), (3.152a)

∫
D
(∇2u,∇2v) dx dy =

∫
Co−Ci

(ω dx, ω dy). (3.152b)

Here ω is the vorticity.
Here, in general, we look at a closed contour C that surrounds a two-dimensional fluid

domain D ′, and we consider the hydrodynamic force (Fbx,Fby) on the fluid in D ′ exerted
by the outer domain of C . The small element ds on C is acted on by normal and tangential
stresses and outflow momentum from C . Note that the outflow momentum is written as
−ρun(u, v) ds, where the subscript n indicates the outward normal direction of the contour
C . Then, the hydrodynamic force (Fbx,Fby) is described as

Fbx =
∫

C
(−p dy + μω dx − ρunu ds) , (3.153a)

Fby =
∫

C
(p dx + μω dy − ρunv ds) . (3.153b)

We apply (3.153a) and (3.153b) to the contours Co and Ci. Taking into account
(3.152a)–(3.152b), (3.151) can be then described as(

Fx

ρ
,

Fy

ρ

)
D

= −
(

Fbx

ρ
,

Fby

ρ

)
Co−Ci

−
∫

Co−Ci

un(u, v) ds − λχ
∫

D
(us − u) dx dy.

(3.154)
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Y. Ueda and T. Kida

Now, let us apply (3.154) to the fluid domain Df that is surrounded by the control surface
C∞ and the body surface C+. Then, because of χ = 0, (3.154) is rewritten as(

Fx

ρ
,

Fy

ρ

)
Df

= −
(

Fbx

ρ
,

Fby

ρ

)
C∞−C+

−
∫

C∞−C+
un(u, v) ds. (3.155)

Therefore, the hydrodynamic force on the cylinder, (Fbx,Fby), which is exerted from the
fluid domain, is obtained as(

Fbx

ρ
,

Fby

ρ

)
C+

=
(

Fx

ρ
,

Fy

ρ

)
Df

+
(

Fbx

ρ
,

Fby

ρ

)
C∞

+
∫

C∞−C+
un(u, v) ds. (3.156)

Because of ω ≈ 0 and (u, v) = (1 + O(1/r2),O(1/r2)) in the neighbourhood of the
control surface C∞, the pressure solely affects the second term on the right-hand side
of (3.156), and the momentum of the fluid flow affects the first term (see § 3.4).

For the domain Ds inside the body whose surface is defined as C−, (3.154) is written as(
Fx

ρ
,

Fy

ρ

)
Ds

= −
(

Fbx

ρ
,

Fby

ρ

)
C−

−
∫

C−
un(u, v) ds − λ

∫
Ds

(us − u) dx dy. (3.157)

From (3.155) and (3.157), we have(
Fx

ρ
,

Fy

ρ

)
Df +Ds

= −
(

Fbx

ρ
,

Fby

ρ

)
C∞

+
(

Fvx

ρ
,

Fby

ρ

)
C+−C−

−
∫

C∞
un(u, v) ds − λ

∫
Ds

(us − u) dx dy. (3.158)

As shown in § 3.3.2, there is the pressure difference�p (i.e.�p /= 0) between the inside
and the outside of the cylinder surface C and, therefore, we can write(

Fbx

ρ
,

Fby

ρ

)
C+

=
(

Fbx

ρ
,

Fby

ρ

)
C−

−
∫

C

(
�p
ρ

dy,−�p
ρ

dx
)
, (3.159)

where C± denotes the contour of the cylinder surface on the side of Df and Ds,
respectively. Taking into account (3.157), (3.159) is written as(

Fbx

ρ
,

Fby

ρ

)
C+

= −
(

Fx

ρ
,

Fy

ρ

)
Ds

−
∫

C
un(u, v) ds

− λ
∫

Ds

(us − u) dx dy −
∫

C

(
�p
ρ

dy,
�p
ρ

dx
)
. (3.160)

Approach (i) in the preceding § 3.4 is(
Fbx

ρ
,

Fby

ρ

)
(i)

=
(

Fx

ρ
,

Fy

ρ

)
Df

+
(

Fbx

ρ
,

Fby

ρ

)
C∞

=
(

Fbx

ρ
,

Fby

ρ

)
C+

−
∫

C∞−C+
un(u, v) ds. (3.161)

Therefore, we can see that (Fbx/ρ,Fby/ρ)(i) = (Fbx/ρ,Fby/ρ)C+ , since in the case of
the present study of the circular cylinder, that is, because of un = ui

r = O(ε) as shown in
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Asymptotic analysis for a Brinkman penalization method

§ 3.3.2, the last term of (3.156) is found to be of the order of ε. It is therefore found that
the asymptotic behaviour of Fbx for λo � 1 and T � 1 is the same as Fx obtained in § 3.4.
For approach (ii) in the case of un = 0 on C−, we have from (3.159)

(
Fbx

ρ
,

Fby

ρ

)
(ii)

=
(

Fbx

ρ
,

Fby

ρ

)
C−

+
(

Fx

ρ
,

Fy

ρ

)
Ds

=
(

Fbx

ρ
,

Fby

ρ

)
C+

+
(

Fx

ρ
,

Fy

ρ

)
Ds

+
∫

C

(
�p
ρ

dy,−�p
ρ

dx
)
. (3.162)

We see that even when the velocity inside the cylinder is zero, there is the difference
in the third term of the right-hand side of (3.162) between approach (i) and (ii) by the
pressure jump. Since the present analysis takes the relative coordinate system fixed with
the centre of the cylinder, the first term on the right-hand side of (3.160) becomes zero.
It can then be found that the calculation of the hydrodynamic force by the integration of
the penalization layer (i.e. (2.3)) is formulated, assuming that the pressure difference �p
and the force on the cylinder surface exerted by the momentum due to the fluid flow are
zero. In this assumption, un = 0, �p = 0 and (Fx/ρ,Fy/ρ)Ds = 0. Therefore, we have
(Fx/ρ,Fy/ρ)i = (Fx/ρ,Fy/ρ)ii. Here, the pressure difference, �p, between the inside
and the outside of the cylinder surface is given from (3.81) and (3.110).

�p
ρ

= 1
ρ
(p|r→1+0 − p|r→1−0)

= 2
dA
dT

cos θ − 2 sin2 θ + 1
2
(1 −Ω2)− C

+ ε

{
∂

∂T

∫ ∞

0
[ui

r1 − 2(A + R) cos θ ] dR −
∫ ∞

0
(ui2
θ0 − 4 sin2 θ) dR + νo

∂ui
r1

∂R

∣∣∣∣∣
R=+0

− 2νo cos θ − d
dT
(ac

1 cos θ + as
1 sin θ + ac

2 cos 2θ)+ 4A sin2 θ

}
. (3.163)

For λo � 1, (3.96a)–(3.96c) and (D9a)–(D9d) are written as

ui
θ0 ∼ −2 sin θ + (Ω + 2 sin θ) erfc(η)+ O(1/

√
λo), (3.164a)

∂

∂T

∫ ∞

0

(
ui

r1 − 2(A + R) cos θ
)

dR ∼ 2νo cos θ + O(1/
√
λo), (3.164b)

∂ui
r1

∂R

∣∣∣∣∣
R=+0

∼ O(1/
√
λo), (3.164c)

d
dT
(ac

1) ∼ νo + O(1/
√
λo), (3.164d)

d
dT
(as

1) ∼ L−1
(

−
∫ ∞

0
Fce−aR dR +

∫ ∞

0
FcdR

)
+ O(1/

√
λo), (3.164e)

d
dT
(ac

2) ∼ L−1
(

−
∫ ∞

0
Fcse−aR dR +

∫ ∞

0
FcsdR

)
+ O(1/

√
λo), (3.164f )
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Y. Ueda and T. Kida

where η = r/(2
√
νoT). Then, the following integral involved in (3.163) is calculated as∫ ∞

0
(ui2
θ0 − 4 sin2 θ) dR ∼ 2

√
νoT

∫ ∞

0
(Ω + 2 sin θ) erfc(η)

× [−4 sin θ + (Ω + 2 sin θ) erfc(η)] dη

= 2

√
νoT
π

[−4 sin θ(Ω + 2 sin θ)+ (Ω + 2 sin θ)2(2 −
√

2)].

(3.165)

Here, the following relations are used for the calculation of (3.165):

L−1
(

e−aR

s

)
= erfc(η),

∫ ∞

0
erfc(η) dη = 1√

π
,

∫ ∞

0
erfc2(η) dη = 1√

π
(2 −

√
2).

(3.166a–c)

Taking into account A ∼ 2
√
νoT/π and using (3.164a)–(3.164 f ) together with (3.165),

(3.163) can be written as

�p
ρ

∼ 2
√
νo

πT
cos θ − 2 sin2 θ + 1

2
(1 −Ω2)+ ε

{
8

√
νoT
π

sin2 θ − νo cos θ

− 2

√
νoT
π

[
−4Ω sin θ − 8 sin2 θ + (2 −

√
2)(Ω2 + 4Ω sin θ + 4 sin2 θ)

]

+ L−1
(∫ ∞

0
Fce−aR dR −

∫ ∞

0
Fc dR

)
sin θ

+L−1
(∫ ∞

0
Fcse−aR dR −

∫ ∞

0
Fcs dR

)
cos 2θ

}
+ O(ε2, 1/

√
λo). (3.167)

Integrating the x and y components of (3.155) acting on the cylinder surface, we have∫ 2π

0

�p
ρ

dx ∼ 8ε
√
νoπTΩ(1 −

√
2)− πεL−1

(∫ ∞

0
Fce−aR dR −

∫ ∞

0
Fc dR

)
,

(3.168a)∫ 2π

0

�p
ρ

dy ∼ 2π

√
νo

πT
− πενo. (3.168b)

Therefore, the hydrodynamic forces can be found to behave like, for λo � 1,

Fbx ∼ 4ρ
√
ν

πt
, (3.169a)

Fby ∼ 2ρπε

(
1
2

∫ ∞

0
FcdR −

∫ ∞

0
Fce−aR dR

)
+ 8ρΩ

√
πνt(1 −

√
2). (3.169b)

Note that (3.169a) is derived as follows:

Fbx ≈ 2ρ
√
ν

πt
+ 2ρ

√
ν

πt

(
1 − e−λoT

)
∼ 4ρ

√
ν

πt
for λo � 1. (3.170)
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Asymptotic analysis for a Brinkman penalization method

Equation (3.169a) is the same result as Badr & Dennis (1985) and our previous study
(Ueda & Kida 2021). Using the value of so which is calculated in (3.148), (3.169b) is
obtained as

Fby ∼ 2ρπε

[
−4Ω

√
νoT
π
(
√

2 − 1)− 4Ω

√
νT
π

so

]
+ 8ρΩ

√
πνt(1 −

√
2)

∼ −16ρΩ
√

πνt(
√

2 − 1)− 8ρΩ
√

πνtso. (3.171)

The value of (3.171), which is the present result, is calculated as

Fby

ρΩ
√

πνt
∼ −4.9012, (3.172)

whereas the value of the asymptotic solution obtained by Badr & Dennis (1985) is given
by

Fby

ρΩ
√

πνt
∼ −4.2879. (3.173)

It can therefore be found that the variance on the values of the lift force calculated by the
two approaches (see § 3.4) results from the pressure jump on the body (cylinder) surface.
The inner expansion of the pressure in the outer domain of the fluid cannot continuously
connect to the inner expansion of the pressure in the outer domain of the solid body
(circular cylinder). Therefore, the pressure jump is found to be caused by the matching
procedure of the outer solution in the fluid domain.

4. Concluding remarks

This study aims to elucidate the variance of the drag force calculated by the integration of
the penalization layer against the asymptotic solution for t � 1, which is demonstrated in
our previous paper (see Ueda & Kida 2021). We first consider the problem that a circular
cylinder impulsively rotates from a quiescent state. In this first problem, it is verified that
the results of the moment calculated by the different two approaches (approaches (I) and
(II) in § 3.2) are the same as the result calculated by the integration of the penalization
layer. Note that the pressure on the cylinder surface is independent of the moment and,
therefore, it can be deduced that the pressure plays a key role to the drag force on the
cylinder.

We therefore consider the second problem in § 3.3 that a circular cylinder impulsively
starts with rotating and translating velocities from a quiescent state. The drag and lift
forces are calculated by two approaches: (i) based on the time derivative of the momentum
of an entire fluid domain and the pressure on the control surface of which radius is
sufficiently large, and (ii) based on the integration of the penalization layer. For t � 1
and λo � 1, the drag force calculated by approach (ii) gives a half-value of that calculated
by approach (i) that yields the same result as the classical asymptotic solution of Bar-Lev
& Yang (1975). This finding is the same as our previous study (Ueda & Kida 2021) for
an impulsively started translating circular cylinder without rotation. Furthermore, the
calculated lift force is completely different between the two approaches, as shown in
figure 7(a). To resolve the variance, this study successfully derives an alternative formula
to calculate the hydrodynamic force, assuming that there is a pressure jump between the
outside and inside of the cylinder surface. It can be found that the variance is caused by
the pressure jump on the cylinder surface. Furthermore, the comparison of the drag force
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Y. Ueda and T. Kida

with the previous result is discussed in Appendix F. In the penalization method the no-slip
boundary condition on the cylinder surface is not imposed, although it is imposed in the
previous analysis. This condition generates the additional terms on the time derivative of
the slip velocity, which is related to the pressure jump.
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Appendix A

Using the formulae of Abramowitz & Stegun (1954), the following relations of the inverse
Laplace transform are obtained;

L−1
(√

s + 2a
s

− 1
)

= ae−aT [I1(aT)+ I0(aT)] , (A1)

L−1
(

e−k
√

s
)

= k

2
√

πT3
e−k2/4T , (A2)

L−1
(

1
s
√

s + λo

)
= 1√

λo
erf(
√
λoT), (A3)

L−1 (exp(−a|R|)) = |R|
2
√

πνoT3
exp
(

− R2

4 �o T

)
, (A4)

Appendix B

We look at the following differential equation, in which U is a function of R and θ :

sU − νo
∂2U
∂R2 = F(R, θ). (B1)

Setting U as U = A(R, θ)e−aR, (B1) is rewritten as, by the differential equation with
respect to the function A,

∂2A
∂R2 − 2a

∂A
∂R

= − 1
νo

FeaR. (B2)

The solution to (B2) is readily obtained as

A = − e2aR

2aνo

∫ R
Fe−aR dR + 1

2aνo

∫ R
FeaR dR + C1e2aR + C0, (B3)

where C0 and C1 are the integral constants. Therefore, we obtain the function U that is the
solution to (B1):

U = − eaR

2aνo

∫ R
Fe−aR dR + e−aR

2aνo

∫ R
FeaR dR + C1eaR + C0e−aR. (B4)
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Asymptotic analysis for a Brinkman penalization method

When U → 0 as R → ∞, the integral constant C0 is determined as C0 = 0 and, therefore,
the solution to (B1) is obtained as

U = eaR

2aνo

∫ ∞

R
Fe−aR dR + e−aR

2aνo

∫ R

0
FeaR dR + C0e−aR. (B5)

Appendix C

Using the Laplace transform, (3.84a) is written as, for R ≥ 0,

sU0
θ1 − νo

∂2U0
θ1

∂R2 = νo
∂U0

θ0
∂R

, (C1)

where U0
θ1 = L(û0

θ1) and U0
θ0 = L(û0

θ0). From (3.61), we find that U0
θ0 = {ā/[s(a +

ā)]}Ωe−aR. Based on the boundary condition of (3.85a–d), the solution to (C1) is obtained
as, using Appendix B,

U0
θ1 = −1

2
ā

s(a + ā)
ΩRe−aR + De−aR, (C2)

where D is an integral constant that is a function of s and θ .
For R < 0, by virtue of (3.61) and (3.85a–d), the function û0

θ1 is found to be written as
the form of û0

θ1 = RΩH(T)+ ū0
θ1. Then, (3.84a) reduces to

sŪ0
θ1 − νo

∂2Ū0
θ1

∂R2 + λoŪ0
θ1 = νo

(
−Ω aā

s(a + ā)
eāR
)
, (C3)

where Ū0
θ1 = L(ū0

θ1). The solution to (C3) is obtained as, using Appendix B,

U0
θ1 = 1

2
a

s(a + ā)
ΩReāR + Ω

s
R + EeāR, (C4)

where E is an integral constant that is a function of s and θ . These integral constants D
and E can be determined as, from the enforcements of the continuity of the velocity and
its radial derivative at R = 0,

D = E = −3
2
Ω

s
1

a + ā
. (C5)

The velocity û0
θ1 can be found to be the same as the solution of the pure rotation problem

obtained in (3.32).
The Laplace transform to (3.84c) is written as, for R ≥ 0,

sUs
θ1 − νo

∂2Us
θ1

∂R2 = 2
(

a − ā
aā

)
− 2νo

aā
s(a + ā)

e−aR, (C6)

where Us
θ1 = L(ûs

θ1). Here, we introduce Ūs
θ1 as Us

θ1 = 2(R/s)+ 2[(a − ā)/(saā)] +
Ūs
θ1. Then, (C6) reduces to

sŪs
θ1 − νo

∂2Ūs
θ1

∂R2 = −2νo
aā

s(a + ā)
e−aR. (C7)
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By virtue of the boundary condition (3.85a–d), Ūs
θ1 is found to be not divergent as R →

∞. Hence, we set Ūs
θ1 as

Ūs
θ1 = − ā

s(a + ā)
Re−aR + Dse−aR, (C8)

where Ds is an integral constant that is a function of s and θ .
For R < 0, the Laplace transform to (3.84c) is written as, taking into account

L(∂ ûs
θ0/∂R) = −2aā/[s(a + ā)]eāR from (3.61) and ûθ1 → 0 as R → −∞ from

(3.86a–d),

sUs
θ1 − νo

∂2Us
θ1

∂R2 − λoUs
θ1 = −2νo

aā
a + ā

eāR. (C9)

The solution to (C9) is therefore obtained as

Us
θ1 = a

s(a + ā)
ReāR + EseāR, (C10)

where Es is an integral constant that is a function of s and θ . These indeterminate constants
can be determined as, by the enforcements of the continuity of the velocity and its radial
derivative at R = 0,

Ds = 2
sa

− 3
s(a + ā)

, Es = 2
sā

− 3
s(a + ā)

. (C11a,b)

Thus, we obtain (3.88).
In contrast, ûc

θ1 can be obtained for R ≥ 0 by the Laplace transform to (3.84b),

sUc
θ1 − νo

∂2Uc
θ1

∂R2 = −Fc, Fc = L
(

ûr1
∂ û0
θ0
∂R

+ û0
θ0ûs

θ0

)
, (C12a,b)

where Uc
θ1 = L(ûc

θ1). The solution to (C12a,b) is readily obtained as, based on the
boundary condition of (3.85a–d) (i.e. Uc

θ1 → 0 as R → ∞),

Uc
θ1 = − 1

2νoa

(
eaR
∫ ∞

R
Fce−aR dR + e−aR

∫ R

0
FceaR dR

)
+ Dce−aR, (C13)

where Dc is an integral constant that is a function of s and θ .
Similarly, the governing equation for R < 0 is written as, taking the Laplace transform

to (3.84b),

sUc
θ1 − νo

∂2Uc
θ1

∂R2 + λoUc
θ1 = −Fc. (C14)

The solution to (C14) is obtained as, based on the boundary condition of (3.86a–d)
(i.e. Uc

θ1 → 0 as R → −∞),

Uc
θ1 = − 1

2νoā

(
e−āR

∫ R

−∞
FceāR dR − eāR

∫ R

0
Fce−āR dR

)
+ EceāR, (C15)

where Ec is an integral constant that is a function of s and θ . These indeterminate constants,
Dc and Ec, can be determined as, by the enforcements of the continuity of the velocity and
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Asymptotic analysis for a Brinkman penalization method

its derivative with respect to R at R = 0,

Dc = ā − a
2νoa(a + ā)

∫ ∞

0
Fce−aR dR − 1

νo(a + ā)

∫ 0

−∞
FceāR dR, (C16a)

Ec = − 1
νo(a + ā)

∫ ∞

0
Fce−aR dR + a − ā

2νoā(a + ā)

∫ 0

−∞
FceāR dR. (C16b)

Similar to the above, the Laplace transform to (3.84d) is also written as

sUcs
θ1 − νo

∂2Ucs
θ1

∂R2 + λoχUcs
θ1 = −Fcs, Fcs = L

(
ûr1
∂ ûs
θ0
∂R

+
{

ûs2
θ0 − 4 for R ≥ 0

ûs2
θ0 for R < 0

})
,

(C17a,b)

where Ucs
θ1 = L(ûcs

θ1). The solution to (C17a,b) is obtained as, based on the boundary
condition of (3.85a–d) and (3.86a–d) (i.e. Ucs

θ1 → 0 as R → ±∞),

Ucs
θ1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 1
2νoa

(
eaR
∫ ∞

R
Fcse−aR dR + e−aR

∫ R

0
FcseaR dR

)
+ Dcse−aR for R ≥ 0,

− 1
2νoā

(
e−āR

∫ R

−∞
FcseāR dR − eāR

∫ R

0
Fcse−āR dR

)
+ EcseāR for R < 0,

(C18)
in which the indeterminate constants Dcs and Ecs are determined by

Dcs = ā − a
2μoa(a + ā)

∫ ∞

0
Fcse−aR dR − 1

νo(a + ā)

∫ 0

−∞
FcseāR dR, (C19a)

Ecs = − 1
νo(a + ā)

∫ ∞

0
Fcse−aR dR + a − ā

2νoā(a + ā)

∫ 0

−∞
FcseāR dR. (C19b)

Appendix D

In order to obtain the pressure po
1 of the outer flow, it is necessary to obtain the outer flow

of the order of ε2, because po
1/ρ ∼ −∂φo

2/∂T , where φo
2 is the velocity potential of the

order of ε2. Therefore, let us attempt to derive the solution of the order of ε2 in the outer
fluid domain where the solution exhibits the inviscid one (i.e. potential flow). To do so,
we need to obtain ui

r2 in the inner fluid domain that is governed by the continuity equation
(3.10c):

∂ui
r2

∂R
+ ui

r1 + ∂ui
θ1
∂θ

− R
∂ui
θ0
∂θ

= 0. (D1)

Since the matching procedure yields ui
r2 → 0 as R → −∞, (D1) is rewritten as

ui
r2 = −

∫ R

−∞

(
ui

r1 + ∂ui
θ1
∂θ

− R
∂ui
θ0
∂θ

)
dR. (D2)

Taking the Laplace transform to (D2) and using (3.62), (3.67) and (3.83), we have, for
R ≥ 0,

Ur2 = −Io
r cos θ − Ic

θ1 cos θ − Is
θ1 sin θ − Ic

θ0 cos θ − Ics
θ1 cos 2θ, (D3)
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Y. Ueda and T. Kida

in which the coefficients are defined by

Io
r =

∫ 0

−∞
Ur1dR +

∫ R

0
Ur1 dR, Ic

θ1 =
∫ 0

−∞
Us
θ1 dR +

∫ R

0
Us
θ1 dR,

Is
θ1 = −

∫ 0

−∞
Uc
θ1 dR −

∫ R

0
Uc
θ1 dR, Ic

θ0 = −
∫ 0

−∞
RUs

θ0 dR −
∫ R

0
RUs

θ0 dR,

Ics
θ1 =

∫ 0

−∞
Ucs
θ1 dR +

∫ R

0
Ucs
θ1 dR.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(D4)

Here, Us
θ0 = L(ûs

θ0), Ur1 = L(ûr1), Us
θ1 = L(ûs

θ1), Uc
θ1 = L(ûc

θ1) and Ucs
θ1 = L(ûcs

θ1).
These coefficients can be calculated as, using the asymptotic solutions that are obtained
above,

Io
r = 2a

sā2(a + ā)
+ 2

a − ā
saā

R + 2ā
sa2(a + ā)

(1 − e−aR)+ 1
s

R2, (D5a)

Ic
θ1 = − a

sā2(a + ā)
+ Es

ā
+ Ds

a
(1 − e−aR)+ R2

s
+ 2

a − ā
saā

R + ā
sa(a + ā)

Re−aR

− ā
sa2(a + ā)

(1 − e−aR), (D5b)

Is
θ1 = −Ec

ā
− Dc

a
(1 − e−aR)− 1

2νoā2

∫ 0

−∞
FceāR dR + 1

νoā2

∫ 0

−∞
Fc dR

+ eaR

2νoa2

∫ ∞

R
Fce−aR dR − e−aR

2νoa2

∫ R

0
FceaR dR − 1

2νoa2

∫ ∞

0
Fce−aR dR

+ 1
νoa2

∫ R

0
Fc dR, (D5c)

Ic
θ0 = − 2a

sā2(a + ā)
+ 2ā

sa(a + ā)
Re−aR − 2ā

sa2(a + ā)
(1 − eaR)+ 1

s
R2, (D5d)

Ics
θ1 = Ecs

ā
+ Dcs

a
(1 − e−aR)+ 1

2νoā2

∫ 0

−∞
FcseāR dR − 1

νoā2

∫ 0

−∞
Fcs dR

− eaR

2νoa2

∫ ∞

R
Fcse−aR dR + e−aR

2νoa2

∫ R

0
FcseaR dR

+ 1
2νoa2

∫ ∞

0
Fcse−aR dR − 1

νoa2

∫ R

0
Fcs dR. (D5e)

The outer expansion of Ur2 (i.e. Uio
r2) is written as, using (D3) with (D5a)–(D5e),

Uio
r2 = − cos θ

[
4

a − ā
saā

R + 3
s

R2 + Es

ā
+ Ds

a
− ā

sa2(a + ā)
− a

sā2(a + ā)

]

− sin θ
[

− Ec

ā
− Dc

a
− 1

2νoā2

∫ 0

−∞
FceāR dR + 1

νoā2

∫ 0

−∞
Fc dR
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Asymptotic analysis for a Brinkman penalization method

− 1
2νoa2

∫ ∞

0
Fce−aR dR + 1

νoa2

∫ ∞

0
Fc dR

]

− cos 2θ
[

− Ecs

ā
− Dcs

a
− 1

2νoā2

∫ 0

−∞
FcseāR dR

+ 1
νoā2

∫ 0

−∞
Fcs dR − 1

2νoa2

∫ ∞

0
Fcse−aR dR + 1

νoa2

∫ ∞

0
Fcs dR

]
. (D6)

On the other hand, since the outer solution in the fluid domain becomes potential, the
velocity potential φo of the outer solution in the fluid domain can be expressed as

φo =
(

r + 1
r

)
cos θH(T)− 2ε

A
r

cos θ + ε2
∑
n=1

1
rn (a

c
n cos nθ + as

n sin nθ)+ O(ε3).

(D7)
The inner expansion of φo is then written as

uoi
r = (2εR − 3ε2R2) cos θH(T)+ 2Aε(1 − 2εR) cos θ

− ε2
∑
n=1

n(ac
n cos nθ + as

n sin nθ)+ O(ε3). (D8)

The matching procedure to the inner solution in the fluid domain (i.e. L(uoi
r ) = Uio

r ) yields

L(ac
1) = Es

ā
+ Ds

a
− ā

sa2(a + ā)
− a

sā2(a + ā)
, (D9a)

L(as
1) = −Ec

ā
− Dc

a
− 1

2νoā2

∫ 0

−∞
FceāR dR + 1

νoā2

∫ 0

−∞
Fc dR

− 1
2νoa2

∫ ∞

0
Fce−aR dR + 1

νoa2

∫ ∞

0
Fc dR, (D9b)

L(as
2) = 0, (D9c)

L(ac
2) = −Ecs

ā
− Dcs

a
− 1

2νoā2

∫ 0

−∞
FcseāR dR + 1

νoā2

∫ 0

−∞
Fcs dR

− 1
2νoa2

∫ ∞

0
Fcse−aR dR + 1

νoa2

∫ ∞

0
Fcs dR, (D9d)

L(ac,s
n ) = 0 for n ≥ 3. (D9e)

The velocity potential φo in the outer fluid domain is therefore written as

φo =
(

r + 1
r

)
cos θH(T)− 2ε

A
r

cos θ + ε2 ac
1 cos θ + as

1 sin θ
r

+ ε2 ac
2

r2 cos 2θ + O(ε3),

(D10)

which also gives

∂φo

∂T
= −2

1
r

dA
dT

cos θ + ε
1
r

d
dT
(ac

1 cos θ + as
1 sin θ)+ ε

1
r2

d
dT
(ac

2 cos 2θ)+ O(ε2).

(D11)
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Differentiating (D10) with respect to either r or θ , the velocities, uo
r and uo

θ , in the outer
fluid domain are calculated as, for r > 1,

uo
r =

(
1 − 1

r2

)
cos θ + 2εA

1
r2 cos θ − ε2(ac

1 cos θ + as
1 sin θ)

1
r2

− ε2 2
r3 ac

2 cos 2θ + O(ε3), (D12a)

uo
θ = −

(
1 + 1

r2

)
sin θ + 2εA

1
r2 sin θ − ε2(ac

1 sin θ − as
1 cos θ)

1
r2

− ε2 2
r3 ac

2 sin 2θ + O(ε3). (D12b)

The inner expansion of uo
r and uo

θ are then written as, respectively,

uoi
r = 2εR cos θ + 2εA cos θ + O(ε2), (D13a)

uoi
θ = −2(1 − εR) sin θ + 2εA sin θ + O(ε2). (D13b)

The inner expansion of the pressure in the outer fluid domain, poi, is then obtained as,
using the unsteady Bernoulli’s equation,

poi

ρ
= 2

dA
dT

cos θ − 2 sin2 θ + 1
2

− ε

[
2R

dA
dT

cos θ

− 4A sin2 θ + d
dT
(ac

1 cos θ + as
1 sin θ)+ d

dT
(ac

2 cos 2θ)
]

+ O(ε2). (D14)

From the matching condition pio = po1, we can obtain (3.109).

Appendix E

Let us estimate the order of the following integral for λo � 1:

I = L−1

(∫ 0

−∞
Fc exp(āR) dR

)

=
∫ 0

−∞
dR
∫ T

0
f c(T − ξ,R)

|R|
2
√

πνoξ3
exp
(

−λoξ − R2

4νoξ

)
dξ. (E1)

Assuming that f c is continuous in the integral domain, f c has a finite maximum value
| f c|max in the domain. Therefore, we have

|I| ≤ | f c|max

∫ 0

−∞
dR
∫ T

0

|R|
2
√

πνoξ3
exp
(

−λoξ − R2

4νoξ

)
dξ

≤ | f c|max

√
νo

π

∫ T

0

exp(−λoξ)√
ξ

dξ = | f c|max

√
νo

π

2√
λo

Erf(
√
λoT) ∼ O(1/

√
λo),

(E2)

where Erf(x) = ∫ x
0 e−x2

dx.
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Asymptotic analysis for a Brinkman penalization method

Appendix F

The hydrodynamic forces (Fbx,Fby) are given by (3.153a) and (3.153b). Therefore, we
have, for a circular cylinder,

[
Fbx/ρ
Fby/ρ

]
=
∫ 2π

0

⎡
⎢⎢⎣

∂

∂θ

(
p
ρ

)
sin θ − νω sin θ − uru

− ∂

∂θ

(
p
ρ

)
cos θ + νω cos θ − urv

⎤
⎥⎥⎦

r=1

dθ. (F1)

Since χ = 0 in the fluid domain, the governing equation of the motion becomes, with
respect to θ ,

Duθ
Dt

= − 1
ρ

∂p
r∂θ

+ ν
∂ω

∂r
. (F2)

Therefore, we have[
Fbx/ρ
Fby/ρ

]
= ν

∫ 2π

0

(
∂ω

∂r
− ω

)∣∣∣∣∣
r=1

[
sin θ

− cos θ

]
dθ − d

dt

∫ 2π

0
uθ |r=1

[
sin θ

− cos θ

]
dθ

−
∫ 2π

0
ur|r=1

[
u
v

]
r=1

dθ. (F3)

An alternative expression of the force imposed by the no-slip condition on the cylinder
surface is defined as Fωx and Fωy and, then,[

Fωx/ρ
Fωy/ρ

]
= − d

dt

∫
F
ω

[
y

−x

]
dv. (F4)

Applying Green’s theorem and the definition of vorticity ω, we easily have[
Fωx/ρ
Fωy/ρ

]
= − d

dt

∫
C∞−Co

us

[
y

−x

]
ds − d

dt

∫
F

[
u
v

]
dv, (F5)

where C∞ and Co denote the contours of the control surfaces in the far field and on the
cylinder surface, respectively. The tangential velocity is then described by us on C∞ or Co.
In addition, dv and ds indicate the small elements of F and the contour C∞ or Co. From
the equations of motion, we have

d
dt

∫
F

[
u
v

]
dv =

∫
F

⎡
⎢⎢⎣

− 1
ρ

∂p
∂x

+ ν�u

− 1
ρ

∂p
∂y

+ ν�v

⎤
⎥⎥⎦ dv. (F6)

Since �u = −∂ω/∂y and �v = ∂ω/∂x, we have

d
dt

∫
F

[
u
v

]
dv =

∫
Co

[
(p/ρ) dy + νω dx
−p/ρ − νω dy

]
. (F7)

Here, the conditions that p is constant and ω = 0 on C∞ has been used. Therefore, we
finally arrive at[

Fbx/ρ
Fby/ρ

]
=
[

Fωx/ρ
Fωy/ρ

]
− d

dt

∫
Co

us

[
y

−x

]
ds −

∫
Co

un

[
u
v

]
ds, (F8)
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where un is the normal component of the velocity from the cylinder to the fluid flow
domain at Co. Therefore, in the penalization method the two terms are needed in addition
to the formula that is derived from the no-slip boundary condition.

Using the present results, we have, at R = 0,

Duθ
Dt

= 1
ε
L−1

(
ā

a + ā
Ω

)
+ 3

2
L−1

(
Ω

a + ā

)
− 2
ε
L−1

(
a

a + ā

)
sin θ

+ ûr1

(
∂ ûo
θ0
∂θ

cos θ + ûs
θ0
∂θ

sin θ cos θ
)

+ ûo
θ0ûs

θ0 cos θ + ûs2
θ0 sin θ cos θ + O(ε).

(F9)

Hence, we have

d
dt

∫ 2π

0
uθ sin θ dθ = −2π

ε
L−1

(
a

a + ā

)
+ O(ε)

= −π

ε

d
dT

[
e−λoT/2 (I0(λoT/2)+ I1(λoT/2))

]
+ O(ε)

= π

4
λo

ε
e−λoT/2 [I0(λoT/2)− I2(λoT/2)

]+ O(ε). (F10)

It can therefore be found that the present result of the drag force is the same as our previous
result (see Ueda & Kida 2021) by adding the above result to the previous one. For the lift
force, the additional term is written as

d
dt

∫ 2π

0
uθ cos θ dθ = π

(
ûr1
∂ ûo
θ0
∂θ

+ ûo
θ0ûs

θ0

)
+ O(ε)

≈ O(1/
√
λo)+ O(ε). (F11)
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