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Abstract

Consider a sequence (Xn) of independent and identically distributed random variables
taking nonnegative integer values, and call Xn a record if Xn > max{X1, . . . , Xn−1}. By
means of martingale arguments it is shown that the counting process of records among the
first n observations, suitably centered and scaled, is asymptotically normally distributed.
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1. Introduction

Let (Xn) be a sequence of nonnegative, independent, and identically distributed (nonneg-
ative i.i.d.) random variables (RVs) with common distribution function F , and let Mn =
max{X1, . . . Xn}, for n ≥ 1, be the sequence of partial maxima; conventionally we write
M0 = −1. We say that Xn is a (strict upper) record if Xn > Mn−1. The indicator of a record is
denoted by In = 1{Xn>Mn−1} and the associated counting process by Nn = ∑n

k=1 Ik . See [1],
[2], and [9] for references and information on the theory and applications of records.

We are interested here in the asymptotic normality of Nn, suitably centered and scaled, when
the underlying distribution F is concentrated on the nonnegative integers.

A beautiful and well-known result of Rényi [12] states that the indicators In are independent,
with P[In = 1] = 1/n, when F is continuous. Therefore, the central limit theorem (CLT)

Nn − log n√
log n

w−→ N(0, 1),

is readily obtained. (Here, ‘
w−→’ denotes weak convergence.)

When F is discontinuous, the indicators In are not independent and their distributions depend
on F . Therefore, this case is somewhat more complicated and results are rather scarce. Vervaat
[13], in a remarkable pioneering paper, obtained a variety of functional CLTs for records of
nonnegative, integer-valued random variables. In particular, his work contains the asymptotic
normality of Nn for the geometric distribution, which happens to be an especially motivating
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distribution, given its connection with the asymptotic analysis of search costs in data structures
known as skip lists (see [11]). In the context of the geometric distribution, Prodinger [10]
obtained asymptotic expressions for the mean and variance of Nn, and Bai et al. [3] established
asymptotic normality with rates. Notice that computer science specialists use the term left-to-
right maxima when referring to upper records.

A martingale approach, combined with asymptotic results for sums of partial minima, was
used in [7] to derive strong convergence results for Nn from quite general discrete models,
including the geometric and Poisson random variables. Our aim here is to further exploit the
connection between records and martingales, obtaining the corresponding CLTs.

In this paper, we establish CLTs for a wide range of discrete distributions, identifying the
centering and scaling sequences (Theorem 1(a)). We also show that, for a certain class of
distributions, no such CLT holds (Theorem 1(b)). While, to the best of the authors’ knowledge,
only the case of the geometric distribution has previously appeared in the literature, the results
of this paper cover a rather general class of discrete distributions; see Remark 1.

We conclude this introduction with additional definitions and notation. Let (Xn) denote
a sequence of i.i.d. RVs, with common right-continuous distribution function F , such that
P[Xn = k] = pk > 0 for k ∈ Z+ = {0, 1, . . . } and n ≥ 1. Clearly, F(x) < 1 for all x and,
hence, Nn ↗ ∞ almost surely.

For k ∈ Z+ and t ≥ 0, let yk = 1 − F(k) = ∑
i>k pi be the discrete survival function (with

y−1 = 1) and let m(t) = min{j ∈ Z+ : yj < 1/t} be the quantile function. The discrete failure
or hazard rate rk is defined as

rk = P[X1 = k]
P[X1 ≥ k] = pk

yk−1

and is easily seen to satisfy

rk = 1 − yk

yk−1
and yk =

k∏
i=0

(1 − ri).

Let θ(k) = ∑k
i=0 ri be the cumulative hazard function and let �(t) = max{k : θ(k) ≤ t} for

t ≥ p0. Then θ(�(t)) ≤ t < θ(�(t) + 1) and P[θ(Xn) > t] = P[Xn > �(t)] = y�(t), for
n ≥ 1 and t ≥ p0.

Martingales are taken relative to the natural filtration (Fn), with Fn = σ(X1, . . . , Xn) for
n ≥ 1 and F0 = {∅, �}. Almost-sure convergence, convergence in probability, and weak
convergence will be denoted respectively by the arrows ‘

a.s.→’, ‘
p−→’, and (recall) ‘

w−→’. For
increasing sequences (an) and (bn), we write an ∼ bn if either both (an) and (bn) converge to
a finite limit or they both grow to infinity with lim an/bn = 1.

A word about the organization of the paper. The main result and several examples are
presented in Section 2. The proof, developed in Section 3, is rather long and has been split
into several lemmas and propositions, distributed in subsections. Section 4 contains the proofs
of particular cases, shown as examples in Section 2. Finally, in Section 5, we present our
concluding remarks and some ideas for further research.

2. Main result and examples

Our main result is the asymptotic normality of the counting process of records Nn, suitably
centered and scaled, which is applicable to a wide spectrum of discrete models. We use a
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martingale approach that connects the CLT with convergence results from the theory of sums
of partial minima of i.i.d. RVs, as developed by Deheuvels in [4].

Theorem 1. Let zk = ∑
i>k riyi and b2

n = ∑m(n)
k=0 zkrk/yk , for k, n ∈ Z+.

(a) Assume that
∑∞

k=0(1 − rk) = ∞. If lim supk→∞ rk < 1 or lim infk→∞ rk > 0 then

Nn − θ(m(n))

bn

w−→ N(0, 1). (1)

(b) If
∑∞

k=0(1 − rk) < ∞ then Nn − m(n) is tight. In particular, there are no sequences
(an), (bn) ↗ ∞ such that (Nn − an)/bn converges in distribution to a nondegenerate
random variable.

Remark 1. Theorem 1 gives a rather complete picture of the asymptotic normality of the
number of records for discrete distributions. In fact, any sequence (rk), 0 < rk < 1, k ≥ 0, with∑∞

k=0 rk = ∞ is the failure rate sequence of a distribution on the nonnegative integers. Only
the very special case of distributions whose failure rates (rk) satisfy both lim infk→∞ rk = 0
and lim supk→∞ rk = 1 is not covered by Theorem 1.

Before going into the proof of Theorem 1, we present some examples whose details are
worked out in Section 4.

Example 1. (Geometric with parameter p.)

(log n)−1/2
(

Nn + p log n

log(1 − p)

)
w−→ N

(
0, − p(1 − p)

log(1 − p)

)
. (2)

The convergence in (2) was previously obtained in [13] and [3] using completely different
methods. To the best of the authors’ knowledge, the cases covered by the next examples are
new.

Example 2. (Converging failure rates rk → r , 0 < r < 1, with
∑n

i=1 |ri − r|/√n → 0.)

(log n)−1/2
(

Nn + r log n

log(1 − r)

)
w−→ N

(
0, − r(1 − r)

log(1 − r)

)
. (3)

A concrete random variable with converging rks satisfying the hypothesis of this example is
the negative binomial, with pk = (−1)k

(−a
k

)
pa(1 − p)k for k ≥ 0, 0 < p < 1, and a > 1. In

this case, (3) holds with r = p.

Example 3. (Alternating geometric with parameters p and q.) Here, we mean r2k = p and
r2k+1 = q, where 0 < p < q < 1 and k ≥ 0. This random variable can be seen as the number
of tails in independent throws of alternating coins, with respective head probabilities p and q,
until the first head appears. In this case,

(log n)−1/2
(

Nn + (p + q) log n

log(1 − p)(1 − q)

)
w−→ N

(
0, −p(1 − p) + q(1 − q)

log(1 − p)(1 − q)

)
. (4)

Example 4. (Converging failure rates rk → 0, with
∑∞

k=1 r2
k < ∞.)

(log n)−1/2(Nn − log n)
w−→ N(0, 1). (5)

For a concrete RV X, consider yk = (k + 1)−d , k ≥ 0, d > 0. Then rk = d/(k + 1) + O(k−2)

and (5) applies.
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Example 5. (Converging failure rates rk → 1, such that
∑∞

k=1(1 − rk) = ∞.) Let rk =
1 − ak−α + δk , for k ≥ 1, a > 0, and 0 < α ≤ 1, with (δk) such that

∑∞
k=1 |δk| < ∞. Then

(log m(n))−1/2(Nn − m(n) + a log m(n))
w−→ N(0, a) (6)

for α = 1 and

(m(n))−(1−α)/2
(

Nn − m(n) + a

1 − α
(m(n))1−α

)
w−→ N

(
0,

a

1 − α

)
(7)

for α < 1. Also, m(n) ∼ log n/α log log n.
In the particular case of the Poisson distribution with parameter λ, we have a = λ and α = 1.

From (6) we obtain

(log log n)−1/2(Nn − m(n) + λ log(m(n)))
w−→ N(0, λ),

with m(n) ∼ log n/ log log n.

Remark 2. Notice the differences between continuous and discrete distributions. For contin-
uous distributions, the number of records is always asymptotically normal, with the variance
growing as log n regardless of the parent distribution F . For discrete distributions, the asymp-
totic normality of the number of records depends on the distribution F via the failure rates rk:
for distributions with very light tails (those with

∑∞
k=0(1 − rk) < ∞), the number of records

is not asymptotically normal; moreover, when a CLT holds, the scaling sequence grows at a
speed that depends on the rks.

3. Proof of main result

3.1. Sums of partial minima

As stated in the introduction, the martingale approach we use depends on asymptotic results
for sums of partial minima of i.i.d. RVs. The behavior of sums of minima is fairly well known
and the following weak law of large numbers [4] is particularly useful for our purposes.

Let (Zn) be a sequence of nonnegative i.i.d. RVs, with common distribution function G

such that G(z) > 0 for all z > 0, and let Sn = ∑n
i=1 min{Z1, . . . , Zi}. In addition, let

G̃(t) = inf{z ≥ 0 : G(z) ≥ t} for 0 ≤ t < 1, and let

H(x) =
∫ ex

1
G̃(1/u) du for x ≥ 0.

Theorem 2. If limx→∞ H(x) is finite then Sn grows almost surely to a finite limit. Otherwise,
if there is a sequence (xn), increasing to ∞, such that

H(xn + log n)

H(log n)
→ 1 (8)

and ∑n
k=1 kG̃(1/k)2

(
∑n

k=1 G̃(1/k))2
→ 0, (9)

then
Sn

H(log n)

p−→ 1.

For a proof of Theorem 2, see [4, Chapter II, Theorem 7 and Corollary 4].

https://doi.org/10.1239/aap/1127483747 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1127483747


Central limit theorems for discrete records 785

3.2. A martingale CLT

Martingale CLTs generally require the convergence in probability of a quadratic process and
a Lindeberg-type condition of asymptotic negligibility. Here we have chosen to work with the
following version, whose conditions are relatively simple to verify; see [8, p. 58].

Theorem 3. Consider a sequence (ξi) such that E[ξi | Fi−1] = 0 and E[ξ2
i ] < ∞ for all

i ≥ 1. If, for a sequence (bn) ↗ ∞, we have

1

b2
n

n∑
i=1

E[ξ2
i | Fi−1] p−→ 1 (10)

and
1

b2
n

n∑
i=1

E[ξ2
i 1{|ξi |>εbn} | Fi−1] p−→ 0 (11)

for all ε > 0, then
∑n

i=1 ξi/bn
w−→ N(0, 1).

As we will see later, it turns out that the processes involved in conditions (10) and (11) can
be written in terms of sums of partial minima of RVs.

3.3. The fundamental martingale

The CLT for records of various discrete models is based on a single fundamental martingale,
presented below. The idea comes from the easily verifiable fact that Nn − pMn is a martingale
when the underlying RVs are geometric with parameter p.

Proposition 1. (a) The process

Nn − θ(Mn) = Nn −
Mn∑
k=0

rk, (12)

for n ≥ 1, is a square-integrable martingale.

(b) Let ξk = Ik −[θ(Mk)−θ(Mk−1)] be the increments of martingale (12) and let E[ξ2
k | Fk−1]

be the increments of the processes of conditional variances in (10). Then

E[ξ2
k | Fk−1] =

∑
i>Mk−1

pi(1 − ri) =
∑

i>Mk−1

riyi .

Proof. (a) First, it is easy to see that

E[Ik | Fk−1] = P[Xk > Mk−1 | Fk−1] = 1 − F(Mk−1) = yMk−1 .

Let 
θ(Mk) = θ(Mk) − θ(Mk−1). Then

E[
θ(Mk) | Fk−1] = E

[( Mk∑
i=0

ri −
Mk−1∑
i=0

ri

) ∣∣∣∣ Fk−1

]

=
∞∑
i=1

( i∑
j=1

rMk−1+j

)
P[Xk = Mk−1 + i | Fk−1]

=
∞∑

j=1

rMk−1+j P[Xk > Mk−1 + j − 1 | Fk−1] =
∞∑

j=1

pMk−1+j = yMk−1 .
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Therefore, Nn − θ(Mn) is a martingale. To verify the square integrability of (12), it suffices to
check that θ(Xn) is indeed square integrable:

E[θ(Xn)
2] =

∞∑
k=0

( k∑
i=0

ri

)2

pk =
∞∑

k=0

( k∑
i=0

r2
i + 2

k−1∑
i=0

k∑
j=i+1

rirj

)
pk

=
∞∑
i=0

r2
i

∞∑
k=i

pk + 2
∞∑
i=0

ri

∞∑
j=i+1

rj

∞∑
k=j

pk

≤
∞∑
i=0

riyi−1 + 2
∞∑
i=0

riyi

= 1 + 2
∞∑
i=0

pi(1 − ri) ≤ 3.

(b) From the martingale property, and noting that Ik
θ(Mk) = 
θ(Mk), we have

E[ξ2
k | Fk−1] = E[Ik | Fk−1] − 2 E[
θ(Mk) | Fk−1] + E[(
θ(Mk))

2 | Fk−1]
= E[(
θ(Mk))

2 | Fk−1] − yMk−1 .

On the other hand, writing m for Mk−1, we have

E[(
θ(Mk))
2 | Fk−1] = E[((θ(Xk) − θ(Mk−1))

+)2 | Fk−1]

=
∞∑
i=1

( i∑
j=1

rm+j

)2

P[Xk = m + i | Fk−1]

=
∞∑
i=1

( i∑
j=1

r2
m+j + 2

∑
1≤j1<j2≤i

rm+j1rm+j2

)
pm+i

=
∞∑

j=1

r2
m+j

∞∑
i=j

pm+i + 2
∑

1≤j1<j2<∞
rm+j1rm+j2

∞∑
i=j2

pm+i

=
∑
j>m

rjpj + 2
∑

1≤j1<j2<∞
rm+j1pm+j2

=
∑
j>m

rjpj + 2
∑
j>m

rjyj

= ym +
∑
j>m

rjyj ,

and the conclusion follows.

Remark 3. The martingale (12) reveals an interesting and apparently new property of discrete
extremes that could be useful beyond our result on asymptotic normality for records. On the
other hand, when F is continuous, it can be easily checked that the martingale analogous to
(12) is given by Nn + log(1 − F(Mn)).

Remark 4. Another martingale related to Nn is readily constructed by subtracting the pre-
dictable process

∑n
k=1 yMk−1 from Nn. This process is useful in characterizing the strong

asymptotic behavior of Nn (see [7]), but is unsuitable for weak limits.
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3.4. Asymptotic conditional variance

It is important to notice that the process of conditional variances in (10) behaves as a sum
of partial minima of i.i.d. RVs. This is because u(M) = ∑

i>M riyi is a decreasing function of
M and, therefore,

E[ξ2
k | Fk−1] = u(Mk−1) = min{u(X1), . . . , u(Xk−1)}

for k ≥ 2. In what follows, we consider (10) and apply Theorem 2 to obtain the scaling
sequence (bn) of Nn − θ(Mn).

From Proposition 1, we have

n∑
k=2

E[ξ2
k | Fk−1] =

n∑
k=2

min{Z1, . . . , Zk−1} =
n∑

k=2

zMk−1 ,

where
Zk =

∑
i>Xk

riyi =
∑
i>Xk

pi(1 − ri), k ≥ 1.

These random variables are i.i.d., take the values

zj =
∑
i>j

riyi =
∑
i>j

pi(1 − ri)

with respective probabilities pj , and have common distribution function G given by

G(z) =
∑
i≥j

pi = yj−1, zj ≤ z < zj−1.

The inverse of G is easily seen to be

G̃(t) = zj , yj < t ≤ yj−1.

Equivalently, G̃(1/t) = zm(t), where m(t) = min{j ∈ Z+ : yj < 1/t}, for t > 1.

Proposition 2. Let (Zn) be the sequence of i.i.d. RVs defined above and let

b2
n =

m(n)∑
k=0

zkrk

yk

. (13)

(a) Assume that
∑∞

k=0(1 − rk) = ∞. If lim supk→∞ rk < 1 or lim infk→∞ rk > 0 then

1

b2
n

n∑
k=1

min{Z1, . . . , Zk} p−→ 1.

(b) If
∑∞

k=0(1 − rk) < ∞ then

n∑
k=1

min{Z1, . . . , Zk} a.s.→ Z,

where Z is a finite random variable.
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Proof. We first determine the normalizing sequence H(log n). Let t > 1. Then

H(log t) =
∫ t

1
G̃(1/u) du =

∫ t

1
zm(u) du

=
m(t)∑
j=0

∫ y−1
j

y−1
j−1

zm(u) du −
∫ y−1

m(t)

t

zm(u) du

=
m(t)∑
j=0

zj (y
−1
j − y−1

j−1) − zm(t)(y
−1
m(t) − t)

=
m(t)∑
j=0

zj rj

yj

− ρ(t), (14)

where ρ(t) = zm(t)(y
−1
m(t) − t). Clearly zj ≤ yj ; therefore,

ρ(t) ≤ zm(t)(y
−1
m(t) − y−1

m(t)−1) = zm(t)rm(t)/ym(t) ≤ 1

and we have H(log n) ∼ b2
n.

In order to prove part (a), we check hypotheses (8) and (9) of Theorem 2. Suppose first that
lim supk→∞ rk < 1 and note that zk = G̃(1/t) for yk < 1/t ≤ yk−1; that is, m(t) = k. Then

zm(t)

ym(t)−1
≤ tG̃(1/t) <

zm(t)

ym(t)

.

On the other hand, it is easy to see that zk/yk−1 ≥ infj≥k(1 − rj )
2. Hence, we have

lim inf
t→∞ tG̃(1/t) > 0

and there exist constants A and B, 0 < A ≤ B ≤ 1, such that

A/t ≤ G̃(1/t) ≤ B/t (15)

for all t > 1. Now, from the definition of H and (15) we find that

0 ≤ H(xn + log n) − H(log n)

H(log n)
≤ Bxn

A log n

for n ≥ 1, and (8) follows upon choosing, for instance, xn = log(log n + 3). Equation (9) also
follows immediately from (15), since

∑n
k=1 k(G̃(1/k))2

(
∑n

k=1 G̃(1/k))2
≤ B2 ∑n

k=1 1/k

A2(
∑n

k=1 1/k)2
→ 0.

Now take lim infk→∞ rk > 0. In this case, there exists a δ, 0 < δ < 1, such that 1 − rk < δ

for all k ≥ 0. Noting that yk = pk+1/rk+1, we have zk = ∑
i>k yiri = ∑

i>k pi+1ri/ri+1.
Then, since

(1 − δ)yk+1 = (1 − δ)
∑
i>k

pi+1 <
∑
i>k

pi+1ri

ri+1
<

1

1 − δ

∑
i>k

pi+1 = 1

1 − δ
yk+1,
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we have (1 − δ)yk+1 < zk < (1/(1 − δ))yk+1 for all k ≥ 0. Also,

(1 − δ)2(1 − rk+1) <
zkrk

yk

= zk(1 − rk+1)rk

yk+1
<

1

1 − δ
(1 − rk+1) (16)

and, consequently, there exist constants A and B, 0 < A < B, such that

A

m(n)∑
k=1

(1 − rk) ≤ H(log n) ≤ B

m(n)∑
k=1

(1 − rk). (17)

From (14) and (16), it is clear that (8) holds if and only if there exists a sequence (xn) ↗ ∞,
with x1 ≥ 1, such that ∑m(nxn)

i=m(n)+1(1 − ri)∑m(n)
i=1 (1 − ri)

→ 0. (18)

In order to prove (18), recall that

1

nxn

≤ ym(nxn)−1 = ym(n)

m(nxn)−1∏
i=m(n)+1

(1 − ri) <
1

n
δm(nxn)−m(n)−1

for all n such that m(nxn) − m(n) ≥ 1, and, therefore, that m(nxn) − m(n) − 1 < C log xn for
some C > 0 and every n ≥ 1. If we now define xn = (

∑m(n)
i=1 (1 − ri)) ∨ 1, which increases to

∞ with n, we have ∑m(nxn)
i=m(n)+1(1 − ri)∑m(n)

i=1 (1 − ri)
≤ C log xn + 1

xn

→ 0.

To prove (9), note that

n∑
i=1

iG̃(1/i)2 =
m(n)∑
k=1

∑
i≤n,m(i)=k

iG̃(1/i)2 ≤
m(n)∑
k=1

∑
m(i)=k

iz2
k =

m(n)∑
k=1

z2
kh(k),

where h(k) = ∑
m(i)=k i ∼ (y−2

k − y−2
k−1)/2 as k → ∞, since yk/yk−1 < δ for all k ≥ 1.

Hence,

m(n)∑
k=1

z2
kh(k) ∼

m(n)∑
k=1

z2
k(y

−2
k − y−2

k−1)

2

<
1

(1 − δ)2

m(n)∑
k=1

y2
k+1(y

−2
k − y−2

k−1)

2

= 1

(1 − δ)2

m(n)∑
k=1

(1 − rk+1)
2rk(2 − rk)

2
< C

m(n)∑
k=1

(1 − rk)
2.

Also, from the definition of H and a simple change of variable, we obtain

H(log t) =
∫ t

1
G̃(1/x) dx
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and, since G̃(1/k) decreases to 0, we have
∑n

k=1 G̃(1/k) ∼ H(log n). Now, since 0 < 1−rk <

1 and
∑m(n)

k=1 (1 − rk) diverges, for some C′ > 0 we have

∑n
i=1 iG̃(1/i)2

(H(log n))2 ≤ C′
∑m(n)

k=1 (1 − rk)
2

(
∑m(n)

k=1 (1 − rk))2
≤ C′

∑m(n)
k=1 (1 − rk)

(
∑m(n)

k=1 (1 − rk))2
→ 0.

We end the proof by noting that assertion (b) follows at once from Theorem 2 since, by
(17),

∑∞
j=1(1 − rj ) < ∞ implies that limt→∞ H(t) < ∞ and, hence,

∑n
k=1 min{Z1, . . . , Zk}

grows almost surely to a finite limit.

3.5. The Lindeberg-type condition

In Subsection 3.4 we determined the normalizing constant for the martingale Nn − θ(Mn).
Here, we deal with the Lindeberg-type condition (11) and prove the CLT. We first give two
technical lemmas that will be used in the sequel.

Lemma 1. If (bn) ↗ ∞ satisfies the condition

n∑
k=2

y�(εbn+θ(Mk−1))
p−→ 0 (19)

for all ε > 0, then (11) holds.

Proof. Let ε > 0 and N be such that bN ≥ 2/ε. If |ξk| > εbn, then it easily follows that


θ(Mk) ≥ |ξk| − 1 ≥ εbn − 1 ≥ εbn/2

and

ξ2
k ≤ Ik + (
θ(Mk))

2 + 2Ik
θ(Mk) ≤ 4(
θ(Mk))
2,

for n ≥ N and k ≥ 2. Therefore,

E[ξ2
k 1{|ξk |>εbn} | Fk−1] ≤ 4 E[(
θ(Mk))

2 1{
θ(Mk)>εbn/2} | Fk−1].

This inequality means that (11) is satisfied if we establish that

1

b2
n

n∑
k=2

E[(
θ(Mk))
2 1{
θ(Mk)>εbn} | Fk−1] p−→ 0. (20)

Noting that �(εbn + θ(Mk−1)) ≥ Mk−1, we compute

E[(
θ(Mk))
2 1{
θ(Mk)>εbn} | Fk−1]

= E[(θ(Xk) − θ(Mk−1))
2 1{Xk>�(εbn+θ(Mk−1))} | Fk−1]

=
∞∑

j=�(εbn+θ(Mk−1))+1

( j∑
i=Mk−1+1

ri

)2

pj .
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Writing m for Mk−1 and l for �(θ(Mk−1) + εbn), we have

∞∑
j=l+1

( j∑
i=m+1

ri

)2

pj =
∞∑

j=l+1

pj

j∑
i=m+1

r2
i + 2

∞∑
j=l+1

pj

j∑
i1=m+1

ri1

j∑
i2=i1+1

ri2

=
l∑

i=m+1

r2
i

∞∑
j=l+1

pj +
∞∑

i=l+1

r2
i

∞∑
j=i

pj + 2
l∑

i1=m+1

ri1

l∑
i2=i1+1

ri2

∞∑
j=l+1

pj

+ 2
l∑

i1=m+1

ri1

∞∑
i2=l+1

ri2

∞∑
j=i2

pj + 2
∞∑

i1=l+1

ri1

∞∑
i2=i1+1

ri2

∞∑
j=i2

pj

= yl

l∑
i=m+1

r2
i +

∞∑
i=l+1

r2
i yi−1 + 2yl

l∑
i1=m+1

ri1

l∑
i2=i1+1

ri2

+ 2
l∑

i1=m+1

ri1

∞∑
i2=l+1

ri2yi2−1 + 2
∞∑

i1=l+1

ri1

∞∑
i2=i1+1

ri2yi2−1

= yl

( l∑
i=m+1

r2
i + 2

l∑
i1=m+1

ri1

l∑
i2=i1+1

ri2 + 2
l∑

i=m+1

ri

)

+
∞∑

i=l+1

ripi + 2
∞∑

i=l+1

riyi

≤ yl

(( l∑
i=m+1

ri

)2

+ 2
l∑

i=m+1

ri + 3

)

= yl[(θ(l) − θ(m))2 + 2(θ(l) − θ(m)) + 3],
where the inequality follows because

∑
i>l ripi and

∑
i>l riyi are bounded above by yl . On the

other hand, since θ(�(t)) ≤ t for all t ≥ p0, we have θ(�(εbn+θ(Mk−1))) ≤ εbn+θ(Mk−1),
meaning that θ(l) − θ(m) ≤ εbn and

E[(
θ(Mk))
2 1{
θ(Mk)>εbn} | Fk−1] ≤ y�(εbn+θ(Mk−1))(ε

2b2
n + 2εbn + 3).

Finally, the convergence in (20) (which implies (11)) follows from hypothesis (19) and the
previous inequality.

Lemma 2. Let k ∈ Z+. Then, for a > 0,

y�(θ(k)+a) ≤ e1−ayk (21)

and, for a < 0 such that θ(k) + a ≥ p0,

y�(θ(k)+a) ≥ e−ayk. (22)

Proof. Recall that �(t) = max{k : θ(k) ≤ t} and θ(�(t)) ≤ t < θ(�(t) + 1), for t ≥ p0.
Then, letting T = θ(k) + a, with a > 0, we obtain

a < θ(�(T ) + 1) − θ(k) =
�(T )+1∑
i=k+1

ri .

https://doi.org/10.1239/aap/1127483747 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1127483747


792 R. GOUET ET AL.

Thus, from the elementary inequality 1 − t ≤ e−t , we obtain the first bound (21), since

y�(T )

yk

=
�(T )∏
i=k+1

(1 − ri) ≤ exp

(
−

�(T )+1∑
i=k+1

ri + r�(T )+1

)
≤ e−a+1.

For a < 0, again letting T = θ(k) + a ≥ p0, we have θ(�(T )) ≤ T . This yields

k∑
i=�(T )+1

ri ≥ −a

and (22) follows at once, since

yk

y�(T )

=
k∏

i=�(T )+1

(1 − ri) ≤ exp

(
−

k∑
i=�(T )+1

ri

)
≤ ea.

3.6. Proof of main result

We now state and prove the main result of this section.

Theorem 4. Assume that
∑∞

k=0(1 − rk) = ∞. If lim supk→∞ rk < 1 or lim infk→∞ rk > 0
then

Nn − θ(Mn)

bn

w−→ N(0, 1), (23)

where (bn) is as defined in (13).
If

∑∞
k=0(1 − rk) < ∞ then Nn − θ(Mn) converges almost surely to a finite limit.

Proof. Let
∑∞

k=0(1 − rk) = ∞. We check hypotheses (10) and (11), beginning with the
case lim supk→∞ rk < 1. Clearly, (10) follows from Proposition 2. To check (11), recall
that, for lim supk→∞ rk < 1, we have zk = ∑

i>k pi(1 − ri) ≥ inf i>0(1 − ri)yk and, hence,
yk ≤ Czk for a positive constant C and all k ≥ 0. Now, by (21), y�(εbn+θ(Mk−1)) ≤ e1−εbnyMk−1

and, therefore,

n∑
k=2

y�(εbn+θ(Mk−1)) ≤ e1−εbn

n∑
k=2

yMk−1

≤ Ce1−εbn

n∑
k=2

zMk−1

= Cb2
ne1−εbn

∑n
k=2 zMk−1

b2
n

p−→ 0,

by Proposition 2. Hence, (11) follows from Lemma 1.
We now consider the case lim infk→∞ rk > 0. As above, (10) follows from Proposition 2.

To check (11), observe that there exists a δ, 0 < δ < 1, such that 1 − ri ≤ δ for all i ≥ 0. Now,
since zk = ∑

i>k yiri = ∑
i>k pi+1ri/ri+1, we have zk ≥ (1 − δ)yk+1 for all k ≥ 0. On the

other hand, from the definitions of θ and �, we have

θ(�εbn + Mk−1
) =
�εbn+Mk−1
∑
i=Mk−1+1

ri + θ(Mk−1) ≤ εbn + θ(Mk−1),
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where �·
 denotes the largest integer less than or equal to its argument. Hence,

�εbn + Mk−1
 = �(θ(�εbn + Mk−1
)) ≤ �(εbn + θ(Mk−1))

and

y�(εbn+θ(Mk−1)) ≤ y�εbn+Mk−1
 = yMk−1+1

�εbn+Mk−1
∏
i=Mk−1+2

(1 − ri) ≤ CzMk−1δ
εbn,

for a positive constant C and any n and k with n ≥ k ≥ 2 and εbn ≥ 1. Thus, from Proposition 2,

n∑
k=2

y�(εbn+θ(Mk−1)) ≤ Cδεbnb2
n

∑n
k=2 zMk−1

b2
n

p−→ 0.

Finally, if
∑∞

k=0(1 − rk) < ∞ then, by Proposition 2, the process of conditional variances
converges and, therefore, the martingale converges almost surely.

3.7. Centering sequences

Here we consider the final step towards Theorem 1, namely the substitution of θ(Mn) by a
deterministic sequence (an) in (23). This amounts to showing that

θ(Mn) − an

bn

p−→ 0,

where (bn) is as defined in (13). To this end, we use the following elementary result from
extreme value theory; see [5, p. 116, Proposition 3.1.1].

Lemma 3. For a τ , 0 ≤ τ ≤ ∞, and a sequence (un), the convergence n(1 − F(un)) → τ is
equivalent to the convergence P[Mn ≤ un] → e−τ .

Proposition 3. Assume that
∑∞

k=0(1 − rk) = ∞. If lim supk→∞ rk < 1 or lim infk→∞ rk > 0
then

θ(Mn) − θ(m(n))

bn

p−→ 0. (24)

Proof. The convergence in (24) is equivalent to P[θ(Mn) ≤ εbn + θ(m(n))] → 1 and
P[θ(Mn) ≤ −εbn + θ(m(n))] → 0, for all ε > 0. According to Lemma 3, these conditions
are respectively equivalent to

n P[θ(Xn) > εbn + θ(m(n))] = ny�(εbn+θ(m(n))) → 0 (25)

and
n P[θ(Xn) > −εbn + θ(m(n))] = ny�(−εbn+θ(m(n))) → ∞. (26)

Since ym(n) < 1/n, from (21) we have

ny�(εbn+θ(m(n))) ≤ ne1−εbnym(n) ≤ e1−εbn → 0

and (25) follows.
On the other hand, since ym(n)−1 ≥ 1/n, when lim supk→∞ rk < 1, (22) yields

ny�(−εbn+θ(m(n))) ≥ neεbnym(n) ≥ eεbn(1 − rm(n)) → ∞
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and (26) follows. However, in order to apply (22) we require that θ(m(n)) − εbn ≥ p0. This
is the case since zk = ∑

j>k pj (1 − rj ) ≤ yk and, therefore,

b2
n =

m(n)∑
k=0

zkrk

yk

≤
m(n)∑
k=0

rk = θ(m(n)).

Then, for n sufficiently large, as θ(m(n)) → ∞ there exists an n such that

θ(m(n)) ≥ (
√

p0 + ε)2 and θ(m(n)) − εbn ≥ √
θ(m(n))(

√
θ(m(n)) − ε) ≥ p0.

Now assume that lim infk→∞ rk > 0. Note first that |θ(Mn) − θ(m(n))| ≤ |Mn − m(n)|;
hence, it is enough to prove that

Mn − m(n)

bn

p−→ 0

or, equivalently, that

ny�εbn+m(n)
 → 0 and ny�−εbn+m(n)
 → ∞.

Consider a δ, 0 < δ < 1, such that 1 − ri ≤ δ for all i ≥ 0, and an n such that εbn > 1; for the
first limit, we have

ny�εbn+m(n)
 = nym(n)

�m(n)+εbn
∏
i=m(n)+1

(1 − ri) ≤ nym(n)δ
�εbn
 ≤ δ�εbn
 → 0

and, for the second, we have

ny�−εbn+m(n)
 = nym(n)−1

m(n)−1∏
i=�m(n)−εbn
+1

(1 − ri)
−1 ≥

(
1

δ

)�εbn−1

→ ∞.

3.8. Proof of Theorem 1

Part (a) of Theorem 1 follows immediately from Theorem 4 and Proposition 3. To prove
part (b), note that the tightness of Nn − m(n) is equivalent to

Nn − m(n)

cn

p−→ 0,

for every (cn) ↗ ∞. Write Nn −m(n) as (Nn − θ(Mn))+ (θ(Mn)−Mn)+ (Mn −m(n)) and
let (cn) ↗ ∞. The convergence of

∑∞
k=0(1 − rk) yields, from Theorem 4, the convergence of

the martingale and, consequently, (Nn − θ(Mn))/cn
a.s.→ 0. Also,

Mn − θ(Mn) =
Mn∑
i=0

(1 − ri)

converges and, so,
θ(Mn) − Mn

cn

a.s.→ 0.

Finally, for the case
∑∞

k=0(1 − rk) = ∞, the proof of Proposition 3 implies that

Mn − m(n)

cn

p−→ 0.
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4. Examples

In this section, we give detailed proofs of results presented in Examples 1–5, following
Theorem 1. We begin with a proposition showing simplified expressions for the normalizing
sequences in the case of converging failure rates.

Proposition 4. Let (bn) be as defined in (13) and let rk → r ∈ [0, 1].
(a) If r = 0 then b2

n ∼ log n.

(b) If r ∈ (0, 1) then b2
n ∼ −[r(1 − r)/ log(1 − r)] log n.

(c) If r = 1 then b2
n ∼ ∑m(n)

i=0 (1 − ri).

Proof. (a) It is clear that zk = ∑
i>k pi(1 − ri) ∼ ∑

i>k pi = yk . Therefore,

m(n)∑
j=0

zj rj

yj

∼
m(n)∑
j=0

rj .

On the other hand, from the definition of m(t), we have ym(n) < 1/n ≤ ym(n)−1. Next, recalling
the identity yk = ∏k

i=0(1 − ri), we obtain

−
m(n)−1∑

k=0

log(1 − rk) ≤ log n < −
m(n)∑
k=0

log(1 − rk). (27)

The above inequalities clearly imply that − ∑m(n)
k=0 log(1 − rk) ∼ log n and, since rk → 0, we

obtain b2
n ∼ log n.

(b) Here it is easily seen that zk/yk → 1 − r , and we have

b2
n ∼ (1 − r)

m(n)∑
j=0

rj ∼ r(1 − r)m(n).

Moreover, dividing (27) by m(n) and taking limits, we find that log n/m(n) → − log(1 − r)

and conclude that

b2
n ∼ − r(1 − r)

log(1 − r)
log n.

(c) The convergence rk → 1 implies that zk ∼ yk+1 and, hence, that zkrk/yk ∼ zk/yk ∼
yk+1/yk = 1 − rk+1. From this, we finally obtain

b2
n ∼

m(n)∑
j=0

(1 − rj ).

4.1. Proofs of examples

4.1.1. Proof of Example 1. In this case, rk = p, k ≥ 0, θ(k) = p(k + 1), and

b2
n ∼ −p(1 − p) log n/ log(1 − p).

Also, m(n) = �− log n/ log(1 − p)
. The convergence follows from Theorem 1.
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4.1.2. Proof of Example 2. Here b2
n ∼ −r(1 − r) log n/ log(1 − r). Moreover, m(n) ∼

− log n/ log(1 − r) and θ(m(n)) ∼ −r log n/ log(1 − r). The result follows if

θ(m(n)) + r log n/ log(1 − r)√
log n

→ 0.

A readily checked sufficient condition is that
∑n

i=1 |δi |/√n → 0, with δi = ri −r . This follows
directly from the definition of m(n). Indeed, since ym(n) < 1/n ≤ ym(n)−1, we have

− 1√
m(n)

−
∑m(n)

i=0 log(1 − δi/(1 − r))√
m(n) log(1 − r)

<
m(n) + log n/ log(1 − r)√

m(n)

≤ − ∑m(n)
i=0 log(1 − δi/(1 − r))√

m(n) log(1 − r)
+ log(1 − δm(n)/(1 − r))√

m(n) log(1 − r)
.

It is clear that the left- and right-hand sides of this expression tend to 0 when
∑n

i=1 δi/
√

n → 0.
For the negative binomial distribution, it can be shown (see [13, p. 323, Example 3.1]) that

p − (a − 1)(1 − p)

k
≤ rk ≤ p

and the condition above is satisfied with r = p.

4.1.3. Proof of Example 3. Let r2k = p and r2k+1 = q for k ≥ 0, where 0 < p < q < 1.
Theorem 1 applies since lim supk→∞ rk = q < 1.

For the centering and scaling sequences, first note that |θ(m(n))−m(n)(p +q)/2| ≤ 1. On
the other hand, from ym(n) < 1/n ≤ ym(n)−1, we obtain

∣∣∣∣m(n) + log n

log
√

(1 − p)(1 − q)

∣∣∣∣ ≤ C

for all n, where C is a positive constant. Therefore, there exists a constant C′ such that
∣∣∣∣θ(m(n)) + p + q

2

log n

log
√

(1 − p)(1 − q)

∣∣∣∣ ≤ C′ (28)

for all n. This means that the CLT holds with θ(m(n)) replaced by the sequence in (28).
In order to obtain the scaling sequence b2

n, note that y2k = (1 − p)Ak and y2k+1 = Ak+1,
with A = (1 − p)(1 − q). Furthermore,

z2k = Ak+1

1 − A
(p(1 − p) + q) and z2k+1 = Ak+1

1 − A
(1 − p)(p + q(1 − q)).

Finally, after some algebraic manipulation, we find that

lim
n→∞

b2
n

m(n)
= lim

n→∞
1

m(n)

m(n)∑
k=0

zkrk

yk

= 1

2
(p(1 − p) + q(1 − q)),

and (4) follows.
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4.1.4. Proof of Example 4. From Proposition 4, we have b2
n ∼ log n. Under the condition∑∞

k=1 r2
k < ∞, it is easy to check that |θ(m(n)) − log n| ≤ C for a positive constant C, and

the result follows.

4.1.5. Proof of Example 5. In this case, from Theorem 1 and Proposition 4, we have

Nn − m(n) + ∑m(n)
i=1 (1 − ri)√∑m(n)

i=1 (1 − ri)

w−→ N(0, 1),

from which (6) and (7) easily follow.
Convergence for the Poisson distribution with parameter λ is a consequence of the following

approximation for the failure rates rk; see [13, p. 328]:

λ

k + 1
−

(
λ

k + 1

)2

≤ 1 − rk ≤ λ

k + 1
.

5. Concluding remarks

Martingale methods are powerful and elegant tools for the asymptotic analysis of processes
such as Nn but, in some cases, the technical details become rather involved. As suggested by
a referee, an interesting alternative would be to explore the applicability of results on the limit
behavior of sums of {0, 1}-valued dependent RVs.

Another question of some interest is how the normalizing sequences (an) and (bn) are related
to the mean and variance of Nn, respectively. Some progress can be made for the centering
sequence by using the martingale property and bounding the difference E[θ(Mn)] − θ(m(n)),
as shown below.

Proposition 5. If lim supk→∞ rk < 1 or lim infk→∞ rk > 0 then

E[Nn]
θ(m(n))

→ 1. (29)

Proof. First, from the martingale property, we have E[Nn] = E[θ(Mn)]. On the other hand,

E[θ(Mn)] =
∞∑

k=0

θ(k) P[Mn = k]

=
∞∑
i=0

ri(1 − (1 − yi−1)
n)

=
m(n)∑
i=0

ri(1 − (1 − yi−1)
n) +

∞∑
i=m(n)+1

ri(1 − (1 − yi−1)
n)

= θ(m(n)) − Tn +
∞∑

i=m(n)+1

ri(1 − (1 − yi−1)
n),

with Tn = ∑m(n)
i=0 ri(1 − yi−1)

n. We use the elementary inequality 1 − (1 − x)n ≤ nx, for
0 < x < 1 and n ∈ Z+, to obtain

∞∑
i=m(n)+1

ri(1 − (1 − yi−1)
n) ≤ n

∞∑
i=m(n)+1

riyi−1 = nym(n) < 1.
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Therefore,
−Tn ≤ E[Nn] − θ(m(n)) ≤ 1,

and (29) follows if we show that
Tn

θ(m(n))
→ 0. (30)

To this end, assume that there exists a sequence (xn) tending to 0 such that 1/n ≤ xn ≤ 1 and

θ(m(n)) − θ(m(nxn))

θ(m(n))
→ 0.

Then, since i ≤ m(n) is equivalent to yi−1 ≥ 1/n, we have

Tn =
m(nxn)∑

i=0

ri(1 − yi−1)
n +

m(n)∑
i=m(nxn)+1

ri(1 − yi−1)
n

≤
(

1 − 1

nxn

)n

θ(m(nxn)) +
(

1 − 1

n

)n

(θ(m(n)) − θ(m(nxn))), (31)

which clearly implies (30).
We finally show that such a sequence exists when lim infk→∞ rk > 0 or lim supk→∞ rk < 1.

Suppose first that lim infk→∞ rk > 0, and take xn = [1/(m(n) + 1)] ∨ (1/n). Consider a δ,
0 < δ < 1, such that 1 − rk < δ for all k ≥ 0. Then, for all n such that m(n) − m(nxn) ≥ 1,

1

n
≤ ym(n)−1 = ym(nxn)

m(n)−1∏
i=m(nxn)+1

(1 − ri) <
1

nxn

δm(n)−m(nxn)−1,

meaning that m(n) − m(nxn) − 1 < C log(1/xn) for some C > 0 and every n ≥ 1. Therefore,

0 ≤ θ(m(n)) − θ(m(nxn))

θ(m(n))
=

∑m(n)
i=m(nxn)+1 ri∑m(n)

i=0 ri

≤ m(n) − m(nxn)

(1 − δ)m(n)
≤ C log(1/xn) + 1

(1 − δ)m(n)
→ 0.

In the case lim supk→∞ rk < 1, take xn = 1/(log n + 1). Recall the definition of zj . Then
there exists an a > 0 such that a ≤ zj /yj ≤ 1 for all j ≥ 0. Therefore,

0 ≤
∑m(n)

i=m(nxn)+1 ri∑m(n)
i=0 ri

≤ (1/a)
∑m(n)

i=m(nxn)+1 rizi/yi∑m(n)
i=0 rizi/yi

≤ H(log n) − H(log(nxn)) + 1

aH(log n)
≤ C

log n − log(nxn) + 1

log n
→ 0,

where the third inequality follows from (14) and the last one from the definition of H and (15).

Proposition 6 shows that θ(m(n)) can be replaced by E[Nn] in (1) when lim supk→∞ rk <1.

Proposition 6. If lim supk→∞ rk < 1 then

E[Nn] − θ(m(n))

bn

→ 0.
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Proof. It suffices to show that

Tn

bn

=
m(n)∑
i=0

ri(1 − yi−1)
n

bn

→ 0,

where b2
n = ∑m(n)

k=0 zkrk/yk . From (31), with xn = 1/(log n + 1), we obtain

0 ≤ Tn

bn

≤
(

1 − log n + 1

n

)n
θ(m(n))

bn

+
(

1 − 1

n

)n
θ(m(n)) − θ(m(nxn))

bn

. (32)

Since lim supk→∞ rk < 1, from (14) and (15) there exist constants A, B > 0 such that A log n ≤
b2
n ≤ B log n for all n ≥ 2. Also, since there exists an a > 0 such that a ≤ zj /yj ≤ 1 for all

j ≥ 0, we have
C log n ≤ θ(m(n)) ≤ D log n

for some C, D > 0 and all n ≥ 2. Therefore, the right-hand side of (32) can be bounded above
by

C′
[(

1 − log n + 1

n

)n√
log n +

(
1 − 1

n

)n log log n√
log n

]
→ 0.

Unfortunately, it appears that the above arguments do not carry over to the case in which
lim infk→∞ rk > 0.

The information obtained from Propositions 5 and 6 on the asymptotic behavior of E[Nn] is
still limited. We hope to carry out a more detailed analysis using, for instance, Rice’s method
(see [6] and [10]), since E[Nn] can be written as a binomial alternating sum

n∑
k=1

(
n

k

)
(−1)k+1ϕ(k),

with ϕ(k) = ∑∞
i=0 riy

k
i−1.
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