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Abstract

Consider a sequence (X,) of independent and identically distributed random variables
taking nonnegative integer values, and call X, arecord if X,, > max{Xy,..., X,—1}. By
means of martingale arguments it is shown that the counting process of records among the
first n observations, suitably centered and scaled, is asymptotically normally distributed.
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1. Introduction

Let (X,) be a sequence of nonnegative, independent, and identically distributed (nonneg-
ative i.i.d.) random variables (RVs) with common distribution function F, and let M, =

max{Xi,...X,}, for n > 1, be the sequence of partial maxima; conventionally we write
Mo = —1. We say that X, is a (strict upper) record if X,, > M,,_;. The indicator of a record is
denoted by 1, = 1;x,>m,_,} and the associated counting process by N, = 221 Iy.. See [1],

[2], and [9] for references and information on the theory and applications of records.

We are interested here in the asymptotic normality of N,,, suitably centered and scaled, when
the underlying distribution F is concentrated on the nonnegative integers.

A beautiful and well-known result of Rényi [12] states that the indicators I, are independent,
with P[I,, = 1] = 1/n, when F is continuous. Therefore, the central limit theorem (CLT)

No —logn w yo. 1),
logn
is readily obtained. (Here, %> denotes weak convergence.)

When F is discontinuous, the indicators I, are not independent and their distributions depend
on F. Therefore, this case is somewhat more complicated and results are rather scarce. Vervaat
[13], in a remarkable pioneering paper, obtained a variety of functional CLTs for records of
nonnegative, integer-valued random variables. In particular, his work contains the asymptotic
normality of N, for the geometric distribution, which happens to be an especially motivating
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distribution, given its connection with the asymptotic analysis of search costs in data structures
known as skip lists (see [11]). In the context of the geometric distribution, Prodinger [10]
obtained asymptotic expressions for the mean and variance of N,, and Bai et al. [3] established
asymptotic normality with rates. Notice that computer science specialists use the term left-fo-
right maxima when referring to upper records.

A martingale approach, combined with asymptotic results for sums of partial minima, was
used in [7] to derive strong convergence results for N, from quite general discrete models,
including the geometric and Poisson random variables. Our aim here is to further exploit the
connection between records and martingales, obtaining the corresponding CLTs.

In this paper, we establish CLTs for a wide range of discrete distributions, identifying the
centering and scaling sequences (Theorem 1(a)). We also show that, for a certain class of
distributions, no such CLT holds (Theorem 1(b)). While, to the best of the authors’ knowledge,
only the case of the geometric distribution has previously appeared in the literature, the results
of this paper cover a rather general class of discrete distributions; see Remark 1.

We conclude this introduction with additional definitions and notation. Let (X,) denote
a sequence of i.i.d. RVs, with common right-continuous distribution function F, such that
P[X, =kl=pix >0fork € Zy ={0,1,...} andn > 1. Clearly, F(x) < 1 for all x and,
hence, N,, /' oo almost surely.

Fork € Zyandt > 0,letyy = 1 — F(k) = ) _,_; pi be the discrete survival function (with
y—1 = 1) andletm(¢) = min{j € Z, : y; < 1/t} be the quantile function. The discrete failure
or hazard rate ry is defined as

e = PXi =kl  pk
P[X1 > k]  yik—1

and is easily seen to satisfy

k
rp=1-— e and y; = l_[(l —ri).
Yk—1 i=0

Let6(k) = Zf:o r; be the cumulative hazard function and let ®(¢) = max{k: (k) < t} for
t > po. Then 6(O()) <t < 6(O() + 1) and P[O(X,) > t] = P[X,, > O@®)] = yo), for
n>1landt > py.

Martingales are taken relative to the natural filtration (¥7,), with ¥, = o (X1, ..., X,,) for
n > 1and Fy = {@, Q}. Almost-sure convergence, convergence in probability, and weak
convergence will be denoted respectively by the arrows gy ‘i>’, and (recall) %> For
increasing sequences (a,) and (b,), we write a, ~ by, if either both (a,) and (b;) converge to
a finite limit or they both grow to infinity with lima, /b, = 1.

A word about the organization of the paper. The main result and several examples are
presented in Section 2. The proof, developed in Section 3, is rather long and has been split
into several lemmas and propositions, distributed in subsections. Section 4 contains the proofs
of particular cases, shown as examples in Section 2. Finally, in Section 5, we present our
concluding remarks and some ideas for further research.

2. Main result and examples

Our main result is the asymptotic normality of the counting process of records N, suitably
centered and scaled, which is applicable to a wide spectrum of discrete models. We use a
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martingale approach that connects the CLT with convergence results from the theory of sums
of partial minima of i.i.d. RVs, as developed by Deheuvels in [4].

Theorem 1. Letzx =) ,_, riyi and b% = ka:(%) 25k /Y, fork,n € Zy.
(a) Assume that Z,fio(l —rg) = o0. Iflimsup,_, o rx < 1 orliminfy_ o 1y > O then

w 2 N, 1). 1)

®) If Z,(zio(l —ry) < oo then N, — m(n) is tight. In particular, there are no sequences
(an), (by) /' oo such that (N, — a,)/b, converges in distribution to a nondegenerate
random variable.

Remark 1. Theorem 1 gives a rather complete picture of the asymptotic normality of the
number of records for discrete distributions. In fact, any sequence (r;), 0 < ry < 1,k > 0, with
Y ik = oo is the failure rate sequence of a distribution on the nonnegative integers. Only
the very special case of distributions whose failure rates (ry) satisfy both liminf;_, o7y = 0
and lim sup;,_, ., rx = 1 is not covered by Theorem 1.

Before going into the proof of Theorem 1, we present some examples whose details are
worked out in Section 4.

Example 1. (Geometric with parameter p.)

~1/2 plogn \ w _rd—=p)
dogn) (1 + B2 ) 2 (0.0 ?

The convergence in (2) was previously obtained in [13] and [3] using completely different
methods. To the best of the authors’ knowledge, the cases covered by the next examples are
new.

Example 2. (Converging failure ratesry — r, 0 <r < 1, with Y i_, [ri —r|//n — 0.)

—12 rlogn w B r(l1—r) )
(loem) (N" " log(l —r)) -~ N<0’ log(1 = 1))’ ©

A concrete random variable with converging rs satisfying the hypothesis of this example is

the negative binomial, with py = (—D*(7%)p*(1 — p) fork > 0,0 < p < 1,anda > 1. In
this case, (3) holds with » = p.

Example 3. (Alternating geometric with parameters p and q.) Here, we mean ro; = p and
rk+1 = ¢, where 0 < p < g < 1 and k > 0. This random variable can be seen as the number
of tails in independent throws of alternating coins, with respective head probabilities p and ¢,
until the first head appears. In this case,

(p+q)logn ) w N<0’_p(l—p)+q(1—q)>_ @
log(1 = p)(1 —q) log(1 = p)(1 —¢q)

Example 4. (Converging failure rates ry — 0, with ¥ p r,% < 00.)

aogn)—”z(zvn +

(logn)"Y2(N, —logn) - N(O, 1). 5)

For a concrete RV X, consider y, = (k + D4, k>0,d >0. Thenry = d/(k+1)+ O(k™2)
and (5) applies.
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Example 5. (Converging failure rates ry — 1, such that Z,fil(l —ry) = o00.) Letry =

1—ak™@ 48, fork > 1,a > 0,and 0 < a < 1, with (6;) such that 21311 |6x] < oo. Then
(logm(n))™/*(N, — m(n) + alogm(n)) ~> N(0, a) (6)

forae = 1 and

)~ (N, = m(n) + ——mm)' ) S N0, = )
l—« l—«o
for o < 1. Also, m(n) ~ logn/«aloglogn.
In the particular case of the Poisson distribution with parameter A, we havea = A ando = 1.
From (6) we obtain

(loglogn)~"/2(N,, — m(n) + Alog(m(n))) — N(O, A),
with m(n) ~ logn/loglogn.

Remark 2. Notice the differences between continuous and discrete distributions. For contin-
uous distributions, the number of records is always asymptotically normal, with the variance
growing as log n regardless of the parent distribution F. For discrete distributions, the asymp-
totic normality of the number of records depends on the distribution F via the failure rates ry:
for distributions with very light tails (those with Z,fozo(l — 1) < 00), the number of records
is not asymptotically normal; moreover, when a CLT holds, the scaling sequence grows at a
speed that depends on the rs.

3. Proof of main result

3.1. Sums of partial minima

As stated in the introduction, the martingale approach we use depends on asymptotic results
for sums of partial minima of i.i.d. RVs. The behavior of sums of minima is fairly well known
and the following weak law of large numbers [4] is particularly useful for our purposes.

Let (Z,) be a sequence of nonnegative i.i.d. RVs, with common distribution function G
such that G(z) > O for all z > O, and let S, = Z?:l min{Zy, ..., Z;}. In addition, let
G(t) =inf{z > 0: G(z) >t} for0 < < 1, and let

H(x) =/e' G(1/u)du forx > 0.
1

Theorem 2. Iflim,_, o H(x) is finite then S, grows almost surely to a finite limit. Otherwise,
if there is a sequence (x,), increasing to oo, such that

H(x, + logn)

H(logn) ®
and -
Yo kGU/R? ©
(o1 G(1/K))?
then
A\ p
— 1
H (logn)

For a proof of Theorem 2, see [4, Chapter II, Theorem 7 and Corollary 4].

https://doi.org/10.1239/aap/1127483747 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1127483747

Central limit theorems for discrete records 785

3.2. A martingale CLT

Martingale CLTs generally require the convergence in probability of a quadratic process and
a Lindeberg-type condition of asymptotic negligibility. Here we have chosen to work with the
following version, whose conditions are relatively simple to verify; see [8, p. 58].

Theorem 3. Consider a sequence (&;) such that E[&; | F;-1] = 0 and E[Eiz] < oo for all
i > 1. If, for a sequence (b,) /' 0o, we have

1 n
QZE[&Z | Fial > 1 (10)
i=l1
and
- p
—zZE[ff g 1>eb,) | Fioal >0 (11
n

forall e >0, then' Y 7_, & /by A N(O 1).

As we will see later, it turns out that the processes involved in conditions (10) and (11) can
be written in terms of sums of partial minima of RVs.

3.3. The fundamental martingale

The CLT for records of various discrete models is based on a single fundamental martingale,
presented below. The idea comes from the easily verifiable fact that N, — pM,, is a martingale
when the underlying RVs are geometric with parameter p.

Proposition 1. (a) The process

M,
Ny = 0(My) = Ny = Y 1, (12)

forn > 1, is a square-integrable martingale.
(b) Let & = I — [0(My) —O0(My_1)] be the increments of martingale (12) andlez‘E[Sk2 | Fr—1]
be the increments of the processes of conditional variances in (10). Then
BIE | Fiol= Y p(l—rd= ) riv.
i>Mj_ i>Mjy—1
Proof. (a) First, it is easy to see that
E[lx | Fk—1]1 =P[Xg > My—1 | Fi—1]1=1— F(Mk-1) = ym;_,-

Let AO(My) = 0(My) — 6 (Mk—1). Then

M M-y
E[AO(MY) | Fi1] = E[(Zri - rl-) ‘ ﬂl}
i=0 i=0

i

(Z er1+,-> P[Xp =M1 +i | Fiil

j=1

M8 £M8

IM_1+j PIXe > M1+ j— 1| Fre 1]_ZPMk 1+ = VM-
j=1

~.
I
_
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Therefore, N, — 6(M,,) is a martingale. To verify the square integrability of (12), it suffices to
check that 6(X,,) is indeed square integrable:

E[e(xn)ﬁ:i(iri)zpk—Z(Zr +2Z Z rlr,)pk

k=0 \i=0 k=0 i=0 j=i+1
o o

—ZV,ZZPk+2Zh Z FJZPk
i=0 k=i i=0 j=i+1 k=j

IA

Z riyi-1+2 Z riYi
i—0 i=0

o0
14+2) pil—r) <3
i=0

(b) From the martingale property, and noting that I A0 (M) = A6 (My), we have
El& | Fi1] = EUk | Fi1] — 2E[AO(My) | Fi1] + EL(AO(M))? | Fi-i1]
= Bl(A0(M))? | Fie1] = Ym -
On the other hand, writing m for My_1, we have

E[(AO(M))? | Fi—1] = EL(O(Xk) — 0(Mk—1)))* | Fi—1]

(e8] 1 2
= Z(Z rm+j) PIXi=m+i| Fiil
DY) IENIRYD SR

I<ji<ja=i

00
2
:Zrm+jzpm+i+2 Z rm+j1rm+jzzpm+i
Jj=1 i=j

I1<ji<j2<o00 i=j

= Z rjpj+2 Z T'm+j1 Pm+ jo
j>m 1<ji<ja2<00
= P T2 iy
j>m j>m
= Ym + Z rjyjs
j>m

and the conclusion follows.

Remark 3. The martingale (12) reveals an interesting and apparently new property of discrete
extremes that could be useful beyond our result on asymptotic normality for records. On the
other hand, when F is continuous, it can be easily checked that the martingale analogous to
(12) is given by N,, + log(1 — F(M,)).

Remark 4. Another martingale related to N, is readily constructed by subtracting the pre-
dictable process » ;_, ym,_, from N,. This process is useful in characterizing the strong
asymptotic behavior of N,, (see [7]), but is unsuitable for weak limits.
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3.4. Asymptotic conditional variance

It is important to notice that the process of conditional variances in (10) behaves as a sum
of partial minima of i.i.d. RVs. This is because u(M) = Y _,_,, riyi is a decreasing function of
M and, therefore,

EI&7 | Fio1] = u(My—1) = min{u(X1), ..., u(Xx—1)}

for k > 2. In what follows, we consider (10) and apply Theorem 2 to obtain the scaling
sequence (by,) of N, — 0(M,,).
From Proposition 1, we have

n n n
DCEIE | Fioal =) min{Zi,.... Z1) =Y 2wy
k=2 k=2 k=2

where

Zi=Y rivi= Yy pil—r), k=1.

i>Xp i>Xpg

These random variables are 1.i.d., take the values

zj = Zriyz' = Zpi(l —ri)

i>j i>j

with respective probabilities p;, and have common distribution function G given by

G =) pi=yj-1, <<z

i>]
The inverse of G is easily seen to be
G(t) =z, yj <t =<yj-1.
Equivalently, G(l/t) = Zm(r), Where m(t) = min{j € Zy: y; < 1/t}, fort > 1.

Proposition 2. Let (Z,) be the sequence of i.i.d. RVs defined above and let

m(n) r
pr =Y K (13)
= W

(a) Assume that Z,fio(l —ry) = oo. Iflimsup,_, 7k < 1orliminfy_, o1k > O then
1 n
ﬁZmin{Zl,...,Zk} 5.
k=1
(d) If > 52 (1 — ry) < oo then

n
> “min{Z,. ..., Z} %z,
k=1

where Z is a finite random variable.
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Proof. We first determine the normalizing sequence H (logn). Lett > 1. Then

t t
H(logt):/ é(l/u)duzf Ty dut
1

m(t)

yj Yot
= Z/ Zmu) du — / Zm(u) du
t

Yi-1
m(t)
. - -1 -1
= E z,(yj _yj_l)_zm(t)(ym(t)_t)

m(t)

=Y pa, (14)

j=0 "/
where p(t) = zm(,)(yr;(ll) —1). Clearly z; < y;; therefore,

o) < Zm(t)(y,,;(lt) - y,;(lt)_l) = Zm)m(t)/ Ym@) < 1

and we have H (logn) ~ b%.
In order to prove part (a), we check hypotheses (8) and (9) of Theorem 2. Suppose first that
lim sup;_, o, 7« < 1 and note that zx = G(1/¢) for yx < 1/t < yx—1; thatis, m(t) = k. Then

EmO 4Gy < 0.

Ym(t)—1 ym(t)
On the other hand, it is easy to see that zx /yx—1 > inf j>x (1 — r.,‘)z. Hence, we have
1ig£ft(;(1/t) >0
and there exist constants A and B, 0 < A < B < 1, such that
A/t < G(1/t) < B/t (15)

for all # > 1. Now, from the definition of H and (15) we find that

0 < H(x, +logn) — H(logn) - Bx,
- H (logn) ~ Alogn

for n > 1, and (8) follows upon choosing, for instance, x, = log(logn + 3). Equation (9) also
follows immediately from (15), since

YA KGR - B2Y 1/k
(Choi G/~ A2 1/K)?

Now take lim infj_, oo rx > 0. In this case, there existsad,0 < § < 1,suchthat 1l —r; < §

for all k > 0. Noting that yx = pgy1/ri+1, we have zx = Y, Viti = Y jop Pi+1Fi/Tit1-
Then, since

17i
(=81 = (1 =8 pigr < y_ 2 —me

Ti+1

yk+1,

i>k i>k i>k
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we have (1 — 8)yr4+1 < zx < (1/(1 — 8)) yg+1 for all k > 0. Also,

2k k=g Dn 1
(1= 8)%(1 = req1) < = as < (I —re41) (16)
Yk Vi+1 1-34

and, consequently, there exist constants A and B, 0 < A < B, such that

m(n) m(n)
A Z(] —r) < H(logn) < B Z(] — rp). (17)
k=1 k=1

From (14) and (16), it is clear that (8) holds if and only if there exists a sequence (x,) /' 0o,

with x; > 1, such that
m(nxy,)
Zi m(n)+1(1 —ri) -0

(18)
YA —r)
In order to prove (18), recall that
1 m(nxn)—1 1
x = Ym(nx)—1 = Ym(n) 1_[ (I—ri) < ;am(nx,l)—m(n)—l
n i=m(n)+1

for all n such that m(nx,) — m(n) > 1, and, therefore, that m(nx,,) —m(n) — 1 < Clogx, for
some C > 0 and every n > 1. If we now define x,, = (Zl (1 = r;)) v 1, which increases to
oo with n, we have

St (=) _ Cloga, +1

< — 0.
S =) n
To prove (9), note that
m(n) m(n) m(n)
ZzG(l/l) = 3 iG> Y ig= szh(k),
k=1 i<n,m(i)=k k=1 m(i)=k

where h(k) = Zm(i):ki ~ (y,:2 — y,:_zl)/2 as k — oo, since yx/yk—1 < & forall k > 1.

Hence,
m(n) m(n) 2 -2
2007 = i)
2 k k—1
E h(k E B
K (k) ~ B
k=1 k=1
(n) -2
’g: yk+1(yk yk—l)
(1— 8)2
(n) m(n)
1 =)@ =) 2
<C 1-—
= 0= Z 5 ;< )2

Also, from the definition of H and a simple change of variable, we obtain

t
H(logt) = / G(1/x)dx
1
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and, since G(l/k) decreases to 0, we have Zk 1 G(l/k) H (logn). Now, since) < 1—r; <
1 and ka (1 — ry) diverges, for some C’ > 0 we have

S iG(1)i)? < Yr 1 — )2 -c , Yema
(Hogm)* = = (D1 — 2 ~ (Z’”(’”a—rk))2

We end the proof by noting that assertion (b) follows at once from Theorem 2 since, by
a7, 2?0:1 (1 —rj) < ooimplies thatlim;_, o H(t) < oo and, hence, > ;_, min{Zy, ..., Zi}
grows almost surely to a finite limit.

3.5. The Lindeberg-type condition

In Subsection 3.4 we determined the normalizing constant for the martingale N,, — 8(M,,).
Here, we deal with the Lindeberg-type condition (11) and prove the CLT. We first give two
technical lemmas that will be used in the sequel.

Lemma 1. If (b,) / oo satisfies the condition
Y Yob+o0m 1) = 0 (19)
k=2
forall ¢ > 0, then (11) holds.
Proof. Lete > 0and N be such that by > 2/e. If |&| > eb,, then it easily follows that

AO(My) > |&| — 1 = eby — 1 > &by, /2

and
E2 < I + (AO(Mp))* 4 21, AO(My) < 4(AO(My))?,

forn > N and k > 2. Therefore,
EIE7 1gy=eby) | Fio1] < 4E[(AO(My))* Yinomy>ebns2y | Fi—1l-

This inequality means that (11) is satisfied if we establish that

1 n
77 2 EIAOM) Linoquehy) | Fim1] = 0. (20)
n k=2

Noting that ®(eb,, + 0 (My—_1)) > My_1, we compute

EL(AO (M) Laou)>eby) | Fiot]
= E[(0(Xp) — O(Mi—1)* Lix,=0 b0} | Fio1]

B (B

J=0O(eby+6 (M) +1 “i=Mp—1+1
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Writing m for My_ and [ for ® (0 (My_1) + €b,), we have

e J 2 00 J 00 J J
I OIMIIED SIS ML SV SIS I

j=l4+1 Ni=m+1 j=l+1  i=m+l j=l+1 ij=mAl ip=ip+1

l [e'¢) 00 00 l l o0
— 2 . 2 . . . .
= D Pt DY pi 2 Y X e ) P
i=m4+1 j=l+1 =41 j=i il=m+1 =i+l j=l+1
l 00 00 o0 o0 00
3T 31 SIRED 3 oS
i1=m+1 ir=I+1 Jj=ia i1=I+1 ir=i1+1 Jj=ia
l 00 l l
2 2
=y Do v D0 Y
i=m-+1 i=l+1 il=mt1 =i 41
1 oo 00 [e's]
+2 Z Tiy Z TiyYir—1+2 Z Tiy Z Tiy Yip—1
i1=m+1 ir=Il+1 i1=[+1 ir=ii+1
l l l 1
2
OIS MRS NEEED 9
i=m+1 ij=m+1 ir=i1+1 i=m+1
00 )
+ Z ripi +2 Z riYi
i=l+1 i=I+1
1 2 l
fyl(( )3 ) 2y r,-+3>

i=m+1 i=m+1
= yi[O) — 6(m))?> +2(0() — H(m)) + 31,

where the inequality follows because Y _,_; r;p; and ) ;_,; r; y; are bounded above by y;. On the
other hand, since 6 (®(¢)) < tforallt > pg, we have 6 (O (eb, +6 (My_1))) < b, +6 (My_1),
meaning that (/) — 8(m) < eb,, and

E[(AO(M)) Linomp=eby) | Fi1] < Yo(eby+6(My_ 1)) (2D7 + 2eby +3).

Finally, the convergence in (20) (which implies (11)) follows from hypothesis (19) and the
previous inequality.

Lemma 2. Let k € Z. Then, fora > 0,

YOO k) +a) < € Yk 21
and, for a < 0 such that (k) +a > po,

Yok +a) = € ¢ Yk (22)

Proof. Recall that ©®(¢) = max{k: 0(k) <t} and 6(O(t)) <t < 6(O(t) + 1), fort > po.
Then, letting T = 6 (k) + a, with a > 0, we obtain

O(T)+1

a<6@(T)+1)—0(k) = Z .
i=k+1

https://doi.org/10.1239/aap/1127483747 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1127483747

792 R. GOUET ET AL.

t

Thus, from the elementary inequality 1 — ¢ < e™', we obtain the first bound (21), since

e(T) O(T)+1

Yodh l_[ (I —=r) =< eXP(— Z ri +V®(T)+1> <eath
Yk i=k+1 i=k+1
For a < 0, again letting T = 6(k) + a > pg, we have 6 (®(T)) < T. This yields
k
Y riz-a
i=0(T)+1
and (22) follows at once, since
k k
Yk _ l—[ (1—r,~)§exp(— Z ri> <e.
YO i_ey+1 i=0(T)+1

3.6. Proof of main result

We now state and prove the main result of this section.

Theorem 4. Assume that Z,fio(l —rg) =o00. Iflimsup;_, ok < 1orliminfioory > 0

then N 0(M,)
o 2 NN, 1), (23)

n

where (by,) is as defined in (13).
Ifz,fio(l — 1) < oo then N, — 6(M,,) converges almost surely to a finite limit.

Proof. Let Z,f‘;o(l — ry) = 0o0. We check hypotheses (10) and (11), beginning with the
case limsup,_, 7k« < 1. Clearly, (10) follows from Proposition 2. To check (11), recall
that, for lim sup,_, ., 7« < 1, we have z; = Zi>k pi(1 —r;) > inf;~o(1 — r;)y; and, hence,
vk < Czi forapositive constant C and allk > 0. Now, by (21), Yo (eb,+6(M;_1)) = el=ebn YM
and, therefore,

n n

1—eb,
2 YO(eb,+6(Mx_1) =€ E YMi—
k=2 k=2

n
S Ce]f&bn ZZM]{71
k=2

_ CRel et =2 DMt kg
n b’% ?
by Proposition 2. Hence, (11) follows from Lemma 1.
We now consider the case lim infy_, o 7x > 0. As above, (10) follows from Proposition 2.
To check (11), observe that there existsad,0 < < 1, suchthat 1 —r; < éforalli > 0. Now,

since zx = Y ;o Yiti = Yoy Pi+17i/Ti+1, we have zx > (1 — §)yxy1 for all k > 0. On the
other hand, from the definitions of § and ®, we have

I_Sbn'f‘Mk—lJ
O(Leby + My_1]) = Y ri+0(Mi1) < &by +0(My_1),
i=My—1+1
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where | -] denotes the largest integer less than or equal to its argument. Hence,
lebn + My—1] = ©(O(leby + Mi—1])) = O(eby + 6 (Mi-1))

and
Lebn+My—1]
— . eby
YO (eby+6(Mi-1)) = Yleby+Mi—1] = YMy_1+1 H (I =r) = Capyy 87,
i=Myp_1+2
for a positive constant C and any n and k withn > k > 2 and ¢b,, > 1. Thus, from Proposition 2,

n

> Yowb ooy < C8by
k=2

n
=2 ZMj—
Zk_zz k=1 i)O.
bn

Finally, if Y 72 (1 — rg) < oo then, by Proposition 2, the process of conditional variances
converges and, therefore, the martingale converges almost surely.

3.7. Centering sequences
Here we consider the final step towards Theorem 1, namely the substitution of 6(M,,) by a
deterministic sequence (a,) in (23). This amounts to showing that

0(My) — ay l) 0
bn ’

where (by,) is as defined in (13). To this end, we use the following elementary result from
extreme value theory; see [5, p. 116, Proposition 3.1.1].

Lemma 3. Forat, 0 <1 < 00, and a sequence (u,), the convergence n(1 — F(u,)) — t is

equivalent to the convergence P[M,, < u,] — e ".

Proposition 3. Assume that Z,fio(l —ri) = oo. Iflimsup,_, o, 1k < lorliminfy_oorx > 0

then oM 0
( n); (m(n)) ®o (24)

Proof. The convergence in (24) is equivalent to P[0(M,,) < eb, + 6(m(n))] — 1 and
P[O(M,)) < —eb, + 0(m(n))] — O, for all ¢ > 0. According to Lemma 3, these conditions
are respectively equivalent to

nP[0(X,) > eb, +0(m(n))] = nye (b, +o(mmy)) — 0 (25)

and
nPlO(Xy) > —eb, + 0(m(n))] = nye(—eb,+0(mn)) —> - (26)

Since yp,ny < 1/n, from (21) we have

Y@ (eby+0 (m(n))) = nel ~¢bn Ymmn) = el=n 0

and (25) follows.
On the other hand, since y;,(4)—1 > 1/n, when lim sup,_, ., ¢ < 1, (22) yields

YO (—eby-+0(mm)) = M€ Yy = €21 (1 = ryp(ny) — 00
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and (26) follows. However, in order to apply (22) we require that 8 (m(n)) — b, > po. This
is the case since z; = Zj>k pj(1 —rj) < yx and, therefore,

m(n) or m(n)
KTk
b = § R < § rx = 0(m(n)).
= ¥ =0

Then, for n sufficiently large, as 0 (m(n)) — oo there exists an n such that

O(mn) = (Vpo+e)° and O(m(n) — eby = v/0(m(m) (/6 (m(n)) — &) = po.

Now assume that lim inf;_, o, rx > 0. Note first that |§(M,) — 0(m(n))| < |M, — m(n)|;
hence, it is enough to prove that

M, — m(n) o
by

or, equivalently, that

nystn+m(n)J — 0 and nyL_gbn_,_m(n)J —> OQ.

Considerad,0 < 6 < 1,suchthat 1 —r; < § foralli > 0, and an n such that ¢b,, > 1; for the
first limit, we have
Lm(n)‘h’?bnj
ny|eb,+mm)| = "Ym(n) l_[ (I—-r) = nym(n)(stgan = stebnd 0
i=m(n)+1
and, for the second, we have
m(n)—1 lebp—1]
nYy|—sb = NYm(n)—1 I1 A—r)~ ' > ! — 0
|—eby+m(n)] m(n)— ' i =\s .
i=|m(n)—eb,]+1
3.8. Proof of Theorem 1

Part (a) of Theorem 1 follows immediately from Theorem 4 and Proposition 3. To prove
part (b), note that the tightness of N,, — m(n) is equivalent to
N, — m(n) r 0.
Cn
for every (c,) /' oco. Write N,, —m(n) as (N, —0(M,)) + (0(M,) — M) + (M,, —m(n)) and
let (c,) /' co. The convergence of Z,fio(l — ry) yields, from Theorem 4, the convergence of
the martingale and, consequently, (N, — 6(M,,))/c, 0. Also,

M,
My —0(My) = (1 —r)
i=0

converges and, so,

O(My) — My as.
— 50.

Cn
Finally, for the case Y po (1 — ry) = o0, the proof of Proposition 3 implies that
M, — m(n) ®o.

Cn
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4. Examples

In this section, we give detailed proofs of results presented in Examples 1-5, following
Theorem 1. We begin with a proposition showing simplified expressions for the normalizing
sequences in the case of converging failure rates.

Proposition 4. Let (by,) be as defined in (13) and let ry — r € [0, 1].
(@) Ifr = 0 then b2 ~ logn.
(b) Ifr € (0, 1) then b,% ~ —[r(1 —r)/log(l —r)]logn.
() Ifr =1then b2 ~ Y™ (1 = r,),
Proof. (a) Itis clear that zx = )", pi(1 —ri) ~ Y ;_; pi = k. Therefore,
m(n) m(n)

2t
>SS,
Jj=0

j=0 i

On the other hand, from the definition of m (¢), we have y,(n) < 1/n < Ym@m)—1. Next, recalling
the identity y; = ]_[fzo(l — r;), we obtain

m(n)—1 m(n)
— Y log(l —rp) <logn < — Y log(l —ry). (27)
k=0 k=0

The above inequalities clearly imply that — ka:(%) log(1 — rx) ~ logn and, since ry — 0, we
obtain b2 ~ logn.
(b) Here it is easily seen that z; /yx — 1 — r, and we have

m(n)
b,% ~(1—=r) Z ri ~r(l —rym(n).

j=0

Moreover, dividing (27) by m(n) and taking limits, we find that logn/m(n) — —log(l —r)
and conclude that 1
b2 ~ rd =r logn.

T T og(l—1r)

(c) The convergence ry — 1 implies that zx ~ yr41 and, hence, that zzxri/yx ~ zx/Yx ~
Yk+1/Yk = 1 — rg4+1. From this, we finally obtain

m(n)

by~ (1—r)).
j=0

4.1. Proofs of examples
4.1.1. Proof of Example 1. In this case, ry = p, k > 0,0(k) = p(k+ 1), and
by ~ —p(1 — p)logn/log(l — p).

Also, m(n) = |—logn/log(l — p)]. The convergence follows from Theorem 1.
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4.1.2. Proof of Example 2. Here bﬁ ~ —r(l —r)logn/log(l — r). Moreover, m(n) ~
—logn/log(l —r) and O (m(n)) ~ —rlogn/log(l — r). The result follows if
0(m(n)) +rlogn/log(l —r)
Jlogn

A readily checked sufficient conditionis that Y _:_, |8;|/+/n — 0, with §; = r; —r. This follows
directly from the definition of m(n). Indeed, since yiun) < 1/ < ymm)—1, we have

— 0.

1 P log(1—8i/(1 =)
m(n) Jm(n)log(l —r)
- m(n) +logn/log(l —r)

~m(n)
_ — X log(1 — 81/ =) | log(l = 8 /(1 1)
- Vm(n)log(l —r) Vmnylog(l —r)

It is clear that the left- and right-hand sides of this expression tend to O when Y "_, 8;/</n — 0.
For the negative binomial distribution, it can be shown (see [13, p. 323, Example 3.1]) that

p_(a—nk(l—p)S

ek =p

and the condition above is satisfied with r = p.

4.1.3. Proof of Example 3. Let rop = p and rop4+1 = g fork > 0, where 0 < p < g < 1.
Theorem 1 applies since limsup,_, 17k =¢q < 1.

For the centering and scaling sequences, first note that |8 (m(n)) —mn)(p+¢q)/2| < 1. On
the other hand, from y,,(y < 1/n < Ymu)—1, we obtain

logn
(I=pd—-q)

for all n, where C is a positive constant. Therefore, there exists a constant C’ such that

‘m(n) +1

ptq logn <
2 logJ/(I—p)d—q) |~

for all n. This means that the CLT holds with 6 (m(n)) replaced by the sequence in (28).
In order to obtain the scaling sequence b,%, note that yor = (1 — p)A¥ and yyy = AFFL,
with A = (1 — p)(1 — q). Furthermore,

‘G(m(n)) " (28)

k1 k+1
1-— d =
AP -p+a) and o =1—

20k = (I=p)(p+qd—qg)).

Finally, after some algebraic manipulation, we find that

m(n)

b2 1 ZkTk 1
lim —" — | 2 _ (a1 - 1))
Jim s = lim s ; = 24P el =)

and (4) follows.
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4.1.4. Proof of Example 4. From Proposition 4, we have b,% ~ logn. Under the condition
Z,fil r,? < 00, it is easy to check that |6 (m(n)) — logn| < C for a positive constant C, and
the result follows.

4.1.5. Proof of Example 5. In this case, from Theorem 1 and Proposition 4, we have
N —m(m) + Y001 )
YA -
from which (6) and (7) easily follow.

Convergence for the Poisson distribution with parameter A is a consequence of the following
approximation for the failure rates r¢; see [13, p. 328]:

A A\ A
— ) = 1l=—r=<—.
k+1 k41 k+1

5. Concluding remarks

N, 1),

Martingale methods are powerful and elegant tools for the asymptotic analysis of processes
such as N,, but, in some cases, the technical details become rather involved. As suggested by
a referee, an interesting alternative would be to explore the applicability of results on the limit
behavior of sums of {0, 1}-valued dependent RVs.

Another question of some interest is how the normalizing sequences (a, ) and (b,)) are related
to the mean and variance of N,,, respectively. Some progress can be made for the centering
sequence by using the martingale property and bounding the difference E[0(M},)] — 0 (m(n)),
as shown below.

Proposition 5. Iflim sup,_, ., 7x < 1 or liminfy_, oo ¢ > O then
E[N,]
—_— %
6(m(n))
Proof. First, from the martingale property, we have E[N,] = E[6(M,,)]. On the other hand,

(29)

E[0(M,)] =) 0(k)P[M, = k]

k=0
o0
=Y r(=(1=y-)"
=0
m(n) 9]
=Y n(=U=y )"+ Y. rl=0=y-"
i=0 i=m(n)+1

o0
=0mmn) —T,+ Y rn(l—0=y-",
i=m(n)+1
with T,, = Z?L(S) ri(1 —yj—1)". We use the elementary inequality 1 — (1 — x)" < nx, for
0 <x <landn € Z, to obtain

oo oo

Yool =y DN <n Y ryie1=nymm < 1.

i=m(n)+1 i=m(n)+1
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Therefore,
_Tn 5 E[Nn] - O(m(n)) S 1’

and (29) follows if we show that
Ty

6 (m(n))
To this end, assume that there exists a sequence (x;) tending to 0 such that 1/n < x,, < I and
0(m(n)) — 6(m(nxy))
0 (m(n))

Then, since i < m(n) is equivalent to y;_; > 1/n, we have

— 0. (30)

— 0.

m(nxy) m(n)
o= Y r(l—yi)"+ Y. r(l—y)
i=0 i=m(nx,)+1
1\ 1\"
=< (1 - ) 0 (m(nxyp)) + <1 - —> (O (m(n)) — 0(m(nxy))), (31)
nxy n

which clearly implies (30).

We finally show that such a sequence exists when lim infy_, oo ¢ > O orlimsup;_, o, rx < 1.
Suppose first that lim infy_, oo rx > 0, and take x, = [1/(m(n) + 1)] v (1/r). Consider a &,
0 <8 < 1,such that 1 — r; < 6 for all k > 0. Then, for all n such that m(n) — m(nx,) > 1,

1 m(n)—1 1
; = Ym(n)—1 = Ym(nxy) l_[ 1-r) < x 8m(n)—m(nxn)—1’
i=mnx,)+1 n

meaning that m(n) —m(nx,) — 1 < Clog(1/x,) for some C > 0 and every n > 1. Therefore,

o = B —0nnx,) _ X7y
=T 6 S,
- m(n) — m(nx,) _ Clog(1/x,) + 1
ST a=omn T A-dmm)

In the case lim sup;_, o, 7% < 1, take x, = 1/(logn + 1). Recall the definition of z;. Then
there exists ana > O such thata < z;/y; < 1forall j > 0. Therefore,

m(n) m(n)
Zi:m(nx,,)Jrl Ti < (1/a) Zi:m(nxn)Jrl riZi/ Vi

0<

B Z:nz(g) o Z?’L(S) riZi /i
- H(logn) — H(log(nx,)) + 1 - Clogn — log(nx,) + 1 S0
- aH (logn) - logn ’

where the third inequality follows from (14) and the last one from the definition of H and (15).
Proposition 6 shows that 6 (m(n)) can be replaced by E[N, ] in (1) when lim sup;_, , rx <1.
Proposition 6. Iflim sup,_, ., rx < 1 then

E[Nu] —0Gn(m))
by

0.

https://doi.org/10.1239/aap/1127483747 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1127483747

Central limit theorems for discrete records 799

Proof. 1t suffices to show that

__nin)rtl_yl—l) -0,
where b2 = Y"¢"%) 24t/ yi.. From (31), with x, = 1/(logn + 1), we obtain

T, - (1 _logn + 1) 9(7711)(11)) n (1 B 1) 0(mn)) —be(m(nxn))'
n n n

0< (32)

S

n n

Since lim sup;,_, o, 7« < 1,from (14) and (15) there exist constants A, B > Osuchthat Alogn <
b% < Blogn for all n > 2. Also, since there exists an a > O such thata < z;/y; < 1 for all
j >0, we have

Clogn <6(m(n)) < Dlogn

for some C, D > (0 and all n > 2. Therefore, the right-hand side of (32) can be bounded above

by
] 1" 1\"log1
C’[(l——ogn+ ) 1ogn+<1——> og0en Og”]—>0.
p n) Jon

Unfortunately, it appears that the above arguments do not carry over to the case in which
liminfy_ o rr > 0.

The information obtained from Propositions 5 and 6 on the asymptotic behavior of E[N,,] is
still limited. We hope to carry out a more detailed analysis using, for instance, Rice’s method
(see [6] and [10]), since E[N, ] can be written as a binomial alternating sum

3 (Z)(—l)"“go(k),

k=1
with (k) = Y2, Viylk,l
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