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This article describes agent-based music live coding, an approach
for music performance and composition based on programming a
set of agents in a 2D plane. This style of programming draws
from the tradition of agent-based models and facilitates
interactive algorithmic control of data-driven sound synthesis
methods such as wave terrain synthesis or corpus-based
concatenative synthesis. The main elements are a ‘terrain’, which
may be used to access different types of data, a set of agents and
their trajectories, and a set of synthesis functions associated to
agents. An implementation using the SuperCollider language is
demonstrated.

1. INTRODUCTION

Live coding (Collins, McLean, Rohrhuber, and Ward
2003) is nowadays an established practice for laptop
performance, as well as a fertile ground for experimen-
tation with different ways to express and control music
processes. A common issue, both for live coders and
audiences, is understanding the state of the ongoing
processes as a result of executing different lines of code.
This has inspired research into different ways to
visualise, or to enhance the visualisation, of the code
(McLean, Griffiths, Collins and Wiggins 2010). Beyond
visualisation of code itself, one approach is to use an
intermediate model with a straightforward graphical
representation, which can be used to control music
processes.
Agent-based modelling (ABM) often uses visual-

isations to facilitate understanding of complex
phenomena. This model is well suited for music, as
it is common to create music using ensembles of
computational processes and autonomous agents.
This paper explores agent-based music live coding

(ABMLC) as an application of ABM to music live
coding for performance and composition. Beyond the
benefit of the visualisation as an explanatory comple-
ment to the sound and code, using thesemodels allows to
quickly create complex algorithmic musical structures
and textures by aggregation of simple behaviours.

2. BACKGROUND

ABMLC stems from different traditions in music and
graphics programming. This section provides an

overview of related traditions that inform the practice
of coding spatial sonic trajectories.

2.1. Vector and wave terrain synthesis

The idea of using two dimensions to control sound
synthesis can be traced back to the use of joysticks in
early synthesisers, such as the EMS VCS 3. The
joystick was particularly instrumental to vector
synthesis, as shown in the Prophet VS synthesiser
(released in 1986). Vector synthesis extended wavet-
able synthesis by allowing the control of the
interpolation of multiple wavetables using a 2D plane.
Like any synthesis parameters, vector synthesis
trajectories are typically amenable to automation.
It can be argued, however, that vector synthesis

made limited use of the 2D space. In this sense, linear
crossfading between wavetables could be seen as a nice
addition, rather than a significant departure from
wavetable synthesis. Wave terrain synthesis
(Mitsuhashi 1982) extended the idea of a one-
dimensional wavetable to two dimensions. While
wavetable synthesis can be used with waveforms
inspired by physical instruments, wave terrain synthe-
sis is a more abstract technique, as there is no direct
interpretation of the terrain in terms of physical sound
production. The technique was later extended by
introducing several functions that could be used to
define 2D trajectories (Borgonovo and Haus 1986).
While both vector synthesis and wave terrain synthesis
can now be seen as classic forms of digital sound
synthesis, the 2D control associated with them has
continued to evolve. For example, the Yamaha SY22
synthesiser applied the concept of vector synthesis to
FM synthesis, and many hardware synthesisers have
continued to offer joystick control. With respect to
wave terrain synthesis, the idea of traversing a data
terrain was extended to different synthesis techniques
(James and Hope 2011), mostly using input devices to
control the traversal. In this article, a similar
framework is proposed with respect to the generality
of the terrain generation, but with a focus on multiple
agents and live coding.
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2.2. Feature spaces

Two- and three-dimensional spaces have been used in
psychoacoustics to analyse the perception of musical
instrument sounds (Caclin, McAdams, Smith and
Winsberg 2005). Spectral analysis of audio is used to
obtain multidimensional representations of audio data
that relate to how it is perceived, but for interactive
applications, they are often reduced to two dimen-
sions. Options for interacting with sound databases
are either selecting relevant descriptors or using
dimensionality reduction algorithms. Corpus-based
concatenative synthesis systems such as CataRT
(Schwarz, Beller, Verbrugghe and Britton 2006) have
traditionally been based on 2D scatterplots using
scalar descriptors as axes. Several systems have
explored dimensionality reduction and layout map-
ping for descriptor-based visualisation of sound
collections in two dimensions (see Roma, Xambó,
Green and Tremblay 2021, and references therein).
These systems have generally been controlled through
input devices such as mice, tablets, or other sensors.
Some systems (Garber, Ciccola, and Amusategui
2020; Roma et al. 2021) allow recording trajectories
that are re-played in a loop. Visualisations of sound
collections can be seen as a way of creating a terrain
for live-coded sound-generating agents. In this case,
the agent can be used to control a synthesis algorithm
that plays or processes the sample assigned to the
current position. This idea has been explored in
previous work using a multiagent system with CataRT
(Eigenfeldt and Pasquier 2011).

2.3. Agent-based models

Programming paths in 2D spaces can be traced back
to the Logo language (Solomon et al. 2020). Logo was
conceived as a programing language for learning and
famously allowed experimentation with computer
graphics by moving an agent around the screen (also
known as turtle graphics). Beyond its general influence
in computer graphics and education, Logo was the
inspiration for ABM software such as StarLogo
(Resnick 1996) and Netlogo (Tisue and Wilensky
2004). ABM allows the understanding of emergent
phenomena by defining local rules of multiple agents,
an idea that can be traced back to cellular automata
(CA). Agent-based models and CA are fundamental
tools in the study of artificial life (A-life). These
techniques have been extensively used in music
composition (Miranda and Todd 2003). Experiments
with CA and A-life can actually be linked to the
popularisation of LED button grids in computer
music. An early example is Toshio Iwai’s ‘Music
Insects’ (1992), where a group of animated agents
played notes in reaction to paths of dots painted by the
user. Iwai was later involved in the development of

Tenori-on (Nishibori and Iwai 2006), a commercial
musical instrument based on a grid of illuminated
buttons released around the same time as the Monome
controller (Dunne 2007). Developed around the same
time, Dave Griffiths’s Al-Jazari (Griffiths 2008)
allowed a user to make music by controlling a set of
robots in terrain made of cubes that triggered sounds.
The robots were controlled by coding in a basic visual
language using a gamepad.1

General-purpose ABM software has also been used
for music. Netlogo includes some music capabilities,
although very limited. NetMusic (Anderson and
Anderson 2020) is a Netlogo-based system for
education using traditional music concepts. Osc-
netlogo (Cadiz and Colasso 2012) is an Open Sound
Control library for NetLogo that allows controlling
sound generators using this language.2

2.4. Live coding

Many live coding languages and environments have
emerged during the last few years (All things live
coding 2022). Music live coding approaches could be
classified into ‘synthesis-oriented’ and ‘event-oriented’
(Roma 2016). Synthesis-oriented music live coding
leverages the potential for rapid creation of real-time
audio signal graphs offered by languages such as
SuperCollider. Event-oriented live coding focuses on
generating events, often triggering samples or control-
ling pre-defined synthesisers. Both approaches are
sometimes combined. The approach proposed in this
article may qualify as event-oriented, but unlike many
event-oriented languages, it does not focus on
rhythmic patterns or musical notes (although it is
possible to generate these kinds of events). In event-
oriented live coding, a control process is typically
associated with a sound-generation process (e.g., a
sampler or a synthesiser). This combination can be
seen as an agent. The idea of artificial agents as a
metaphor for music live coding processes was used
prominently in ixi lang (Magnusson 2011).
In this article, agents are defined as visual objects

moving on a 2D surface, where the events are defined
by the positions and the objects found in the
environment. Agents are associated with a synthesis
function created in advance. In addition to agent
modelling and music live coding, an inspiring system is
tixy.land (Kleppe 2022) a CA-like live coding
environment where the size and colour of a dot in a
matrix can be defined as a function of its position,
index and time.

1Thus, Al-Jazari could in fact be considered the first implementation
of ABMLC.
2The system presented in this article was inspired by early
experiments with osc-netlogo by the author and colleagues at the
Barcelona SuperCollider user group.
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3. AGENT-BASED MUSIC LIVE CODING

Agent-based models have found widespread use many
domains, notably in social sciences. As outlined in
section 2.3, a particularly interesting lineage evolved
from the Logo language in the context of education
research. The idea of a parallel Logo, with improved
agent senses and the addition of ‘patches’ as a way to
represent information in the environment, was
described as a conceptual model, implemented in
StarLogo, for creating ‘explorations of microworlds’,
often loosely based on real-world phenomena such as
ant colonies or traffic jams (Resnick 1994).
The view of a real-time computational process as an

autonomous agent is ubiquitous in computer music.
When computers with real-time capabilities started
being available, the idea of interactive music systems
as a dialogue between a human and an ensemble of
agents was developed by Rowe (1992).
Live coding systems are also easily described in

terms of agents: live coders execute short code snippets
that result in an ensemble of real-time processes, each
typically assigned to a variable. This is usually
implemented in the form of domain-specific languages
and libraries that allow the programmer to focus on a
limited number of abstractions.
In this context, and by analogy to agent-oriented

programming as a specialisation of object-oriented
programming (Shoham 1993), ABMLC can be
described as a live coding paradigm: just as some
languages and environments focus specifically on note
patterns or on signal-processing graphs, in ABMLC
the focus is on coding individual agents moving in an
abstract 2D space. This model has several implica-
tions. On the one hand, focusing on the visualisation
means that there are two prominent parameters
(associated with the two dimensions) controlled by
each agent. On the other, while agents can be thought
to possess some degree of intelligence, the emphasis
tends to be on collective behaviour, and thus complex
results can be obtained by aggregation of simple
behaviours.
This section describes a framework for ABMLC

inspired by the StarLogo and NetLogo conceptual
model. An implementation using the SuperCollider
language is presented in section 5. Instead of coding
complete programs, here the goal is to support rapid
coding of agent behaviours. With this aim, many
important features of ABMs, such as interactions
between agents, or the ability to spawn and destroy
agents, are left for future work.
An overview diagram of the model is shown in

Figure 1. An agent is defined by a code snippet that
modifies its position (from now on, the ‘agent
function’). The agent function is called repeatedly at
a certain rate. An agent lives in a ‘terrain’, a grid of
cells that may contain different kinds of information.

The agent has the same size as one of the cells. Each
agent is associated with a sound processor, and thus
both its function and the sound processor can make
use of the information in the cell currently occupied.
Agents may also get information about other agents.

3.1. Generating the terrain

In a way, the idea of using an agent model for sound
production can be seen as a metaphor that evokes
physical sound production by human agents. The
terrain can be seen as a shared instrument, or a pre-
composed material, which can be used to influence the
sound generation of each agent in different ways. The
fundamental aspect of the terrain is that it is common
to all agents. The terrain may also be static (such as in,
e.g., wave terrain synthesis), although in many agent-
based models it can also be modified by agents, or
even evolve on its own.
Given that it is a digital representation, the terrain

will necessarily be a discrete matrix (from here on
P 2 RN × M for N rows and M columns). However,
different applications, ranging from wave terrain or
corpus-based synthesis to the generation of musical
events, can be implemented depending on the resolu-
tion and density. Following ABM, the elements of
P are called ‘patches’. An agent is always located on a
specific patch. The elements of P may be encoded in
different data types depending on the application. At
the same time, the data in P can be used to visualise the
terrain in user interfaces. The different underlying data
types can be used to survey some uses of the terrain.
The most basic use would be to represent P as a

matrix of booleans, which can be represented as a
bitmap. This can be used to trigger events in the
synthesiser associated with each agent, that is, while
traversing the terrain, the agent would start a new
sound when running over a patch with a positive
value. Thus, in this case, the proportion of positive
patches would be associated with the density of sound
events.
More generally, P can be a matrix of floating-point

numbers (Figure 2). This can of course include zero
and thus it can also be used to trigger sound events
with additional information (e.g., amplitude). This
kind of terrain can be used to implement wave terrain
synthesis.3 A floating-point matrix can be understood
as a 3D volume, which can be visualised in 2D as a
grayscale map. So, in general, the patch value can be
used as a third parameter for the synthesiser in
addition to the horizontal and vertical positions.

3It is worth noting that, for wave terrain synthesis, the rate of the
traversal of the terrain usually needs to be much faster than the
control signal generated by the agent-based model, so a separate
mechanism needs to be implemented in the synthesis function.
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Finally, the elements of P can be encoded as integer
numbers. Integers can generally be used to index data
collections or discrete scales. For example, integers
can point to audio samples in a database. In this case,
a terrain can be used as an interface for a potentially
large (N × M) audio database. This allows exploring a
rich palette of sounds, in the spirit of corpus-based
synthesis, but using live-coded agents instead of input
devices or pre-defined target sequences. If patches are

arbitrarily mapped to any sample in the collection, it
would be difficult to make sense of the trajectory of an
agent. This can still work for small collections; for
example, a drum machine can be implemented in a
small grid, where agent behaviours are coded to
represent patterns. Agent functions would often
require knowledge of the sound associated with each
patch, so scaling to larger databases would be
challenging. For large databases, the mapping of
samples to the terrain should follow some logic. This
can be based on audio descriptors, either directly (e.g.,
as in Schwarz et al. 2006) or using dimensionality
reduction (as in Roma et al. 2021). Audio descriptors
can also be used to visually represent each of the
patches. An example is shown in Figure 3, where the
loudness of each sample is displayed as a waveform,
and the colour (in this case grey level) represents the
average spectral centroid. Another common use of
integer terrain matrices would be indexing discrete
scales, such as pitch classes or other discrete
parameters. A simple visualisation for integer-based
terrains can be implemented by using a discrete colour
palette.

3.2. Agent trajectories

Agent trajectories are the main representation of the
proposed model. Even with no terrain, an interface for
controlling a small number of agents through 2D
trajectories can be a productive musical instrument. In

Figure 1. Agent-based music live coding overview.

Figure 2. Grayscale terrain generated from a function.
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the proposed framework, the functions for specifying
the trajectories are the user interface. Formally, the
agent function can be seen as a 2D recurrence relation,
which returns the coordinates for the next step given
the current step:

xt�1

yt�1

� �
� f xt; yt; t; P;A

� �

where xt; yt are the coordinates of the agent at the
current time and xt�1; yt�1 are the coordinates at the
next time, t is the time step (which can be simply a
counter), P is the terrain matrix, and A is the list of
agents. This model generally allows accessing any
agent and point of the terrain, although in many cases
it may be preferable to access only agents and patches
in the neighbourhood of xt; yt. Each agent can be
characterised by its position, and P xt ;� �yt

� �� �
(where [x]

represents the rounded version of x) is the patch at the
current agent position. In this article, we are mostly
concerned with basic trajectories defined by simple
mathematical functions. Some examples are described
in section 4. Complex behaviours such as flocking
typically require significant amounts of code and are
less amenable to live coding, although they could be
provided as functions.
The trajectory function is executed at each time step

following some rate r. The rate can be user-defined,
but it corresponds to the speed at which the

visualisation is updated. Thus, common rates could
be typically in the range of video frame rates; for
example, between 10 and 60 frames per second.
Obviously, the rate has a direct effect on the speed of
the agents, depending on the code used.
One important aspect of the trajectory function is

how to deal with border effects. Depending on the
terrain and synthesis method, wrapping around either
axis when the border is surpassed may be acceptable or
not. It may be desirable to use some convenience
functions, or a configuration parameter, for dealing
with different options.

3.3. Sound synthesis

In addition to the trajectory function, the agent
produces sound through a synthesis function. While
the rate of the trajectory function can be controlled by
the user, the rate of the synthesis function needs to
work for real-time audio generation, typically either
sample or block-based. Thus, in terms of computer
music systems, the agent trajectory can be seen as a
control rate, while the synthesis function runs at audio
rate. In practice, the synthesis function can be any
synthesiser (e.g., even hardware), as long as the
parameters can be updated periodically. All the scalar
parameters of the agent trajectory function, including
additional mappings (e.g., the values of P may be

Figure 3. Terrain generated from a database of audio samples.
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mapped to a buffer for sample-based sound genera-
tion), can be passed to the synthesis function (typically
the current patch is sent, as opposed to the whole of P�.
While in early experiments by the author the synthesis
function was live-coded along with the agent function,
reducing the live coding activity to the agent trajectory
function makes the system easier to use. Both
functions deal with different domains (i.e., x,y position
or audio signal graph) which involves switching from
one mindset to the other, for each of the agents.
Focusing on the trajectory code provides a convenient
high-level interface for performance. An interesting
variation could be to fix the agent trajectory functions
and live code the synthesis function.

4. CODING SONIC TRAJECTORIES

As seen in section 3.2, agent trajectories can be
described by recurrence relations, with additional
inputs such as the terrain or the list of agents. First-
order relations are functions where the next value is
generated from the previous value. While higher-order
relations (where the next value is computed from a
larger number of previous values) could be imple-
mented, a few agents implemented using first-order
functions strike a good balance between the simplicity
required at the user interface side (functions that are
easy to code live) and the potential for complexity. In
this sense, thinking in terms of simple mathematical
functions is useful for live coding, since the behaviour
needs to be coded in a short amount of time. This
section describes some elementary examples. The
possibilities are obviously unlimited. For example,
multiple functions can be combined, and a different
function can be used for each axis.

4.1. Straight lines

Straight lines are possibly the most trivial functions,
generally defined as:

xt�1

yt�1

� �
� x� dx

y� dy

� �
;

where dx and dy control the speed in each axis with
respect to r. Agents will reach the end of the terrain,
and typically either a modulo operator or a change of
sign will be used to avoid losing them. This generally
leads to looping behaviour, although some random-
ness can always be added. Systems based on straight
lines will often lead to generative music with loops of
different sizes depending on the starting point of the
agent and the values of dx and dy. While the terrain is
discrete, values smaller than 1 are useful to implement
slower and smooth trajectories. Also, the interpolation
is relevant for controlling the underlying synthesis
function.

4.2. Random walks

Random walks can be used to explore the terrain while
avoiding repetitive/predictable behaviour. There is of
course some predictability in the fact that the terrain is
a limited resource. The most basic randomwalk can be
implemented by sampling dx and/or dy from a
sequence of values z1; z2� �; such as �1; 1� �. Generally,
if z1 is different from z2, the trajectory will be biased
and more predictable. Smaller values encourage
exploration of the current location, and larger values
encourage wandering.

4.3. Oscillations and orbits

Since agent trajectories operate within a control rate
defined by the visual frame rate, they can be naturally
thought of as low-frequency oscillators (LFO). Many
LFO functions are also trivial to write; for example, a
sawtooth oscillator with offset o, amplitude a and
period k can be written simply as

xt�1

yt�1

� �
� xt � dx

o� a
k mod �t;k�

� �
:

Similarly, a sine oscillator of the y axis can be written as
yt�1 � o� asin ωt� �. A 2D orbit can then be written as

xt�1

yt�1

� �
� ox � axcos ωxt� �

oy � aysin ωyt
� �� �

:

Orbits can be used to create loops without wrapping
around the borders, depending on the amplitudes and
offsets. These can in turn be changed dynamically to
create more complex trajectories.

4.4. Sequences

Since the terrain is composed of a finite number of
patches, the agent can be seen as a finite-state machine
where each patch is a different state. Patches can be
assigned specific values (such as, e.g., pitch values or
samples). Thus, the agent trajectory can be used to
create discrete patterns by specifying sequences of
states. For example, the following function would
alternate between four arbitrary points at a speed
controlled by k:

a � a1; a2; a3; a4� �
b � b1; b2; b3; b4� �

xt�1

yt�1

� �
� a mod t

k ; 4
� �� �

b mod t
k ; 4
� �� �� �

:

4.5. Interactions

More complex behaviours can be created by creating
functions that depend on the value of the patch or
neighbouring patches. For example, the value of
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patches can be used to create walls. Similarly,
interactions with other agents could be added.
Common ideas easily lead to code that spans more
than a few lines so they will typically be implemented
as helper functions in advance.

5. IMPLEMENTATION

The conceptual model presented in section 4 can be
used to implement ABMLC in any language. In fact,
as mentioned in section 3, many live coding systems
could be seen to implement some form of ABMLC.
The full interface proposed here includes the notion of
a 2D surface that agents navigate and the correspond-
ing visualisation. Thus, it can be implemented in
languages that allow programming both graphics and
sound synthesis, or sound control output.
Mob is a SuperCollider program developed by the

author to experiment with the different elements of
ABMLC. The code is open source.4 Figure 4 shows the
user interface. The system is designed to be extensible.
The general idea is that synthesis functions (i.e., synth
definitions in SuperCollider), along with functions
attached to different objects are coded in advance, but
not hard-coded in the program. The user modifies a
script containing synth definition functions and
auxiliary functions that is loaded at runtime. During
a performance, live coding focuses on the functions
that define the trajectories of agents. The program is
instantiated from the SuperCollider interpreter. The
main parameters of a Mob instance are the width and
height of the terrain, the frame rate, and optionally a
terrain specification.
The terrain consists of a grid of patches defined by

the user-specified dimensions. The system thus main-
tains a mapping of the terrain to the screen resolution.
The rate defines the speed at which the visualisation is
updated (in SuperCollider this works through
UserView and the animate functionality). At the same
time, the live-coded functions are executed at each
frame refresh. Thus, faster rates and larger numbers of
patches will result in smoother animations and
parameter updates, whereas lower values can be used
for events and patterns. The timing in the live-coded
functions is controlled by the rate parameter.
An extra parameter can be used to provide data for

the terrain, specified as a dictionary with ‘type’ and
‘value’ keys. There are three types. The first type,
‘function’, assumes the value is a function of the form
z � f x; y

� �
that will define an intensity value for each

patch depending on the x and y coordinates. In this
case, the program will execute the function for each
position and generate the terrain data and visualisa-
tion upon startup. The terrain data are also stored in a

buffer, which can be used with theWaveTerrain UGen
available in the SLUGens package (Collins 2022). If
the type is ‘file’, the value is assumed to be a text file.
The file follows a simple CSV-like format with a
custom header declaring the values to be binary,
integer or float, as described in section 3.1. This can be
used to define arbitrary shapes as the terrain. A third
type of terrain is defined as ‘samples’. The value is then
assumed to be a folder of audio samples. The samples
are analyzed using the FluidCorpusMap library
(Roma et al. 2021). This library performs analysis
and dimensionality reduction of the audio features and
maps them to a grid using an assignment algorithm.
When either a text file or a samples directory is
provided, the width and height parameters are
obtained from these, and any user-specified values
are overridden.
Agents are represented as a coloured rectangle over

one of the patches in the terrain visualisation. It is in
theory possible, while usually not desirable, for an
agent to be out of the terrain. Each agent is
programmed through a code snippet, shown in a tab
below the agent-terrain visualisation (Figure 4). Tabs
can be created and closed manually, which results in
the agent being spawned or removed. The code snippet
is compiled using a keyboard shortcut. Before
compiling, the code is wrapped in a template code
string, which includes all needed variables: x; y; t; p; a
(see section 3.2). The code snippet is expected to
modify x and y, and, potentially, p. If the code is
compiled successfully, the compiled function is
attached to the agent and used to determine the next
position at each frame. An extra control for volume is
provided. This assumes that each agent corresponds to
a voice, which may be triggered by objects in the
terrain, but can also be playing all the time. The
addition of a volume slider allows the performer to
have direct control over the mix of the agents. The
slider is mapped to an amplitude parameter sent to the
synth and can be mapped to a MIDI controller. The x
and y position values can then be used to control other
parameters of the synth.
While this system allows controlling musical

processes with terse code snippets, there are always
recurrent issues that can be solved by reusable helper
functions. One example is the need to wrap around the
terrain. While this is necessary in order to maintain the
agent in the terrain and provide an understandable
visual representation of the agent model, wrapping
around may also mean a jump in the parameters
controlled by x or y. Therefore, in some cases, other
strategies may be desirable. Another example is
dividing the rate, which is necessary for scheduling
events. In order to allow for user-defined functions
with a compact syntax, functions provided in the

4https://github.com/g-roma/Mob.
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auxiliary script are attached as methods to the agent,
the terrain or the time parameters.

In addition to the x and y parameters, the agent
code snippet also needs to define the name of its synth
definition. This is a symbol corresponding to the name
of one of the synth definitions provided in the auxiliary
file. As explained in section 3.3, synthesisers also
receive the position parameters, which are updated for
each video frame. A particular problem is the range of
x and y, since the specific value of these parameters
may be useful (e.g., when representing musical notes),
but often needs to be mapped to another range (e.g.,
frequencies). For this reason, the synthesiser is passed
the raw values plus parameters for the width and
height, so that it is up to the synth definition to
normalise the value if desired.

6. INITIAL EXPLORATIONS

Mob has been developed and used by the author in
several public performances, using different audio

corpora as terrain. The system has been extended to
implement the more general framework presented in
section 3. Some examples of improvisation with the
functions described in section 4 and different synthesis
techniques are provided as additional material for this
article (Video Examples 1–4).
When used with audio corpora, the system has

proved to be a very powerful way to explore the
sounds contained in the corpus and different sound
forms that can be made with it, allowing the
combination of systematic and random exploration.
In comparison with other corpus-based approaches,
typically using input devices to control trajectories in
the corpus visualisation, live coding of agents allows
finer control, and a wider range of possibilities such as
randomness, algorithmic automation, or trajectories
that cannot be performed via gestures with a given
sensor. The use of the FluidCorpusMap library also
facilitates the creation of polyphonic mixtures, as the
sounds are evenly spread in the visualisation, and
different locations correspond to different sound

Figure 4. Mob user interface.
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qualities. Performing with pre-recorded audio corpora
is typically a sweet spot in the continuum between
composition and performance, as the curation of
audio materials can be used to orient the overall range
of sounds produced in the performance. Curating the
synthesis algorithms in advance further constrains the
live coding activity to control structures, in the spirit of
event-based live coding. Given the potential of the
dialogue with the corpus for creating a diversity of
sounds, this is a good compromise, as coding the
synthesis process can at times be time-consuming.
The extension of the model to other types of terrains

and synthesis techniques shows promise for ABMLC as
a general interaction paradigm for music live coding.
Using simple 2D functions such as the ones described in
section 4, the agents are merely autonomous, with a
continuous behaviour. In comparison with other event-
based live coding strategies, this seems to lead to the
creation of more continuous structures (although
coding functions with jumps is of course also possible).
This is also helped by the use of spatial position as a
parameter, in the sense that when a new agent function
is compiled, the agent is still at the same place. Despite
the simplicity of the individual agents behaviour,
merely adding multiple instances quickly allows creat-
ing programs that exhibit a strong artificial agency, in
the sense that the result is not easily predictable by the
live coder. This ease for serendipity can be advanta-
geous both for performance and composition.
The visualisation is a generally welcome comple-

ment to the code, both for the performer and the
audience. Feedback from the performances has been
positive in this respect. The animation can be seen as a
mediator between the live code and the sound, which
facilitates the understanding of the code and its effect
on the resulting sound. From the point of view of the
performer, this helps being in control and improving
the ability to quickly understand and modify the code.
In comparison to other live coding approaches, having
a ‘big picture’ visualisation paired with physical
control of each agent via midi supports risk-taking,
which is quite helpful for experimental music. From
the point of view of the audience, the visualisation of
the terrain and agent trajectories along with the code
enhances the readability of the performance.
The implementation is limited in several ways, which

prevents further exploration of the ABMLC frame-
work. One example is the manual creation and
destruction of agents. When experimenting with agent
models, it is clear that being able to programmatically
create and remove agents would add great potential for
music structure. For example, it would allow starting
several sounds at once. The current interface leads to a
progressive building style by starting the agents one by
one. This is a common feature of live coding when
starting from scratch, but here decoupling the code of

the agent models from the text snippet interface would
allow more flexible control of agent groups. Similarly,
the manual control (and the link to hardware MIDI
controllers) limits the number of agents to small
numbers (e.g., around eight), while there are many
interesting musical ideas that could be realised with
larger numbers of agents.
Another limitation is the link between graphics and

model updates. This is common in ABM software,
where real-time is usually not a big concern, but here the
rate has a very strong impact on the coding of agent
functions and the resulting sounds. The ideal rate really
depends on the kind of music. The rates used in the
experiments so far are similar to typical control rates in
computer music systems, but the rate could also be
defined in terms of musical tempo for rhythmic music.
Being able to run each agent at a different rate would
clearly be much more flexible and easier to code. In any
case, decoupling the rate from the graphics updates
would be beneficial for both performance and usability
reasons.
Finally, a lot of uncharted territory remains for

ABMLC. The present study has focused mostly on the
control of trajectories, independent of other agents,
and using the terrain mostly to feed the synthesis
process. ABM typically exploits local interactions
between agents and between agent and environment to
study emergent behaviour such as swarming. Self-
organisation algorithms are common in computer
music composition (Blackwell and Young 2004). The
simplified model proposed here is focused on functions
that can be coded quickly in a performance situation.
An open question is thus what the ideal interface and
level of granularity would be for creating and
controlling agent swarms through live coding.

7. CONCLUSIONS

This article proposes ABMLC as a live coding paradigm
for music performance and composition, and introduces
an extensible open source implementation. The frame-
work emerged from a practice in corpus-based
performance and has been used mostly with 2D
representations of audio corpora. In this context, unlike
existing approaches, ABMLC allows real-time control
of algorithmic explorations of the corpus.
The model can be extended beyond corpus-based

performance to accommodate different live coding
practices, including discrete events and continuous
parameter control of arbitrary sound synthesis and
sampling techniques. The focus on rapid coding of
multiple agents easily leads to unpredictable collective
behaviours. The use of a 2D visualisation as a
mediator improves the understanding of live coding
improvisation for both the performer and the
audience.
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Further work on the interaction between agents and
between agents and terrain will help fully realise the
potential of the framework.

SUPPLEMENTARY MATERIAL

To view supplementary material for this article, please
visit https://doi.org/10.1017/S1355771823000274
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