
Canad. Math. Bull. Vol. 00 (0), 2025 pp. 1–21
http://dx.doi.org/10.4153/xxxx
© Canadian Mathematical Society 2025

Generalized Knill–Laflamme Theorem
for Families of Isoclinic Subspaces

David W. Kribs1, Rajesh Pereira1 and Mukesh Taank1

Abstract. Isoclinic subspaces have been studied for over a century. Quantum error
correcting codes were recently shown to define a subclass of families of isoclinic
subspaces. The Knill–Laflamme Theorem is a seminal result in the theory of quan-
tum error correction, a central topic in quantum information. We show there is
a generalized version of the Knill–Laflamme result and conditions that applies
to all families of isoclinic subspaces. In the case of quantum stabilizer codes,
the expanded conditions are shown to capture logical operators. We apply the
general conditions to give a new perspective on a classical subclass of isoclinic
subspaces defined by the graphs of anti-commuting unitary operators. We show
how the result applies to recently studied mutually unbiased quantum measure-
ments (MUMs), and we give a new construction of such measurements motivated
by the approach.

1 Introduction

The study of families of isoclinic subspaces naturally grew from
the introduction of canonical angles between subspaces in Euclidean
geometry, as initiated by Jordan [21] a century and a half ago, which
in turn was built on earlier work of Hamilton [17]. Subsequently, the
notion has arisen and been studied in a variety of settings in the context
of matrix theory and operator theory; as a selection of examples, we
note the (relatively) more recent structural results and formulations of
equivalent conditions and applications found in [1, 6, 14, 19, 39, 41, 44]
(see also references therein and forward references).

On the other hand we have the subject of quantum error correction,
which has much more recent origins going back to the early days of
modern quantum information theory in the 1990’s [2, 16, 23, 24, 26, 34,
35, 36]. With original (and continuing) motivations coming from the
goal to build quantum computers, quantum error correction seems to
now touch on all areas of quantum information more generally. The
Knill–Laflamme Theorem [23] is a seminal result in the theory of quan-
tum error correction, and is arguably one of the most important results
in all of quantum information theory. It built on important early exam-
ples of quantum error correcting codes and played a significant role
in giving the subject a firm mathematical and theoretical foundation
from which to grow, as a forward reference search on [23] will confirm.
The theorem gives explicit algebraic conditions to test if a quantum
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code is correctable for a given set of error operators. It has had many
applications in the subject of quantum error correction and beyond; we
mention Gottesman’s stabilizer formalism [16], which shows how to
construct codes for Pauli error models, as an important such instance.
In the context of this discussion, we also note it was recently observed
[28] that quantum error correcting codes define a subclass of isoclinic
subspace families.

It is natural to ask, therefore, if there is a generalization of the
Knill–Laflamme conditions and theorem that describes all families of
isoclinic subspaces? In this paper, we present a positive answer to this
question. Specifically, we identify and establish the existence of gen-
eralized Knill–Laflamme conditions for families of isoclinic subspaces,
which in operator form look like this:

𝑃𝐴∗
𝑖 𝐴 𝑗𝑃 = 𝜆𝑖 𝑗𝑈𝑖 𝑗𝑃 = 𝜆𝑖 𝑗𝑃𝑈𝑖 𝑗 ,

where {𝐴𝑖}𝑖 are operators on a Hilbert space, 𝐴∗
𝑖

are the (Hilbert space)
adjoints, 𝑃 is an orthogonal projection on the space, 𝜆𝑖 𝑗 are complex
scalars, and 𝑈𝑖 𝑗 are unitary operators that commute with the projec-
tion (or equivalently, partial isometries with 𝑃 as their initial and final
projections).

The Knill–Laflamme conditions are captured in the special case in
which each unitary 𝑈𝑖 𝑗 is the identity operator. We discuss that sub-
class, giving a brief review and an explanation of how the broadened
conditions capture logical operators for stabilizer codes. We revisit a
classical family of isoclinic subspaces that are built from graphs of anti-
commuting unitary operators [39, 40, 41, 42], finding a new perspective
motivated by the generalized conditions. We show how the result
applies to recently studied mutually unbiased quantum measurements
(MUMs) [13, 37], where we apply the conditions to find an alternate
proof of their canonical forms, and we give a new construction of such
measurements motivated by the approach.

This paper is organized as follows. Section 2 includes the basic
details of isoclinic subspaces and an important equivalent condition
we will make use of. Section 3 includes the derivation of the gener-
alized Knill–Laflamme conditions. In Section 4 we consider the three
subclasses of isoclinic subspace families noted above in light of these
results. We finish in Section 5 with some concluding remarks.

2 Preliminaries

The origins of investigations into families of isoclinic subspaces go
back at least a century and a half, where we find the classical notion
of canonical angles between pairs of subspaces (sometimes referred to
as principal angles) as formulated by Jordan [21].

Suppose that V and W are finite dimensional subspaces of a Hilbert
space H and let 𝑘 = min{dim(V), dim(W)}. Then the canonical angles
{𝜃1, . . . , 𝜃𝑙} between V and W are defined as follows: the first canonical
angle is the unique number 𝜃1 ∈ [0, 𝜋

2 ] such that

cos(𝜃1) = max{|⟨𝑥, 𝑦⟩| : 𝑥 ∈ V, 𝑦 ∈ W, ∥𝑥∥ = ∥𝑦∥ = 1}.
2
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Let 𝑥1 and 𝑦1 be unit vectors in V and W for which the previous max-
imum is attained. Then we define the second canonical angle as the
unique number 𝜃2 ∈ [0, 𝜋

2 ] such that

cos(𝜃2) = max{|⟨𝑥, 𝑦⟩| : 𝑥 ∈ V ∩ {𝑥1}⊥, 𝑦 ∈ W ∩ {𝑦1}⊥, ∥𝑥∥ = ∥𝑦∥ = 1}.

For each 𝑘 ≤ 𝑙, similarly choose unit vectors 𝑥2, . . . 𝑥𝑘−1 and 𝑦2, . . . 𝑦𝑘−1
in V and W respectively, in each case where the previous maxi-
mum is attained. Then 𝜃𝑘 is taken to be the unique number such that
cos(𝜃𝑘) is equal to the maximum of |⟨𝑥, 𝑦⟩| with unit vectors 𝑥 ∈ V ∩
{𝑥1, . . . , 𝑥𝑘−1}⊥ and 𝑦 ∈ W∩ {𝑦1, . . . , 𝑦𝑘−1}⊥. More recently (though still
over fifty years ago), Bjorck and Golub [6] found a computationally-
friendly way to find the canonical angles, showing that they can be
characterized in terms of the singular values of the product of two
matrices that encode their respective subspace.

As the name suggests, subspaces of the same dimension are isoclinic
when all their canonical angles are the same.

Definition 2.1 Let V and W be two 𝑘-dimensional subspaces of a
Hilbert space H , where 1 ≤ 𝑘 < dim(H). Then V and W are said to
be isoclinic if all 𝑘 canonical angles between V and W are equal. If that
angle is 𝜃, then the subspaces are said to be isoclinic at angle 𝜃. A family
of 𝑘-dimensional subspaces of a Hilbert space are said to be isoclinic if
all pairs of distinct subspaces from the family are pairwise isoclinic.

Any family of mutually orthogonal subspaces are isoclinic at angle
𝜋
2 , and this case is often a distinguished special case in certain sub-
classes (we shall see such instances in the examples below). However,
there are many more possibilities, as the following characterization
indicates.

Theorem 2.2 Let V and W be two 𝑘-dimensional subspaces of a Hilbert
space H , with 𝑘 ≥ 1. Let 𝑃V and 𝑃W denote the orthogonal projections of H
onto the subspaces V and W respectively. Then the following statements are
equivalent:

(𝑖) V and W are isoclinic subspaces.
(𝑖𝑖) There exists 𝜆 ≥ 0 such that

𝑃V𝑃W𝑃V = 𝜆𝑃V and 𝑃W𝑃V𝑃W = 𝜆𝑃W . (2.1)

Here, 𝜆 = cos(𝜃) where V, W are isoclinic at angle 𝜃.

This equivalency was noted without proof in [19] and linked with
other conditions around the same time [19, 41]. This seems to be some-
what typical with the notion of isoclinic subspaces, in that it has arisen
in so many places that its descriptions have become almost ‘folklore’
type results. (See [28] for a recent combined proof of various equivalent
conditions.)

3
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3 Knill–Laflamme Type Conditions for Isoclinic Subspaces

In this section we will derive conditions for families of isoclinic sub-
spaces that generalize the Knill–Laflamme conditions of quantum error
correction. We break up the result into a pair of results that both apply
more broadly.

The Hilbert spaces H considered in the following results can be
either finite or infinite dimensional, though the specific subclasses we
discuss in the next section are all finite dimensional. Given a subspace
C, we will denote the projection of H onto the subspace by 𝑃C .

Let us recall some basic properties of partial isometries, which are
essential operators in this discussion. An operator 𝑉 on H is a par-
tial isometry if and only if 𝑃 = 𝑉∗𝑉 , or equivalently 𝑄 = 𝑉𝑉∗, is a
(orthogonal) projection. In this case, 𝑃, respectively 𝑄, is called the ini-
tial, respectively final, projection for 𝑉 , and the following identities are
satisfied:

𝑉 = 𝑉𝑃 = 𝑉𝑉∗𝑉 = 𝑄𝑉 = 𝑄𝑉𝑃.

Note that 𝑉 is a partial isometry if and only if 𝑉∗ is a partial isometry,
with the roles of the initial and final projections reversed. Of course,𝑉 is
unitary when both of these projections are the identity operator. More
general partial isometries are fundamental operators in matrix and
operator theory; in particular, we will make use of the polar decom-
position of a generic operator 𝐴 on H , which gives a partial isometry
𝑉 such that 𝐴 = 𝑉 |𝐴| where |𝐴| =

√︁
|𝐴∗𝐴|. This partial isometry is not

unique, for instance it can be taken to be unitary by extending its action
to the whole Hilbert space by defining it unitarily on the orthogonal
complement of the initial projection space mapping to a space orthog-
onal to the final projection space, which does not change the polar
decomposition equation. We will make use of some other properties of
the polar decomposition operators in the proofs below.

We first identify generalized Knill–Laflamme conditions that imply
the isoclinic subspace projection type equations (Eq. (2.1)) when they
are satisfied.

Theorem 3.1 Suppose that {𝐴𝑖}𝑖 are operators on a Hilbert space H and
C ⊆ H is a subspace such that for all 𝑖, 𝑗 ,

𝑃C𝐴
∗
𝑖 𝐴 𝑗𝑃C = 𝜆𝑖 𝑗𝑈𝑖 𝑗𝑃C = 𝜆𝑖 𝑗𝑃C𝑈𝑖 𝑗 , (3.1)

where 𝜆𝑖 𝑗 ∈ C and 𝑈𝑖 𝑗 are unitary operators that commute with 𝑃C . Then if
{𝑃𝑖}𝑖 are the range projections of the operators 𝐴𝑖𝑃C , we have

𝑃𝑖𝑃 𝑗𝑃𝑖 = |𝛾𝑖 𝑗 |2𝑃𝑖 ∀ 𝑖, 𝑗 , (3.2)

where

𝛾𝑖 𝑗 =

{
𝜆𝑖 𝑗√
𝜆𝑖𝑖𝜆 𝑗 𝑗

if 𝜆𝑖𝑖 ≠ 0 and 𝜆 𝑗 𝑗 ≠ 0

0 otherwise

Further, the projections 𝑃𝑖 and 𝑃 𝑗 have the same rank as 𝑃C whenever 𝛾𝑖 𝑗 ≠ 0.
4
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Proof First note that if 𝜆𝑖𝑖 = 0 for some 𝑖, then it follows from Eq. (3.1)
that 𝐴𝑖𝑃C = 0 = 𝑃C𝐴∗

𝑖
, and hence that 𝜆𝑖 𝑗 = 0 for all 𝑗 . Hence for such 𝑖

and all 𝑗 , Eq. (3.2) is trivially satisfied with 𝛾𝑖 𝑗 = 0.
So for the rest of the proof we assume every 𝜆𝑖𝑖 ≠ 0. By Eq. (3.1), we

have that 𝜆𝑖𝑖𝑈𝑖𝑖𝑃C is a positive operator, and, by dividing both sides
of the equation by the positive part of 𝜆𝑖𝑖 , we further observe that this
operator must in fact be a positive scalar multiple of 𝑃C . Thus, without
loss of generality, we can assume 𝜆𝑖𝑖 > 0 and 𝑈𝑖𝑖 = 𝐼 is the identity
operator. We can then take the polar decomposition

𝐴𝑖𝑃C = 𝑉𝑖

√︃
𝑃C𝐴∗

𝑖
𝐴𝑖𝑃C =

√︁
𝜆𝑖𝑖𝑉𝑖𝑃C ,

where 𝑉𝑖 is a partial isometry with initial projection 𝑃C and final pro-
jection 𝑃𝑖 . In particular, these operators satisfy the following identities:

𝑉∗
𝑖 𝑉𝑖 = 𝑃C , 𝑉𝑖𝑉

∗
𝑖 = 𝑃𝑖 , 𝑉𝑖𝑃C = 𝑉𝑖 , 𝑉𝑖𝑃C𝑉

∗
𝑖 = 𝑃𝑖 .

Thus we have for all such 𝑖, 𝑗 ,

𝜆𝑖 𝑗𝑈𝑖 𝑗𝑃C = 𝑃C𝐴
∗
𝑖 𝐴 𝑗𝑃C = (

√︁
𝜆𝑖𝑖𝑃C𝑉

∗
𝑖 ) (

√︁
𝜆 𝑗 𝑗𝑉 𝑗𝑃C) =

√︁
𝜆𝑖𝑖𝜆 𝑗 𝑗𝑃C𝑉

∗
𝑖 𝑉 𝑗𝑃C ,

from which it follows that

𝑃C𝑉
∗
𝑖 𝑉 𝑗𝑃C =

(
𝜆𝑖 𝑗

(√︁
𝜆𝑖𝑖𝜆 𝑗 𝑗

)−1)
𝑈𝑖 𝑗𝑃C .

If we let this last operator be equal to 𝐵𝑖 𝑗 and put 𝛾𝑖 𝑗 = 𝜆𝑖 𝑗 (
√︁
𝜆𝑖𝑖𝜆 𝑗 𝑗 )−1,

then using the fact that 𝑈𝑖 𝑗 is unitary and commutes with 𝑃C we have

𝐵𝑖 𝑗𝐵
∗
𝑖 𝑗 = |𝛾𝑖 𝑗 |2 (𝑈𝑖 𝑗𝑃C) (𝑈𝑖 𝑗𝑃C)∗ = |𝛾𝑖 𝑗 |2𝑃C .

On the other hand, we also have

𝐵𝑖 𝑗𝐵
∗
𝑖 𝑗 = |𝛾𝑖 𝑗 |2𝑃C = (𝑃C𝑉

∗
𝑖 𝑉 𝑗𝑃C) (𝑃C𝑉

∗
𝑗𝑉𝑖𝑃C)

= 𝑃C𝑉
∗
𝑖 𝑉 𝑗𝑉

∗
𝑗𝑉𝑖𝑃C

= 𝑃C𝑉
∗
𝑖 𝑃 𝑗𝑉𝑖𝑃C ,

where here we have used the algebraic relations between the operators
𝑉𝑖 , 𝑃𝑖 and 𝑃C . Now multiply the left-side of this equation by 𝑉𝑖 and the
right-side by 𝑉∗

𝑖
to obtain the isoclinic equation:

|𝛾𝑖 𝑗 |2𝑃𝑖 = |𝛾𝑖 𝑗 |2𝑉𝑖𝑃C𝑉
∗
𝑖 = (𝑉𝑖𝑃C𝑉

∗
𝑖 )𝑃 𝑗 (𝑉𝑖𝑃C𝑉

∗
𝑖 ) = 𝑃𝑖𝑃 𝑗𝑃𝑖 .

Finally, note from the argument above that a scalar 𝜆𝑖 𝑗 in Eq. (3.1) is
non-zero if and only if both 𝜆𝑖𝑖 and 𝜆 𝑗 𝑗 are non-zero, and that in such
cases the projections 𝑃𝑖 and 𝑃 𝑗 have the same rank as 𝑃C with the par-
tial isometries𝑉𝑖 and𝑉 𝑗 intertwining the corresponding subspaces with
C. ■

Note that we cannot conclude in Theorem 3.1 that the family of
subspaces are isoclinic only with the satisfaction of Eq. (3.2). While
one can show that projections satisfying these equations with non-zero
scalars 𝛾𝑖 𝑗 must have the same rank, one can simply have orthogonal
subspaces (of any dimension) that trivially satisfy the relations with
𝛾𝑖 𝑗 = 0. (It could also be added that the orthogonal subspace case is
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the most mathematically uninteresting in the context of the general
isoclinic subspace relations, but it must be allowed for.)

The next result moves us in the converse direction of the previous
result. We recall that a partial isometry is nothing more than a unitary
operator restricted to a subspace, and hence the following result could
equally be phrased with hypotheses given by a family of unitary oper-
ators and a subspace, with the projections given by the ranges of the
restricted unitaries.

Lemma 3.2 Suppose that {𝑉𝑖}𝑖 are partial isometries on a Hilbert space H
with common initial space C ⊆ H , and that their final projections 𝑃𝑖 = 𝑉𝑖𝑉

∗
𝑖

satisfy the following equations for some scalars 𝜆𝑖 𝑗 ≥ 0:

𝑃𝑖𝑃 𝑗𝑃𝑖 = 𝜆𝑖 𝑗𝑃𝑖 ∀ 𝑖, 𝑗 . (3.3)

Then there are unitary operators 𝑈𝑖 𝑗 that commute with 𝑃C such that for all
𝑖, 𝑗 ,

𝑃C𝑉
∗
𝑖 𝑉 𝑗𝑃C = 𝛾𝑖 𝑗𝑈𝑖 𝑗𝑃C = 𝛾𝑖 𝑗𝑃C𝑈𝑖 𝑗 , (3.4)

where 𝛾𝑖 𝑗 =
√︁
𝜆𝑖 𝑗 .

Proof First note that 𝜆𝑖 𝑗 = 𝜆 𝑗𝑖 for all 𝑖, 𝑗 , since the projections 𝑃𝑖 ,
𝑃 𝑗 have the same rank (as images of partial isometries with the same
initial projection) and Eq. (3.3) gives us via the trace,

𝜆𝑖 𝑗Tr(𝑃𝑖) = Tr(𝑃𝑖𝑃 𝑗𝑃𝑖) = Tr(𝑃𝑖𝑃 𝑗 ) = Tr(𝑃 𝑗𝑃𝑖𝑃 𝑗 ) = 𝜆 𝑗𝑖Tr(𝑃 𝑗 ).

We have 𝑃C = 𝑉∗
𝑖
𝑉𝑖 for all 𝑖 and 𝑃𝑖 = 𝑉𝑖𝑉

∗
𝑖

. Hence expanding Eq. (3.3)
yields

(𝑉𝑖𝑉∗
𝑖 ) (𝑉 𝑗𝑉

∗
𝑗 ) (𝑉𝑖𝑉∗

𝑖 ) = 𝜆𝑖 𝑗𝑉𝑖𝑉
∗
𝑖 .

We can then multiply both sides of this equation on the left-side by 𝑉∗
𝑖

and the right-side by 𝑉𝑖 , and insert 𝑃2
C in the middle of the left-side of

the equation (using 𝑉 𝑗𝑃C = 𝑉 𝑗 and its adjoint equation), to obtain,

(𝑃C𝑉
∗
𝑗𝑉𝑖𝑃C)∗ (𝑃C𝑉

∗
𝑗𝑉𝑖𝑃C) = 𝜆𝑖 𝑗𝑃C𝑃C = 𝜆𝑖 𝑗𝑃C .

In the case that 𝜆𝑖 𝑗 = 0 = 𝜆 𝑗𝑖 for some pair 𝑖, 𝑗 , it follows that
𝑃C𝑉∗

𝑗
𝑉𝑖𝑃C = 0 = 0𝑃C (and the same is true for the adjoint operator with

𝑖, 𝑗 roles reversed), which gives Eq. (3.4) trivially with 𝑈𝑖 𝑗 = 𝐼.
So suppose that 0 ≤ 𝜆𝑖 𝑗 = 𝜆 𝑗𝑖 ≠ 0 and put 𝛾𝑖 𝑗 =

√︁
𝜆𝑖 𝑗 . The above

equation thus gives us 𝑃C = 𝐵∗
𝑖 𝑗
𝐵𝑖 𝑗 where we define

𝐵𝑖 𝑗 = 𝛾−1
𝑖 𝑗 𝑃C𝑉

∗
𝑗𝑉𝑖𝑃C .

Reversing the roles of 𝑖 and 𝑗 and using 𝛾𝑖 𝑗 = 𝛾 𝑗𝑖 , we also have 𝑃C =

𝐵𝑖 𝑗𝐵
∗
𝑖 𝑗

. It follows that 𝐵𝑖 𝑗 is a partial isometry with 𝑃C as both its initial
and final projection, from which we have 𝐵𝑖 𝑗 = 𝐵𝑖 𝑗𝑃C = 𝑃C𝐵𝑖 𝑗 and
𝐵∗
𝑖 𝑗
= 𝑃C𝐵∗

𝑖 𝑗
= 𝐵∗

𝑖 𝑗
𝑃C .

In particular, this implies that the von Neumann algebra W∗ (𝐵𝑖 𝑗 )
generated by 𝐵𝑖 𝑗 (which, in the finite-dimensional case, is the set of
polynomials in 𝐵𝑖 𝑗 and 𝐵∗

𝑖 𝑗
) is contained in the commutant {𝑃C}′ of the

6
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projection 𝑃C . When we examine the polar decomposition

𝐵𝑖 𝑗 = 𝑈𝑖 𝑗

√︃
𝐵∗
𝑖 𝑗
𝐵𝑖 𝑗 = 𝑈𝑖 𝑗𝑃C ,

we obtain a unitary 𝑈𝑖 𝑗 ∈ W∗ (𝐵𝑖 𝑗 ) (which is always the case for a
unitary in the polar decomposition of an operator [11]) and hence
𝑈𝑖 𝑗 ∈ {𝑃C}′.

We have thus shown that for all 𝑖, 𝑗 with 𝜆𝑖 𝑗 ≠ 0, there is a unitary
𝑈𝑖 𝑗 that commutes with 𝑃C such that 𝑃C𝑉∗

𝑗
𝑉𝑖𝑃C =

√︁
𝜆𝑖 𝑗𝑈𝑖 𝑗𝑃C , and this

completes the proof. ■

Combining the previous two results in the cases of most relevance
to families of isoclinic subspaces gives us the following result.

Theorem 3.3 Suppose that {𝐴𝑖}𝑖 are operators on a Hilbert space H that are
scalar multiples of partial isometries with common initial subspace C ⊆ H .
Then the range spaces of 𝐴𝑖𝑃C form an isoclinic family of subspaces if and
only if there are scalars 𝜆𝑖 𝑗 ∈ C and unitary operators 𝑈𝑖 𝑗 that commute with
𝑃C such that

𝑃C𝐴
∗
𝑖 𝐴 𝑗𝑃C = 𝜆𝑖 𝑗𝑈𝑖 𝑗𝑃C = 𝜆𝑖 𝑗𝑃C𝑈𝑖 𝑗 ∀ 𝑖, 𝑗 .

Proof By Theorem 3.1, if Eq. (3.1) are satisfied, then so are the pro-
jection identities given in Eq. (3.2). Whenever the scalar in one of the
projection equations is non-zero, the trace argument used in the proof
above shows that the corresponding projections have the same rank.
The fact that the operators 𝐴𝑖 are multiples of partial isometries with
the same initial space comes into this direction of the argument just to
ensure that, even when the scalars are zero, the range projections have
the same rank. Since the range projections have the same rank and sat-
isfy Eq. (3.2), any pair of these range projections satisfy both Eq. (2.1)
and the hypotheses of Theorem 2.2. Therefore, it follows from Theorem
2.2 that the range spaces form an isoclinic family.

The other direction of the proof, when the range spaces of the 𝐴𝑖𝑃C
are assumed to be isoclinic, is captured by the special case of Lemma 3.2
(with Theorem 2.2 applied to obtain the projection equations) in which
all the projections have the same rank (i.e., even when the scalars in the
equation are zero). The scalars that define the 𝐴𝑖 as multiples of partial
isometries can be absorbed into the scalars 𝛾𝑖 𝑗 of Eq. (3.4). ■

Remark 3.4 While this result includes hypotheses on the operators
considered, in particular a common support space, we note that it can
be applied to every family of isoclinic subspaces in the following way.
Given a family {V𝑖}𝑖≥1 of 𝑘-dimensional isoclinic subspaces with asso-
ciated rank-𝑘 projections 𝑃𝑖 , we can pick any 𝑘-dimensional subspace
C = V0 of H with projection 𝑃C , and define intertwining partial isome-
tries𝑉𝑖 with final projections 𝑃𝑖 = 𝑉𝑖𝑉

∗
𝑖

and all with the initial projection
𝑃C = 𝑉∗

𝑖
𝑉𝑖 . One can then apply Theorem 3.3 with 𝐴𝑖 = 𝑃𝑖 , to obtain

Eq. (3.1) and unitary operators 𝑈𝑖 𝑗 . As it turns out, in many cases of
interest, including for the subclasses considered in the next section,

7

https://doi.org/10.4153/S0008439525000256 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439525000256


there is a natural ‘base’ or ‘anchor’ subspace for the isoclinic family as
in this discussion.

4 Applications and Examples

4.1 Quantum Error Correcting Codes

The subclass of isoclinic subspace families defined through quantum
error correction come from the actions of sets of error operators {𝐸𝑖}
on a code subspace C ⊆ H that can be corrected after their actions.
Formally, the operators are generally assumed to define a completely
positive and trace-preserving (i.e.,

∑
𝑖 𝐸

∗
𝑖
𝐸𝑖 = 𝐼) map given by E(𝜌) =∑

𝑖 𝐸𝑖𝜌𝐸
∗
𝑖
. The code C is then correctable for E if there is a completely

positive trace-preserving map R on H such that (R ◦ E)(𝜌) = 𝜌 for all
operators 𝜌 on H that are supported on C.

The Knill–Laflamme Theorem [23] gives testable conditions for a set
of error operators to be correctable for a given code, and it is the spe-
cial case of the isoclinic conditions above with the unitary operators all
equal to the identity operator. In other words, C is correctable for E if
and only if there exist scalars 𝜆𝑖 𝑗 ∈ C such that for all 𝑖, 𝑗 ,

𝑃C𝐸
∗
𝑖 𝐸 𝑗𝑃C = 𝜆𝑖 𝑗𝑃C . (4.1)

In this case, the scalars Λ = (𝜆𝑖 𝑗 ) form a positive and trace one (i.e.,
density) matrix. The recovery operation R is then constructed by using
the partial isometries obtained in the polar decomposition of the 𝐸𝑖

and factoring through the scalar unitary that diagonalizes Λ through
these equations. See [26, 34] for a more comprehensive introduction to
quantum error correction.

It was shown in [28] that for any code subspace C and set of (non-
degenerate) error operators {𝐸𝑖}, the range subspaces of the restrictions
of the 𝐸𝑖 to C form a family of isoclinic subspaces. As noted above, we
can now see this as a distinguished special case of the general isoclinic
conditions. There is a partial converse to this result: any pair of isoclinic
subspaces can naturally be viewed as arising from a quantum error
correcting code with two error operators (essentially the small number
of subspaces limits the number of relevant equations and allows for
this equivalence). More generally, however, the isoclinic subspace con-
ditions of Eq. (3.1) define a broader class. It is natural to ask though,
what, if anything, do these more general equations describe in the con-
text of sets of operators and (code) subspaces that are of relevance in
quantum information? To this end, let us consider a motivating class of
codes from quantum error correction.

Let 𝑋 ,𝑌 , 𝑍 be the usual (single qubit) Pauli operators on C2 with
orthonormal basis {|0⟩, |1⟩} [34]. Given a positive integer 𝑛 ≥ 1, we
can consider the 𝑛-tensors of these operators given by products of the
operators 𝑋1 = 𝑋 ⊗ 𝐼 ⊗ 𝐼 ⊗ . . ., 𝑍2 = 𝐼 ⊗ 𝑍 ⊗ 𝐼 ⊗ . . ., etc, that act on 𝑛-qubit
Hilbert space (C2)⊗𝑛, which has orthonormal basis vectors |𝑖1 · · · 𝑖𝑛⟩ =

|𝑖1⟩ ⊗ . . . ⊗ |𝑖𝑛⟩ given by tensor products of the basis vectors from its
8
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single qubit subsystems. The 𝑛-qubit Pauli group P𝑛 is the subgroup of
unitary operators generated by the 𝑋𝑖 , 𝑍𝑖 and 𝑖𝐼.

The stabilizer formalism for quantum error correction invented by
Gottesman [16] shows how to build correctable codes for sets of Pauli
error operators, and applies the Knill–Laflamme Theorem to give a
complete group-theoretic characterization of which error operators are
correctable for a given ‘stabilizer code’. The starting point for the for-
malism is an Abelian subgroup S of P𝑛 that does not contain −𝐼; for
this discussion, let us take S = ⟨𝑍1, . . . , 𝑍𝑛−𝑘⟩ for some fixed 𝑘 ∈
{1, 2, . . . , 𝑛}. The stabilizer subspace for S, which is designated as the
code space, is C = C(S) = span{|𝜓⟩ : 𝑆 |𝜓⟩ = |𝜓⟩ ∀ 𝑆 ∈ S}. In the exam-
ple, we get the 𝑘-qubit subspace C = span{|0⟩⊗(𝑛−𝑘 ) |𝑖1 · · · 𝑖𝑘⟩ : 𝑖 𝑗 ∈
{0, 1}}.

One can check that the normalizer subgroup N(S) of S inside P𝑛

coincides with its centralizer Z(S), as every element of P𝑛 either com-
mutes or anti-commutes and −𝐼 ∉ S. A main result in the stablizer
formalism asserts that a stabilizer code C(S) is correctable for a set of
Pauli error operators {𝐸𝑖} exactly when all the operator products 𝐸∗

𝑖
𝐸 𝑗

satisfy the constraint: 𝐸∗
𝑖
𝐸 𝑗 ∉ N(S) \ ⟨S, 𝑖𝐼⟩. In the example, one can

see directly that N(S) = Z(S) is the group generated by ⟨S, 𝑖𝐼⟩ and the
operators L = ⟨𝑋𝑖 , 𝑍𝑖 : 𝑛 − 𝑘 + 1 ≤ 𝑖 ≤ 𝑛⟩.

The operators in L are called logical operators, as they can be used to
implement logical operations on the code space. (We note that while
this is a somewhat canonical choice of logical operators and conve-
nient for our discussion, it is not unique.) They form a multiplicatively
closed set (as a group), that clearly belongs to N(S) \ ⟨S, 𝑖𝐼⟩, and hence
they are not correctable by the result noted above (in particular they
do not satisfy the Knill–Laflamme conditions). However, observe they
do satisfy the more general isoclinic equations. Indeed, given 𝐿 ∈ L,
we have 𝐿 ∈ Z(S), and so 𝐿 commutes with all the spectral projec-
tions of every element of S, which in turn implies that 𝐿 commutes
with 𝑃C (this can be seen from the explicit form for 𝑃C noted below).
Hence 𝐿𝑃C = 𝑃C𝐿 and C is a reducing subspace for all 𝐿 ∈ L; i.e., C
is an invariant subspace for both 𝐿 and 𝐿∗. Given any pair 𝐿1, 𝐿2 ∈ L,
we have 𝐿 = 𝐿1𝐿2 ∈ L and thus 𝑃C𝐿1𝐿2𝑃C = 𝐿𝑃C = 𝑃C𝐿. So by
Theorem 3.1, it follows that the set of operators L (or any subset of
them) together with C define an isoclinic family of subspaces given by
{𝐿C : 𝐿 ∈ L}, the ranges of the operators 𝐿 restricted to C.

Now, recall from the definition of C = C(S) that every 𝑆 ∈ S satisfies
𝑆𝑃C = 𝑃C = 𝑃C𝑆. More generally, one can show that an operator 𝐿 ∈ P𝑛

commutes with 𝑃C if and only if 𝐿 ∈ N (S). Indeed, the eigenvalue 1
eigenspace projection for 𝑆 ∈ S is 𝑃𝑆 = 1

2 (𝐼 + 𝑆), and 𝑃C is the product
of all the 𝑃𝑆 . If 𝐿 ∈ P𝑛 does not belong to N(S) = Z(S), then it anti-
commutes with some 𝑆 ∈ S, and we have 𝐿𝑃𝑆 = 1

2 (𝐼 − 𝑆)𝐿, which on
the right side of this equation is the eigenvalue -1 eigenspace projection
for 𝑆 multiplied by 𝐿 on the right. It follows that such an 𝐿 cannot com-
mute with 𝑃C . Thus, it also follows that the set of Pauli group operators
that satisfy the general isoclinic equations with a non-trivial unitary for
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a given stabilizer code C(S), are precisely the operators that belong to
N(S) \ ⟨S, 𝑖𝐼⟩.

Combining this observation with the results of the last section and
some basic properties of correctable errors for stabilizer codes, allows
us to conclude the following.

Proposition 4.1 Let C = C(S) be an 𝑛-qubit stabilizer code and let {𝐸𝑖}𝑖 ⊆
P𝑛 be any subset of Pauli operators. Then the range subspaces of the operators
𝐸𝑖𝑃C are isoclinic. Moreover, the products amongst the set {𝐸∗

𝑖
𝐸 𝑗 }𝑖, 𝑗 that

belong to N(S) \ ⟨S, 𝑖𝐼⟩ are precisely those that satisfy Eq.(3.1) with non-
trivial unitary operators.

Proof In fact we can say precisely how Eq. (3.1) are satisfied here.
Indeed, the argument above shows that any operator product 𝐸∗

𝑖
𝐸 𝑗 :=

𝐸 that belongs to the (logical) operator set N(S) \ ⟨S, 𝑖𝐼⟩, must satisfy
these equations with 𝐸 acting as the non-trivial unitary. (The scalar
multiple 𝜆𝑖 𝑗 will be modulus one, as we have assumed the opera-
tors belong to P𝑛, but we note that in general the error operators
will be scalar multiples of such operators, so the error model will
be trace-preserving.) The remaining cases correspond to correctable
errors. Indeed, If 𝐸 belongs to ⟨S, 𝑖𝐼⟩, then clearly 𝐸𝑃C = 𝑃C and the
condition is trivially satisfied. Further, if 𝐸 ∉ N(S), then a standard
stabilizer formalism argument can be used (using the explicit formula
for the projection 𝑃C noted above) to show that 𝐸𝑖𝑃C and 𝐸 𝑗𝑃C have
orthogonal ranges, and hence the isoclinic conditions are satisfied with
𝜆𝑖 𝑗 = 0. ■

Remark 4.2 This suggests an interesting possibility and line of inves-
tigation. We can ask if these isoclinic subspace results for stabilizer
codes, and in particular the identification of logical operators with the
generalized Knill–Laflamme conditions that have non-trivial commut-
ing unitary operators, extends to arbitrary quantum error correcting
codes.

4.2 Isoclinic 𝑛-Planes in Euclidean 2𝑛-Space

Next, we consider a class of examples that form a subclass of isoclinic
subspace families with roots dating back over a century. First some
background.

The study of rotations in higher dimensions gained momentum with
the discovery of quaternions by Hamilton [17], which provided the
first systematic approach to understanding rotations in three and four
dimensions [18, 44]. Subsequently Clifford extended this framework
to spaces of higher dimensions, introducing what are now called Clif-
ford algebras [14], which generalized the approach to spaces of higher
dimensions. Clifford algebras underpin the algebraic structure of rota-
tions, leading naturally to explorations of planes that exhibit unique
rotational properties, including isoclinic rotations as a distinguished
case. The concept of isoclinic 𝑛-planes thus applies the idea of isoclinic
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subspaces to higher dimensional subspaces within Euclidean vector
spaces.

Isoclinic 𝑛-planes are subspaces of R𝑛 (or, more generally, C𝑛) where
rotations affect all vectors in a consistent way: pairs of orthogonal vec-
tors within these planes rotate by the same angle while preserving their
orthogonality. They are particularly interesting in even-dimensional
spaces and Euclidean spaces, and have special properties that make
them useful in higher-dimensional geometry and theoretical physics
[39, 40, 41, 42]. As such, study on even-dimensional space, R2𝑛, has
been heavily investigated. An 𝑛-plane in R2𝑛 is an 𝑛-dimensional vec-
tor subspace of R2𝑛 accompanied by its induced inner product. Two
𝑛-planes, V,W are said to be isoclinic with each other if the angle
between any non-zero vector in V and its projection onto W is the
same for every non-zero vector in V. If this angle is given by 𝜃, then V
and W are isoclinic at angle 𝜃 in the sense defined above.

We can extend the concepts within this class of isoclinic subspaces
to utilize the Knill–Laflamme conditions and give a new perspective
on the class. We note that [28] contains a similar class of examples for
𝑛 = 2 and 2 × 2 matrices as part of its exposition (though without the
Knill–Laflamme viewpoint).

Example 4.3 Given a (bounded) operator 𝐴 on a Hilbert space H , we
can consider its graph,

C𝐴 = {(𝑥, 𝐴𝑥) : 𝑥 ∈ H},

which is a subspace of H ⊕ H that is closed (due to the closed graph
theorem in the infinite-dimensional case). We will also consider the
subspace of H ⊕H given by,

C∞ = {(0, 𝑥) : 𝑥 ∈ H}.

Now suppose that 𝐴 be a unitary operator on H . Observe that the
projection, which we denote by 𝑃𝐴, of H ⊕H onto C𝐴 is given in block
matrix form by,

𝑃𝐴 =
1
2

(
𝐼 𝐴∗

𝐴 𝐼

)
.

Indeed, an easy way to see this is to note that 𝑃𝐴

(
𝐼 𝐴

) 𝑡
= 𝑃𝐴. Also

observe the projection 𝑃∞ onto C∞, is given in block matrix form by,

𝑃∞ =

(
0 0
0 𝐼

)
.

And note the subspaces C𝐴 and C∞ have dimension equal to dimH
(for C𝐴 using the fact that 𝐴 is unitary). One can verify by direct matrix
calculation that for any unitary 𝐴, we have

𝑃∞𝑃𝐴𝑃∞ =
1
2
𝑃∞ and 𝑃𝐴𝑃∞𝑃𝐴 =

1
2
𝑃𝐴.
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Now suppose 𝐵 is another unitary operator on H , and calculate the
following operator product:

𝑃𝐴𝑃𝐵𝑃𝐴 =
1
8

(
𝐼 𝐴∗

𝐴 𝐼

) (
𝐼 𝐵∗

𝐵 𝐼

) (
𝐼 𝐴∗

𝐴 𝐼

)
=

1
8

(
2𝐼 + 𝐴∗𝐵 + 𝐵∗𝐴 2𝐴∗ + 𝐵∗ + 𝐴∗𝐵𝐴∗

2𝐴 + 𝐵 + 𝐴𝐵∗𝐴 2𝐼 + 𝐵𝐴∗ + 𝐴𝐵∗

)
.

Let us further assume that both 𝐴 = 𝐴∗ = 𝐴−1 and 𝐵 = 𝐵∗ = 𝐵−1 are
Hermitian unitary operators and they anti-commute, 𝐴𝐵 = −𝐵𝐴. Then
observe that the matrix on the right-side of this equation reduces to a
scalar multiple of 𝑃𝐴; in fact we have

𝑃𝐴𝑃𝐵𝑃𝐴 =
1
2
𝑃𝐴.

It follows that, given any family of Hermitian and pairwise anti-
commuting unitary operators acting on a common Hilbert space, the
graph subspaces C𝐴 of the operators inside the direct sum of the Hilbert
space with itself, together with the subspace C∞, form an isoclinic fam-
ily. We are thus in the scenario of Theorem 3.3 and we can investigate
what the commuting unitary operators might be in the generalized
Knill–Laflamme conditions. Interestingly, for this class of examples,
there is a natural base subspace that stands out from the others, namely
C∞.

Hence, we first find partial isometries𝑉∞ and𝑉𝐴 on H ⊕H such that
𝑃∞ = 𝑉∞𝑉∗

∞, 𝑃𝐴 = 𝑉𝐴𝑉
∗
𝐴

and 𝑃∞ = 𝑉∗
𝐴
𝑉𝐴. One can check that 𝑉∞ = 𝑃∞

and

𝑉𝐴 =
1
√

2

(
0 𝐼

0 𝐴

)
(4.2)

satisfy these identities. Knowing from Theorem 3.3 that we will find the
commuting unitary form in Eq. (3.1), we compute to find the following
(with 𝑃∞ in place of 𝑃C):

𝑃∞𝑉
∗
𝐴𝑉𝐵𝑃∞ =

1
√

2
𝑉

(∞)
𝐴,𝐵 𝑃∞ =

1
√

2
𝑃∞𝑉

(∞)
𝐴,𝐵 ,

where

𝑉
(∞)
𝐴,𝐵 :=

(
0 0
0 𝑈

(∞)
𝐴,𝐵

)
,

and where 𝑈
(∞)
𝐴,𝐵 = 𝐼+𝐴∗𝐵√

2
= 𝐼+𝐴𝐵√

2
is a unitary operator on H .

We can use the Pauli group introduced in the last subsection to
produce maximal families of such isoclinic families. To see this, we
recall the following result of Kestelman which gives a restriction on
the dimension of spaces where there are large sets pairwise anti-
commuting invertible matrices.

Theorem 4.4 [22, Theorem 2] If there exist at least 2𝑞 pairwise anti-
commuting invertible 𝑚 ×𝑚 matrices, then 2𝑞 divides 𝑚.
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We also note that if we have an even number {𝐴 𝑗 }2𝑞
𝑗=1 of pairwise

anti-commuting invertible matrices, then their product 𝐴1𝐴2...𝐴2𝑞−1𝐴2𝑞
is an invertible matrix that anti-commutes with every element of
{𝐴 𝑗 }2𝑞

𝑗=1. Hence the maximal number of pairwise anti-commuting
invertible matrices is always an odd number.

It follows from Theorem 4.4 that if 𝑚 = 2𝑞 𝑝, where 𝑝 is odd, then
the maximum possible number of pairwise anti-commuting invert-
ible 𝑚 × 𝑚 matrices is 2𝑞 + 1. An inductive construction of Kestleman
shows that this upper bound is always attained with a set of Hermi-
tian unitary matrices. We can use elements of the Pauli groups to give
explicit maximal sets of examples. For the base case where 𝑞 = 1, the
matrices 𝑋 ⊗ 𝐼𝑝 , 𝑌 ⊗ 𝐼𝑝 and 𝑍 ⊗ 𝐼𝑝 are three anti-commuting Hermitian
unitary 𝑚 × 𝑚 matrices. For the inductive step, suppose {𝐵𝑖}2𝑞+1

𝑖=1 are
set of 2𝑞 + 1 pairwise anti-commuting 𝑚 ×𝑚 Hermitian unitary matri-
ces, then {𝑋 ⊗ 𝐵𝑖}2𝑞+1

𝑖=1
⋃{𝑌 ⊗ 𝐼𝑚, 𝑍 ⊗ 𝐼𝑚} are a set of 2𝑞 + 3 pairwise

anti-commuting 2𝑚 × 2𝑚 Hermitian unitary matrices.
We can then use the construction from earlier in this section together

with these anti-commuting Hermitian unitary matrices to construct
pairwise isoclinic subspaces. Let 𝑛 be an even number with 𝑛 = 2𝑘 𝑝

where 𝑝 is odd. Then we have 2𝑘 − 1 anti-commuting 𝑛
2 × 𝑛

2 Hermi-
tian unitary matrices. Hence the above construction applied pairwise
to these matrices gives 2𝑘 pairwise isoclinic 𝑛

2 -dimensional subspaces
of C𝑛.

4.3 Mutually Unbiased QuantumMeasurements

In this section, we show how the generalized Knill–Laflamme con-
ditions can be applied to a recently introduced notion in quantum
information theory that is used in quantum cryptography.

By a 𝑑-outcome (quantum) measurement acting on a Hilbert space H ,
we mean a set of orthogonal projections {𝑃𝑎}𝑑𝑎=1 with mutually orthog-
onal ranges that span all of H , so

∑
𝑎 𝑃𝑎 = 𝐼. The following definition

is from [13, 37], and was motivated by the desire to find higher dimen-
sional versions of mutually unbiased bases [12], which are captured in
the special case with one-dimensional projections.

Definition 4.5 Two 𝑑-outcome measurements {𝑃𝑎}𝑑𝑎=1 and {𝑄𝑏}𝑑𝑏=1 on
a Hilbert space H are called mutually unbiased measurements (MUMs) if

𝑃𝑎 = 𝑑 𝑃𝑎𝑄𝑏𝑃𝑎 and 𝑄𝑏 = 𝑑 𝑄𝑏𝑃𝑎𝑄𝑏, (4.3)

for all 1 ≤ 𝑎, 𝑏 ≤ 𝑑.

By computing traces on both sides of these equations (as we did
in an earlier proof), one sees that all of the projections 𝑃𝑎, 𝑄𝑏 must
have the same rank, which we will denote in this section by the integer
𝑘 = dim(𝑃𝑎H) = dim(𝑄𝑏H). Since the individual sets of projections
have mutually orthogonal ranges, and hence trivially satisfy the iso-
clinic equations Eq. (2.1) (with 𝜆 = 0), it follows from Theorem 2.2 and
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Eq. (4.3) that the entire set of ranges of the projections {𝑃𝑎,𝑄𝑏}𝑎,𝑏 forms
a family of isoclinic subspaces.

We can thus apply the results of the previous section to MUMs,
and doing so yields the following testable conditions for MUMs when
given a family of unitary operators and a subspace, paralleling the
Knill–Laflamme conditions for quantum error correction. To keep sim-
ple notation, we state the result for ‘2-element’ MUMs (i.e., those with
two measurements), but the result extends in an obvious way to MUMs
of any size.

Theorem 4.6 A family of unitary operators {𝑈𝑖}𝑖 on a Hilbert space H and
a subspace C defines a 𝑑-outcome 2-element MUM if and only if there is a
partition of the partial isometries {𝑈𝑖𝑃C}𝑖 into two sets {𝑉𝑎}𝑑𝑎=1, {𝑊𝑏}𝑑𝑏=1 for
which the projection sets {𝑉𝑎𝑉

∗
𝑎}𝑎 and {𝑊𝑏𝑊

∗
𝑏
}𝑏 define measurements and

there are unitary operators 𝑈𝑎𝑏 such that

𝑃C𝑉
∗
𝑎𝑊𝑏𝑃C =

1
√
𝑑
𝑈𝑎𝑏𝑃C =

1
√
𝑑
𝑃C𝑈𝑎𝑏 ∀ 𝑎, 𝑏. (4.4)

Proof The forward direction of the proof follows directly from
Lemma 3.2, and the backward direction follows from Theorem 3.1. ■

As shown in [13], any pair of finite-dimensional MUMs can be writ-
ten in a canonical form, as two sets of 𝑑 orthogonal (rank-𝑘) projections
on C𝑘 ⊗ C𝑑 given by (up to a change of basis),

𝑃𝑎 = 𝐼𝑘 ⊗ |𝑎⟩⟨𝑎 | ∀1 ≤ 𝑎 ≤ 𝑑,

where {|𝑎⟩}𝑑
𝑎=1 is the computational basis for C𝑑 , and in the same basis,

𝑄𝑏 =
1
𝑑

𝑑∑︁
𝑖, 𝑗

𝑉𝑏
𝑖 𝑗 ⊗ |𝑖⟩⟨ 𝑗 | ∀1 ≤ 𝑏 ≤ 𝑑,

where 𝑉𝑏
𝑖 𝑗

are operators on C𝑘 that satisfy the following operator
relations: 

𝑉𝑏
𝑖𝑖

= 𝐼𝑘 ∀ 𝑏, 𝑖
(𝑉𝑏

𝑖 𝑗
)∗ = 𝑉𝑏

𝑗𝑖
∀ 𝑏, 𝑖, 𝑗

𝑉𝑏
𝑖1𝑖2

= 𝑉𝑏
𝑖1 𝑗
𝑉𝑏
𝑗𝑖2

∀ 𝑏, 𝑖1, 𝑖2, 𝑗∑
𝑏 𝑉

𝑏
𝑖 𝑗

= 𝛿𝑖 𝑗 𝑑 𝐼𝑘 ∀ 𝑖, 𝑗 .

(4.5)

Let us show how the canonical form is related to the characterization
of MUMs given in Theorem 4.6. Firstly, if we have a MUM given by
rank-𝑘 projections {𝑃𝑎,𝑄𝑏}𝑑𝑎,𝑏=1 in its canonical form, we can pick one
of the 𝑃𝑎 to identify as 𝑃C , let us say 𝑃C = 𝑃1 = 𝐼𝑘 ⊗ |1⟩⟨1|. Then we can
define 𝑉𝑎 = 𝐼𝑘 ⊗ |𝑎⟩⟨1| for 1 ≤ 𝑎 ≤ 𝑑, and

𝑊𝑏 =
1
√
𝑑

𝑑∑︁
𝑗=1

𝑉𝑏
𝑗1 ⊗ | 𝑗⟩⟨1| ∀1 ≤ 𝑏 ≤ 𝑑.

It then follows that for all 𝑎, 𝑏, we have 𝑉∗
𝑎𝑉𝑎 = 𝑃C , 𝑃𝑎 = 𝑉𝑎𝑉

∗
𝑎, 𝑊∗

𝑏
𝑊𝑏 =

𝑃C , 𝑄𝑏 = 𝑊𝑏𝑊
∗
𝑏
, and Eq. (4.4) are satisfied with 𝑈𝑎𝑏 = 𝑉𝑏

𝑎1 ⊗ |1⟩⟨1|.
14
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On the other hand, we can use the generalized Knill–Laflamme con-
ditions of Theorem 4.6 to give an alternate derivation of the MUM
canonical form. We state this as a result.

Corollary 4.7 Suppose that {𝑉𝑎}𝑑𝑎=1 and {𝑊𝑏}𝑑𝑏=1 are partial isometries
on H with 𝑘-dimensional mutually orthogonal ranges in the individual
sets and satisfying the relations of Eq. (4.4) for a subspace C. Then there
is a unitary 𝑈 : H → C𝑘 ⊗ C𝑑 such that the family of projections
{𝑈𝑉𝑎𝑉

∗
𝑎𝑈

∗,𝑈𝑊𝑏𝑊
∗
𝑏
𝑈∗}𝑑

𝑎,𝑏=1 is a MUM in the canonical form.

Proof First note that we can assume without loss of generality that 𝑉1
is a projection and satisfies 𝑉1 = 𝑉1𝑉

∗
1 = 𝑃C .

Indeed, this can be accomplished by the ‘pull-back’ technique used
earlier, wherein we multiply both sides of Eq. (4.4) on the left by 𝑉1 and
on the right by 𝑉∗

1 . Then one can verify the equations will be satisfied
by the operators 𝑉 ′

𝑎 = 𝑉𝑎𝑉
∗
1 , 𝑊 ′

𝑏
= 𝑊𝑏𝑉

∗
1 and 𝑈′

𝑎𝑏
= 𝑉1𝑈𝑎𝑏𝑉

∗
1 .

As {𝑃𝑎 := 𝑉𝑎𝑉
∗
𝑎}𝑎 is a family of projections with mutually orthogonal

(𝑘-dimensional) ranges, we can find a unitary 𝑈 : H → C𝑘 ⊗ C𝑑 such
that 𝑈𝑃𝑎𝑈

∗ = 𝐼𝑘 ⊗ |𝑎⟩⟨𝑎 | and 𝑉𝑎,𝑈 := 𝑈𝑉𝑎𝑈
∗ = 𝐼𝑘 ⊗ |𝑎⟩⟨1|.

Now observe that for all 𝑏, we have 𝑊𝑏,𝑈 := 𝑈𝑊𝑏𝑈
∗ =

(𝑈𝑊𝑏𝑈
∗) (𝑈𝑃1𝑈

∗), and so there are operators𝑉𝑏
𝑗1 on C𝑘 such that𝑊𝑏,𝑈 =∑𝑑

𝑗=1 𝑉
𝑏
𝑗1 ⊗ | 𝑗⟩⟨1|. Then, by defining 𝑄𝑏 := 𝑊𝑏,𝑈𝑊

∗
𝑏,𝑈 , we leave it to the

interested reader to verify that the projections {𝑃𝑎,𝑄𝑏}𝑑𝑎,𝑏=1 define a
MUM in canonical form. ■

We next extend the construction that leads to the classical family of
isoclinic subspaces from 𝑛-planes presented in the previous subsection,
and use it to construct a family of MUMs.

Example 4.8 Let 𝑑 ≥ 1 be a fixed positive integer and let 𝜔 = 𝑒
2𝜋𝑖
𝑑

be a primitive 𝑑-th root of unity. Suppose that 𝐴 is a unitary operator
on a Hilbert space H with 𝐴𝑑 = 𝐼. We will focus on finite-dimensional
spaces here, but the construction goes through for any Hilbert space.

Let 𝑘 = dimH and consider the 𝑘-dimensional (as 𝐴 is unitary)
subspace of K := H (𝑑) � H ⊗ C𝑑 given by

C𝐴 =
{
(𝑥, 𝐴𝑥, . . . , 𝐴𝑑−1𝑥) : 𝑥 ∈ H

}
.

Generalizing the 𝑑 = 2 case above, note that the projection 𝑃𝐴 of K onto
C𝐴 is given in 𝑑 × 𝑑 block matrix form as,

𝑃𝐴 =
1
𝑑

©«

𝐼 𝐴∗ (𝐴∗)2 · · · (𝐴∗)𝑑−1

𝐴 𝐼 𝐴∗ . . . (𝐴∗)𝑑−2

𝐴2 𝐴 𝐼
. . .

...
...

...
. . . . . . 𝐴∗

𝐴𝑑−1 𝐴𝑑−2 · · · 𝐴 𝐼

ª®®®®®®®¬
.

We can similarly carry through this subspace and projection descrip-
tion for each of the 𝑑 unitary operators 𝜔𝑟 𝐴, for 0 ≤ 𝑟 ≤ 𝑑 − 1, replacing
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𝐴 by 𝜔𝑟 𝐴 in the projection above, and obtain the rank-𝑘 projections
{𝑃(𝜔𝑟 𝐴) }𝑑−1

𝑟=0 with ranges

𝑃(𝜔𝑟 𝐴)K =
{
(𝑥, (𝜔𝑟 𝐴)𝑥, . . . , (𝜔𝑟 𝐴)𝑑−1𝑥) : 𝑥 ∈ H

}
.

Observe that this family of (𝑑 in total) projections satisfies the com-
pleteness relation

𝑑−1∑︁
𝑟=0

𝑃(𝜔𝑟 𝐴) = 𝐼,

which makes use of the cyclotomic polynomial root equation 1 + (𝜔𝑠) +
. . . + (𝜔𝑠)𝑑−1 = 0 for all 0 ≤ 𝑠 ≤ 𝑑 − 1. This also implies the projections
have mutually orthogonal ranges as, for all 𝑠,

𝑃(𝜔𝑠𝐴) = 𝑃(𝜔𝑠𝐴) 𝐼 =
𝑑−1∑︁
𝑟=0

𝑃(𝜔𝑠𝐴)𝑃(𝜔𝑟 𝐴) = 𝑃(𝜔𝑠𝐴) +
∑︁
𝑟≠𝑠

𝑃(𝜔𝑠𝐴)𝑃(𝜔𝑟 𝐴) ,

and so each 𝑃(𝜔𝑠𝐴)𝑃(𝜔𝑟 𝐴) = 0.
Below we will also make use of a generalization of the projection

𝑃∞, which projects onto the subspace C∞ = {(0, . . . , 0, 𝑥) : 𝑥 ∈ H} of
H (𝑑) . In the 𝑑 × 𝑑 block matrix form used above, 𝑃∞ is represented by
the matrix with 𝐼 in the (𝑑, 𝑑) entry and 0’s in all other entries.

We now apply Theorem 4.6 to the above class of projections to
construct MUMs.

Corollary 4.9 Let 𝑑 be a positive integer and let 𝜔 be a primitive 𝑑th root
of unity. Suppose 𝐴1, . . . , 𝐴𝑛 are unitary operators on a Hilbert space H such
that:

𝐴𝑑
𝑖 = 𝐼 and 𝐴𝑖𝐴 𝑗 = 𝜔𝐴 𝑗𝐴𝑖 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛.

Then the sets of projections P𝑖 =
{
𝑃(𝜔𝑟 𝐴𝑖 )

}𝑑−1
𝑟=0 , for 1 ≤ 𝑖 ≤ 𝑛, form an 𝑛-

element family of 𝑑-outcome MUMs, with projections of rank equal to dimH .

Proof Let us focus for the proof on a pair of unitary operators 𝐴, 𝐵 on
H with 𝐴𝑑 = 𝐼 = 𝐵𝑑 and 𝐴𝐵 = 𝜔𝐵𝐴. To apply Theorem 4.6, we will use
C = C∞ as the anchor subspace recall with projection 𝑃∞. We define (for
any such 𝐴) a partial isometry 𝑉𝐴 on H (𝑑) with adjoint given in 𝑑 × 𝑑

block matrix form by

𝑉∗
𝐴 =

1
√
𝑑

©«
0 0 . . . 0
...

...
...

...
0 0 . . . 0
𝐼 𝐴∗ . . . (𝐴∗)𝑑−1

ª®®®®¬
.

Then observe that 𝑃𝐴 = 𝑉𝐴𝑉
∗
𝐴

and 𝑃∞ = 𝑉∗
𝐴
𝑉𝐴, and 𝑉𝐴 = 𝑉𝐴𝑃∞. As we

did above, we can replace 𝐴 with 𝜔𝑟 𝐴, for 0 ≤ 𝑟 ≤ 𝑑 − 1, to define
𝑉(𝜔𝑟 𝐴) accordingly.

It remains to verify Eq. (4.4) are satisfied by this family of partial
isometries (with the 𝑉(𝜔𝑟 𝐴) , respectively 𝑉(𝜔𝑠𝐵) , playing the roles of

16

https://doi.org/10.4153/S0008439525000256 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439525000256


𝑉𝑎’s, respectively 𝑊𝑏’s). To this end, observe that for all 0 ≤ 𝑟 , 𝑠 ≤ 𝑑 − 1,
we have

𝑃∞𝑉
∗
(𝜔𝑟 𝐴)𝑉(𝜔𝑠𝐵)𝑃∞ = 𝑉∗

(𝜔𝑟 𝐴)𝑉(𝜔𝑠𝐵) =
1
√
𝑑
𝑉

(∞)
(𝐴,𝑟 ,𝐵,𝑠)𝑃∞ =

1
√
𝑑
𝑃∞𝑉

(∞)
(𝐴,𝑟 ,𝐵,𝑠) ,

where 𝑉
(∞)
(𝐴,𝑟 ,𝐵,𝑠) given by

𝑉
(∞)
(𝐴,𝑟 ,𝐵,𝑠) =

©«
0 . . . 0
...

...
...

0 . . . 𝑈(𝐴,𝑟 ,𝐵,𝑠)

ª®®¬ ,

with

𝑈(𝐴,𝑟 ,𝐵,𝑠) =
1
√
𝑑

𝑑−1∑︁
𝑗=0

(𝜔𝑠−𝑟 ) 𝑗 (𝐴∗) 𝑗𝐵 𝑗 .

Thus we complete the proof by showing 𝑈(𝐴,𝑟 ,𝐵,𝑠) is unitary. Begin the
calculation as follows, using the facts that 𝐴∗ = 𝐴𝑑−1, 𝐵∗ = 𝐵𝑑−1 and
their anti-commutation relation:

𝑈(𝐴,𝑟 ,𝐵,𝑠)𝑈
∗
(𝐴,𝑟 ,𝐵,𝑠) =

1
𝑑

𝑑−1∑︁
𝑗1, 𝑗2=0

(𝜔𝑠−𝑟 ) 𝑗1− 𝑗2 (𝐴∗) 𝑗1𝐵 𝑗1 (𝐵∗) 𝑗2 𝐴 𝑗2

=
1
𝑑

𝑑−1∑︁
𝑗1, 𝑗2=0

(𝜔𝑠−𝑟 ) 𝑗1− 𝑗2 (𝐴∗) 𝑗1𝐵[ 𝑗1+ 𝑗2 (𝑑−1) ]𝐴 𝑗2

= 𝐼 + 1
𝑑

∑︁
𝑗1≠ 𝑗2

𝜔 𝑓 (𝑟 ,𝑠, 𝑗1, 𝑗2 ) (𝐴[ 𝑗1 (𝑑−1)+ 𝑗2 ]) (𝐵[ 𝑗1+ 𝑗2 (𝑑−1) ]),

where 𝑓 (𝑟 , 𝑠, 𝑗1, 𝑗2) = (𝑠 − 𝑟) ( 𝑗1 − 𝑗2) − 𝑗2 [ 𝑗1 + 𝑗2 (𝑑 − 1)]. In the sum,
make the substitution 𝑖 = 𝑗1 − 𝑗2 (mod 𝑑) for 𝑗1 ≠ 𝑗2, and observe that:

𝑓 (𝑟 , 𝑠, 𝑗1, 𝑗2) ≡ (𝑠 − 𝑟)𝑖 − 𝑗2𝑖 (mod 𝑑)
𝑗1 (𝑑 − 1) + 𝑗2 ≡ −𝑖 (mod 𝑑)
𝑗1 + 𝑗2 (𝑑 − 1) ≡ 𝑖 (mod 𝑑)

.

Hence, with this substitution, the (non-identity) sum in the last line of
the calculation above becomes:

1
𝑑

𝑑−1∑︁
𝑖=1

𝑑−1∑︁
𝑗2=0

𝜔[ (𝑠−𝑟 )𝑖− 𝑗2𝑖 ] 𝐴−𝑖𝐵𝑖 =
1
𝑑

𝑑−1∑︁
𝑖=1

𝜔 (𝑠−𝑟 )𝑖
( 𝑑−1∑︁
𝑗2=0

(𝜔−𝑖) 𝑗2
)
𝐴−𝑖𝐵𝑖 = 0,

again here using the cyclotomic polynomial identity. It now follows
that 𝑈(𝐴,𝑟 ,𝐵,𝑠) is unitary.

Thus we have shown that Eq. (4.4) are satisfied for this family of par-
tial isometries, and so it follows from Theorem 4.6, and extending the
above argument to the whole family {𝐴𝑖}𝑛𝑖=1, that the projection families
{P𝑖}𝑛𝑖=1 form a MUM; in particular, we have

𝑃(𝜔𝑟 𝐴𝑖 )𝑃(𝜔𝑠𝐴 𝑗 )𝑃(𝜔𝑟 𝐴𝑖 ) =
1
𝑑
𝑃(𝜔𝑟 𝐴𝑖 ) ,

for all 0 ≤ 𝑟 , 𝑠 ≤ 𝑑 − 1 and all 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. ■
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Remark 4.10 This MUM construction appears to be new. It is also
‘coordinate-free’, in that it only relies on the algebraic relations of
the defining unitary operators and not a particular Hilbert space rep-
resentation of them. It would be interesting to investigate possible
connections between the class of MUMs that are generated by this
construction and constructions determined by specific representations
(e.g., such as the 𝑛-qudit construction of Theorem 2.16 in [13]).

5 Concluding Remarks

This work has brought together the classical topic of isoclinic subspaces
with the modern topic of quantum error correction, with a general-
ization of a key result from the latter to the former. This generates a
number of potentially new lines of investigation, some as direct out-
growths of the current work and others more speculative. We briefly
note a few possibilities here.

The Knill–Laflamme theorem and conditions have sparked several
generalizations and applications even within the subject of quantum
error correction itself. As noted above, key results in the stabilizer for-
malism [16] rely on it, and as we showed, the generalized conditions
presented here capture the logical operators for a stabilizer code along
with the code’s correctable error sets. We wonder if this idea, and in
particular using the general conditions to algebraically describe logical
operators, extends to more general codes and error models.

It would be interesting to know if extensions of the Knill–Laflamme
theory for other types of quantum error correction could themselves
have natural extensions that would generalize the conditions consid-
ered here. Specifically, we note the operator algebra generalizations
of quantum error correction [3, 4, 5] and related notions and applica-
tions such as complementarity with private codes [10, 20, 25, 27]. From
matrix theory and (operator) dilation theory perspectives, we further
expect that the notions of higher-rank numerical ranges [7, 8, 9, 15, 29,
30, 31, 32, 33, 38], both singular and joint, consideration of which was
initially motivated by the Knill–Laflamme conditions, have extensions
motivated by the generalized conditions.

Whenever a generalized framework brings different notions under
the same umbrella, new crossover lines of investigation can also be con-
sidered. The applications and examples we presented in Section 4 have
already provided some indications of this; indeed, this included Pauli
groups motivated by quantum error models giving new examples of
constructions of isoclinic subspaces, the generalized conditions giving
a new perspective on a classical family of isoclinic subspaces, the clas-
sical construction motivating a new construction of MUMs, and the
generalized conditions giving an alternate construction of the canoni-
cal form for MUMs, which we think suggests a deeper (and yet to be
explored) connection between the theory of MUMs and quantum error
correction.
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We also wonder if the generalized Knill–Laflamme conditions might
provide new information or perspectives when applied to other fami-
lies of isoclinic subspaces beyond what we have considered here. For
instance, the isoclinic subspace conditions have been shown to arise in
the study of quantum designs [43].

We plan to undertake some of these investigations elsewhere and
we invite other interested researchers to do the same.
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