ON THE DIVISIBILITY AMONG POWER LCM MATRICES ON GCD-CLOSED SETS

GUANGYAN ZHU[™] and MAO LI

(Received 23 March 2022; accepted 15 April 2022; first published online 19 May 2022)

Abstract

Let a, b and n be positive integers and let $S = \{x_1, \dots, x_n\}$ be a set of n distinct positive integers. For $x \in S$, define $G_S(x) = \{d \in S : d < x, d \mid x \text{ and } (d \mid y \mid x, y \in S) \Rightarrow y \in \{d, x\}\}$. Denote by $[S^a]$ the $n \times n$ matrix having the ath power of the least common multiple of x_i and x_j as its (i, j)-entry. We show that the bth power matrix $[S^b]$ is divisible by the ath power matrix $[S^a]$ if $a \mid b$ and S is gcd closed (that is, gcd $(x_i, x_j) \in S$ for all integers i and j with $1 \le i, j \le n$) and $\max_{x \in S} \{|G_S(x)|\} = 1$. This confirms a conjecture of Shaofang Hong ['Divisibility properties of power GCD matrices and power LCM matrices', *Linear Algebra Appl.* 428 (2008), 1001-1008].

2020 Mathematics subject classification: primary 11C20; secondary 11A05, 15B36.

Keywords and phrases: divisibility, power LCM matrix, gcd-closed set, greatest-type divisor.

1. Introduction

For arbitrary integers x and y, we denote by (x,y) the greatest common divisor of x and y and by [x,y] their least common multiple. Let a,b and n be positive integers. Let $S = \{x_1, \ldots, x_n\}$ be a set of n distinct positive integers. Let ξ_a be the arithmetic function defined by $\xi_a = x^a$ for any positive integer x. Let (S^a) and $[S^a]$ stand for the $n \times n$ matrices whose (i,j)-entry is $\xi_a((x_i,x_j))$ and $\xi_a([x_i,x_j])$ respectively. We call (S^a) the ath power GCD matrix and $[S^a]$ the ath power LCM matrix. The set S is factor closed (FC) if $(x \in S, d \mid x) \Rightarrow d \in S$ and gcd closed if $(x_i, x_j) \in S$ for all integers i and j with $1 \le i,j \le n$. Obviously, an FC set must be gcd closed but the converse is not true. Nearly 150 years ago, Smith [15] proved that

$$\det([x_i, x_j]) = \prod_{k=1}^n \varphi(x_k) \pi(x_k)$$
(1.1)

if S is FC, where φ is Euler's totient function and π is the multiplicative function defined for the prime power p^r by $\pi(p^r) = -p$. There are many generalisations of Smith's determinant (1.1) and related results (see, for instance, [1–14, 16–21]). In particular, an elegant result was achieved by Hong *et al.* [8] stating that for

[©] The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

any integer $n \geq 2$,

$$\det([i,j])_{2 \le i, j \le n} = \left(\prod_{k=1}^{n} \varphi(k)\pi(k)\right) \sum_{\substack{t=1 \ t \text{ is square free}}}^{n} \frac{t\mu(t)}{\varphi(t)},$$

where μ is the Möbius function and an integer $x \ge 1$ is called *square free* if x is not divisible by the square of any prime number.

As usual, \mathbb{Z} and |S| denote the ring of integers and the cardinality of the set S. Hong [9] introduced the concept of greatest-type divisor when he solved the Bourque–Ligh conjecture. For any integer $x \in S$, y is called a *greatest-type divisor* of x if

$$(y < x, y \mid z \mid x \text{ and } y, z \in S) \Rightarrow z \in \{y, x\}.$$

Let $G_S(x) := \{y \in S : y \text{ is a greatest-type divisor of } x \text{ in } S\}$ and let $M_n(\mathbb{Z})$ stand for the ring of $n \times n$ matrices over the integers. Bourque and Ligh [4] proved that (S) divides [S] in the ring $M_n(\mathbb{Z})$ (that is, [S] = B(S) or [S] = (S)B for some $B \in M_n(\mathbb{Z})$) if S is FC. Hong [10] showed that such a factorisation is not true when S is gcd closed and $\max_{x \in S} \{|G_S(x)|\} = 2$. The results of Bourque–Ligh and Hong were generalised by Korkee and Haukkanen [14] and by Chen *et al.* [6]. Feng *et al.* [7], Zhao [17], Altinisik *et al.* [1] and Zhao *et al.* [18] used the concept of greatest-type divisor to characterise the gcd-closed sets S with $\max_{x \in S} \{|G_S(x)|\} \le 3$ such that $(S^a) \mid [S^a]$ which partially solved an open problem of Hong [10].

Hong [12] investigated divisibility among power GCD matrices and among power LCM matrices. It was proved in [12] that $(S^a) \mid (S^b)$, $(S^a) \mid [S^b]$ and $[S^a] \mid [S^b]$ if $a \mid b$ and S is a divisor chain (that is, $x_{\sigma(1)} \mid \cdots \mid x_{\sigma(n)}$ for a permutation σ of $\{1, \ldots, n\}$), and such factorisations are no longer true if $a \nmid b$ and $|S| \geq 2$. Evidently, a divisor chain is gcd closed but not conversely. Recently, Zhu [19] confirmed two conjectures of Hong raised in [12] stating that if $a \mid b$ and S is a gcd-closed set with $\max_{x \in S} \{|G_S(x)|\} = 1$, then both the bth power GCD matrix (S^b) and the bth power LCM matrix $[S^b]$ are divisible by the ath power GCD matrix (S^a) . At the end of [12], Hong also conjectured that if $a \mid b$ and $S = \{x_1, \ldots, x_n\}$ is gcd closed and $\max_{x \in S} \{|G_S(x)|\} = 1$, then $[S^a] \mid [S^b]$ in the ring $M_n(\mathbb{Z})$. Tan and Li [16] partially confirmed this conjecture by proving that $[S^a] \mid [S^b]$ in the ring $M_{|S|}(\mathbb{Z})$ if $a \mid b$ and S consists of finitely many coprime divisor chains with $1 \in S$ and that such a divisibility relation is not true if $a \nmid b$. However, the conjecture still remains open.

Our goal is to present a proof of Hong's conjecture. The main result of the paper is the following theorem.

THEOREM 1.1. If a and b are positive integers such that $a \mid b$ and S is a gcd-closed set such that $\max_{x \in S} \{|G_S(x)|\} = 1$, then the ath power LCM matrix $[S^a]$ divides the bth power LCM matrix $[S^b]$ in the ring $M_{|S|}(\mathbb{Z})$.

The proof of Theorem 1.1 is similar to that of Feng *et al.* [7] in character, but it is more complicated. This paper is organised as follows. In Section 2, we supply several preliminary lemmas needed in the proof of Theorem 1.1. Section 3 is devoted to the proof of Theorem 1.1.

One can easily check that for any permutation σ on the set $\{1, \ldots, n\}$, $[S^a] \mid [S^b] \Leftrightarrow [S^a_\sigma] \mid [S^b_\sigma]$, where $S_\sigma := \{x_{\sigma(1)}, \ldots, x_{\sigma(n)}\}$. Without loss of any generality, we can always assume that the set $S = \{x_1, \ldots, x_n\}$ satisfies $x_1 < \cdots < x_n$.

2. Auxiliary results

In this section, we provide several lemmas that will be needed in the proof of Theorem 1.1. We begin with a result due to Hong which gives the formula for the determinant of the power LCM matrix on a gcd-closed set.

LEMMA 2.1 [11, Lemma 2.1]. If S is gcd closed, then

$$\det[S^{a}] = \prod_{k=1}^{n} x_{k}^{2a} \alpha_{a,k}, \tag{2.1}$$

where

$$\alpha_{a,k} := \sum_{\substack{d \mid x_k \\ d \nmid x_k, x_k < x_k}} \left(\frac{1}{\xi_a} * \mu \right) (d) \tag{2.2}$$

and $1/\xi_a$ is the arithmetic function defined for any positive integer x by $(1/\xi_a)(x) := x^{-a}$.

LEMMA 2.2 [5, Theorem 3]. If S is a gcd-closed set and $(f((x_i, x_j)))$ is invertible, then $(f((x_i, x_j)))^{-1} = (a_{ij})$, where

$$a_{ij} := \sum_{\substack{x_i \mid x_k \\ x_i \mid x_k}} \frac{c_{ik}c_{jk}}{\delta_k}$$

with

$$\delta_k := \sum_{\substack{d \mid x_k \\ d \nmid x_i, \, x_i < x_k}} (f * \mu)(d) \quad and \quad c_{ij} := \sum_{\substack{dx_i \mid x_j \\ dx_i \nmid x_i, \, x_i < x_j}} \mu(d). \tag{2.3}$$

LEMMA 2.3 [11, Lemma 2.3]. Let m be a positive integer. Then

$$\sum_{d|m} \left(\frac{1}{\xi_a} * \mu\right)(d) = m^{-a}.$$

LEMMA 2.4 [7, Lemma 2.2]. Let S be gcd closed and $\max_{x \in S} \{|G_S(x)|\} = 1$. Let $\alpha_{a,k}$ be defined as in (2.2). If $G_S(x_k) = \{x_{k_1}\}$ for $2 \le k \le |S|$, then $\alpha_{a,k} = x_k^{-a} - x_{k_1}^{-a}$.

LEMMA 2.5. Let S be gcd closed and $\max_{x \in S} \{|G_S(x)|\} = 1$. Let $\alpha_{a,k}$ and c_{ij} be defined as in (2.2) and (2.3), respectively. Then $[S^a]$ is nonsingular and $[S^a]^{-1} = (s_{ij})_{1 \le i,j \le n}$ with

$$s_{ij} := \frac{1}{x_i^a x_j^a} \sum_{\substack{x_i \mid x_k \\ x_j \mid x_k}} \frac{c_{ik} c_{jk}}{\alpha_{a,k}}.$$

PROOF. Since $[x_i, x_j]^a = x_i^a x_i^a / (x_i, x_j)^a$,

$$[S^a] = D\left(\frac{1}{\xi_a}(x_i, x_j)\right)D,\tag{2.4}$$

where $D := diag(x_1^a, ..., x_n^a)$. By (2.1) and (2.4),

$$\det\left(\frac{1}{\xi_a}((x_i,x_j))\right) = \prod_{k=1}^n \alpha_{a,k}.$$

By Lemma 2.3, $\alpha_{a,1} = x_1^{-a}$. For $2 \le k \le n$, since $\max_{x \in S} \{|G_S(x)|\} = 1$, one may let $G_S(x_k) = \{x_{k_1}\}$. By Lemma 2.4, $\alpha_{a,k} = x_k^{-a} - x_{k_1}^{-a} \ne 0$. So the matrix $((1/\xi_a)((x_i, x_j)))$ is nonsingular. Now applying Lemma 2.2 gives

$$\left(\frac{1}{\xi_a}((x_i, x_j))\right)^{-1} = (h_{ij}),$$
 (2.5)

where

34

$$h_{ij} := \sum_{\substack{x_i \mid x_k \\ x_i \mid x_k}} \frac{c_{ik}c_{jk}}{\alpha_{a,k}}.$$

The desired result follows immediately from (2.4) and (2.5).

We next recall some basic results on gcd-closed sets.

LEMMA 2.6 [7, Lemma 2.3]. Let S be a gcd-closed set with $|S| \ge 2$. Let c_{ij} be defined as in (2.3). Then

$$c_{w1} = \begin{cases} 1 & if w = 1, \\ 0 & otherwise. \end{cases}$$

Further, if $G_S(x_m) = \{x_{m_1}\}$ for $2 \le m \le |S|$, then

$$c_{wm} = \begin{cases} -1 & if \ w = m_1, \\ 1 & if \ w = m, \\ 0 & otherwise. \end{cases}$$

LEMMA 2.7 [7, Lemma 3.1]. Let S be gcd closed and $x, z \in S$ such that $x \nmid z$. If $G_S(x) = \{y\}$, then (x, z) = (y, z).

LEMMA 2.8. Let S be gcd closed and $x, y \in S$ with $G_S(x) = \{y\}$. If $a \mid b$, then for any $z, r \in S$ with $r \mid x, y^a[z, x]^b - x^a[z, y]^b$ is divisible by each of $x^a(y^a - x^a)$ and $r^a(y^a - x^a)$.

PROOF. We divide the proof into two cases.

Case 1: $x \nmid z$. By Lemma 2.7, (x, z) = (y, z), which implies

$$y^{a}[z,x]^{b} - x^{a}[z,y]^{b} = y^{a} \frac{z^{b}x^{b}}{(z,x)^{b}} - x^{a} \frac{z^{b}y^{b}}{(z,y)^{b}} = \frac{z^{b}}{(z,x)^{b}} x^{a} y^{a} (x^{b-a} - y^{b-a}).$$
 (2.6)

Since $a \mid b$,

$$x^{b-a} - y^{b-a} = (x^a - y^a) \sum_{i=0}^{(b/a)-2} (x^a)^{(b/a)-2-i} y^{ai}$$
 and $\sum_{i=0}^{(b/a)-2} (x^a)^{(b/a)-2-i} y^{ai} \in \mathbb{Z}$.

Hence, $(x^a - y^a) \mid (x^{b-a} - y^{b-a})$. Then by (2.6), we deduce that $y^a[z, x]^b - x^a[z, y]^b$ is divisible by each of $x^a(y^a - x^a)$ and $r^a(y^a - x^a)$.

Case 2: $x \mid z$. Then [x, z] = [y, z] = z. It follows that

$$y^{a}[z,x]^{b} - x^{a}[z,y]^{b} = y^{a}z^{b} - x^{a}z^{b} = z^{b}(y^{a} - x^{a}).$$

Since $a \mid b$, the desired results follow immediately.

LEMMA 2.9. Let S be gcd closed and $\max_{x \in S} \{|G_S(x)|\} = 1$. If $a \mid b$, then all the elements of the nth column and the nth row of $[S^b][S^a]^{-1}$ are integers.

PROOF. The proof of Lemma 2.9 is divided into two cases.

Case 1: $1 \le i \le n$ and j = n. By Lemmas 2.5 and 2.6,

$$([S^b][S^a]^{-1})_{in} = \sum_{m=1}^n [x_i, x_m]^b \frac{1}{x_m^a x_n^a} \sum_{\substack{x_m \mid x_k \\ x_n \mid x_k}} \frac{c_{mk} c_{nk}}{\alpha_{a,k}}$$
$$= \frac{1}{x_n^a} \sum_{m=1}^n \frac{[x_i, x_m]^b c_{mn}}{x_m^a \alpha_{a,n}} = \frac{1}{x_n^a \alpha_{a,n}} \sum_{m=1}^n \frac{[x_i, x_m]^b c_{mn}}{x_m^a}.$$

Since $\max_{x \in S} \{ |G_S(x)| \} = 1$, we may let $G_S(x_n) = \{x_{n_1}\}$. Then by Lemmas 2.4, 2.6 and 2.8,

$$([S^b])[S^a]^{-1})_{in} = \frac{x_{n_1}^a [x_i, x_n]^b - x_n^a [x_i, x_{n_1}]^b}{x_n^a (x_{n_1}^a - x_n^a)} \in \mathbb{Z}$$

as required.

Case 2: $i = n, 1 \le j \le n - 1$. Then

$$([S^b][S^a]^{-1})_{nj} = \sum_{m=1}^n [x_n, x_m]^b \frac{1}{x_m^a x_j^a} \sum_{\substack{x_m \mid x_k \\ x_i \mid x_k}} \frac{c_{mk} c_{jk}}{\alpha_{a,k}} = \sum_{x_j \mid x_k} \frac{c_{jk}}{x_j^a \alpha_{a,k}} \sum_{x_m \mid x_k} \frac{1}{x_m^a} c_{mk} [x_m, x_n]^b.$$

We claim that

$$\gamma_k := \frac{1}{x_i^a \alpha_{a,k}} \sum_{x_{n-1} x_n} \frac{1}{x_m^a} c_{mk} [x_m, x_n]^b \in \mathbb{Z}$$

for any positive integer k with $x_i \mid x_k$.

If k = 1, then m = j = 1. In this case,

$$\gamma_1 = \frac{1}{\alpha_{a,1}} \cdot \frac{1}{x_1^{2a}} \cdot c_{11} \cdot [x_1, x_n]^b = \frac{[x_1, x_n]^b}{x_1^a} = \frac{x_1^{b-a} x_n^b}{(x_1, x_n)^b} \in \mathbb{Z}.$$

Now let k > 1. We can set $G_S(x_k) = \{x_{k_1}\}$ since $|G_S(x_k)| = 1$. By Lemmas 2.4, 2.6 and 2.8,

$$\gamma_k = \frac{1}{x_j^a \alpha_{a,k}} \sum_{x_m \mid x_k} \frac{1}{x_m^a} c_{mk} [x_m, x_n]^b = \frac{x_{k_1}^a [x_k, x_n]^b - x_k^a [x_{k_1}, x_n]^b}{x_j^a (x_{k_1}^a - x_k^a)} \in \mathbb{Z}$$

as desired. This concludes the proof of the claim and of Lemma 2.9.

Finally, we can use Lemma 2.9 to establish the main result of this section.

LEMMA 2.10. Let S be gcd closed and $\max_{x \in S} \{|G_S(x)|\} = 1$. Let $S_1 := S \setminus \{x_n\} = \{x_1, \dots, x_{n-1}\}$. If $a \mid b$, then $[S^b][S^a]^{-1} \in M_n(\mathbb{Z})$ if and only if $[S^b][S^a]^{-1} \in M_{n-1}(\mathbb{Z})$.

PROOF. First, it follows from the hypothesis and Lemma 2.9 that all the elements of the *n*th column and the *n*th row of $[S^b][S^a]^{-1}$ are integers. So it suffices to show that

$$\mathcal{A}_{ij} := ([S^b][S^a]^{-1})_{ij} - ([S^b_1][S^a_1]^{-1})_{ij} \in \mathbb{Z}$$
(2.7)

for all integers *i* and *j* with $1 \le i, j \le n - 1$.

To see this, define

$$e_{uv} := \begin{cases} 1 & \text{if } x_v \mid x_u, \\ 0 & \text{if } x_v \nmid x_u, \end{cases}$$

for all integers u and v between 1 and n. Then $e_{nj} = 1$ if $x_j \mid x_n$ and $e_{nj} = 0$ otherwise. Furthermore, for any integer m with $1 \le m \le n - 1$, one has $e_{nm} = 1$ if $x_m \mid x_n$ and $e_{nm} = 0$ otherwise. We then deduce that

$$\mathcal{A}_{ij} = \sum_{m=1}^{n} [x_{i}, x_{m}]^{b} \sum_{\substack{x_{m} \mid x_{k} \\ x_{j} \mid x_{k}}} \frac{c_{mk}c_{jk}}{x_{m}^{a}x_{j}^{a}\alpha_{a,k}} - \sum_{m=1}^{n-1} [x_{i}, x_{m}]^{b} \sum_{\substack{x_{m} \mid x_{k} \\ x_{j} \mid x_{k}, x_{k} \neq x_{n}}} \frac{c_{mk}c_{jk}}{x_{m}^{a}x_{j}^{a}\alpha_{a,k}}$$

$$= \frac{c_{nn}c_{jn}}{x_{n}^{a}x_{j}^{a}\alpha_{a,n}} [x_{i}, x_{n}]^{b}e_{nj} + \sum_{m=1}^{n-1} \frac{c_{mn}c_{jn}}{x_{m}^{a}x_{j}^{a}\alpha_{a,n}} [x_{i}, x_{m}]^{b}e_{nj}e_{nm}$$

$$= e_{nj} \frac{c_{jn}}{x_{j}^{a}\alpha_{a,n}} \left(\frac{[x_{i}, x_{n}]^{b}}{x_{n}^{a}} + \sum_{m=1}^{n-1} \frac{[x_{i}, x_{m}]^{b}c_{mn}e_{nm}}{x_{m}^{a}} \right) := e_{nj}A_{ij}.$$

$$(2.8)$$

Let us now show that $A_{ij} \in \mathbb{Z}$. Since $\max_{x \in S} \{|G_S(x)|\} = 1$, one may let $G_S(x_n) = \{x_{n_1}\}$. From Lemma 2.4, $\alpha_{a,n} = x_n^{-a} - x_{n_1}^{-a}$. However, by Lemma 2.6, for any integer m with $1 \le m \le n - 1$, $c_{mn} = -1$ if $m = n_1$ and $c_{mn} = 0$ otherwise. It follows from (2.8) and

Lemma 2.8 that

$$A_{ij} = \frac{x_{n_1}^a [x_i, x_n]^b - x_n^a [x_i, x_{n_1}]^b}{x_i^a (x_{n_1}^a - x_n^a)} \cdot c_{jn} \in \mathbb{Z}.$$
 (2.9)

Since $e_{nj} \in \{0, 1\}$, (2.8) and (2.9) yield (2.7).

The proof of Lemma 2.10 is complete.

3. Proof of Theorem 1.1

We prove Theorem 1.1 by using induction on n = |S|.

For n = 1, the statement is clearly true.

Let n = 2. Since $S = \{x_1, x_2\}$ is gcd closed, $(x_1, x_2) = x_1$ and $x_1 \mid x_2$. It follows that

$$[S^b][S^a]^{-1} = \begin{pmatrix} x_1^b & x_2^b \\ x_2^b & x_2^b \end{pmatrix} \cdot \frac{1}{x_2^a(x_1^a - x_2^a)} \begin{pmatrix} x_2^a & -x_2^a \\ -x_2^a & x_1^a \end{pmatrix} = \begin{pmatrix} \mathcal{B} & -x_1^a C \\ 0 & x_2^{b-a} \end{pmatrix},$$

where

$$\mathcal{B} := \frac{x_2^b - x_1^b}{x_2^a - x_1^a}$$
 and $C := \frac{x_2^{b-a} - x_1^{b-a}}{x_2^a - x_1^a}$.

Since $a \mid b$, implying that $a \mid (b-a)$, it follows that $\mathcal{B} \in \mathbb{Z}$ and $C \in \mathbb{Z}$, that is, $[S^b][S^a]^{-1} \in M_2(\mathbb{Z})$. The statement is true for this case.

Let n = 3. Since $S = \{x_1, x_2, x_3\}$ is gcd closed, we have $x_1 \mid x_i \ (i = 2, 3)$ and $(x_2, x_3) = x_1$ or x_2 . Consider the following two cases.

Case 1: $(x_2, x_3) = x_1$. Then one computes

$$\begin{split} [S^b][S^a]^{-1} &= \begin{pmatrix} x_1^b & x_2^b & x_3^b \\ x_2^b & x_2^b & \frac{x_2^b x_3^b}{x_1^b} \\ x_3^b & \frac{x_2^b x_3^b}{x_1^b} & x_3^b \end{pmatrix} \cdot \frac{x_1^a}{x_2^a x_3^a (x_2^a - x_1^a)(x_3^a - x_1^a)} \\ &\times \begin{pmatrix} \frac{x_1^{2a} x_2^a x_3^a - x_2^{2a} x_3^{2a}}{x_1^b} & \frac{x_2^a x_3^{2a} - x_1^a x_2^a x_3^a}{x_1^a} & \frac{x_2^{2a} x_3^a - x_1^a x_2^a x_3^a}{x_1^a} \\ \times \begin{pmatrix} \frac{x_1^{2a} x_2^a x_3^a - x_2^{2a} x_3^{2a}}{x_1^a} & \frac{x_2^a x_3^a - x_1^a x_2^a x_3^a}{x_1^a} & \frac{x_1^a x_2^a x_3^a - x_1^a x_2^a x_3^a}{x_1^a} \\ \frac{x_2^a x_3^{2a} - x_1^a x_2^a x_3^a}{x_1^a} & x_1^a x_3^a - x_3^{2a} & 0 \\ \frac{x_2^{2a} x_3^a - x_1^a x_2^a x_3^a}{x_1^a} & 0 & x_1^a x_2^a - x_2^{2a} \end{pmatrix} \\ &= \begin{pmatrix} \mathcal{B} + x_3^a \mathcal{F} & -x_1^a \mathcal{C} & -x_1^a \mathcal{F} \\ x_3^a \mathcal{D} \mathcal{F} & x_2^{b-a} & -x_1^a \mathcal{D} \mathcal{F} \\ x_2^a \mathcal{E} \mathcal{C} & -x_1^a \mathcal{E} \mathcal{C} & x_3^{b-a} \end{pmatrix}, \end{split}$$

where \mathcal{B} and C are as given earlier in this section, $\mathcal{D} := x_2^b/x_1^b$, $\mathcal{E} := x_3^b/x_1^b$ and $\mathcal{F} := (x_3^{b-a} - x_1^{b-a})/(x_3^a - x_1^a)$. Since $x_1 \mid x_2, x_1 \mid x_3$ and $a \mid (b-a)$, all of $\mathcal{B}, C, \mathcal{D}, \mathcal{E}$ and \mathcal{F} are integers. Hence, $[S^b][S^a]^{-1} \in M_3(\mathbb{Z})$. The statement holds in this case.

Case 2: $(x_2, x_3) = x_2$. Then $x_2 | x_3$. We compute

$$\begin{split} [S^b][S^a]^{-1} &= \begin{pmatrix} x_1^b & x_2^b & x_3^b \\ x_2^b & x_2^b & x_3^b \\ x_3^b & x_3^b & x_3^b \end{pmatrix} \cdot \frac{1}{x_3^a(x_2^a - x_1^a)(x_3^a - x_2^a)} \\ &\times \begin{pmatrix} x_3^a(x_2^a - x_3^a) & x_3^a(x_3^a - x_2^a) & 0 \\ x_3^a(x_3^a - x_2^a) & x_3^a(x_1^a - x_3^a) & x_3^a(x_2^a - x_1^a) \\ 0 & x_3^a(x_2^a - x_1^a) & x_2^a(x_1^a - x_2^a) \end{pmatrix} \\ &= \begin{pmatrix} \mathcal{B} & -\mathcal{B} + \mathcal{G} & -x_2^a \mathcal{H} \\ 0 & \mathcal{G} & -x_2^a \mathcal{H} \\ 0 & 0 & x_3^{b-a} \end{pmatrix}, \end{split}$$

where \mathcal{B} is as before, $\mathcal{G}:=(x_3^b-x_2^b)/(x_3^a-x_2^a)$ and $\mathcal{H}:=(x_3^{b-a}-x_2^{b-a})/(x_3^a-x_2^a)$. Since $a\mid b$ and $a\mid (b-a)$ imply that $\mathcal{G}\in\mathbb{Z}$ and $\mathcal{H}\in\mathbb{Z}$, it follows immediately that $[S^b][S^a]^{-1}\in M_3(\mathbb{Z})$. The statement is true for this case.

Now let $n \ge 4$. Assume that the statement is true for the n-1 case. In what follows, we show that the statement is true for the n case. Since S is gcd closed and $\max_{x \in S} \{|G_S(x)|\} = 1$, it follows that $S_1 := \{x_1, \ldots, x_{n-1}\}$ is also gcd closed and $\max_{x \in S_1} \{|G_{S_1}(x)|\} = 1$. Hence by the inductive hypothesis, $[S_1^b][S_1^a]^{-1} \in M_{n-1}(\mathbb{Z})$. Finally, from Lemma 2.10, $[S^b][S^a]^{-1} \in M_n(\mathbb{Z})$ as desired.

This finishes the proof of Theorem 1.1.

Acknowledgement

The authors would like to thank the anonymous referee for careful reading of the paper and helpful suggestions that improved its presentation.

References

- E. Altinisik, M. Yildiz and A. Keskin, 'Non-divisibility of LCM matrices by GCD matrices on gcd-closed sets', *Linear Algebra Appl.* 516 (2017), 47–68.
- [2] A. Bege, 'Generalized LCM matrices', Publ. Math. Debrecen 79 (2011), 309–315.
- [3] S. Beslin and S. Ligh, 'Another generalization of Smith's determinant', Bull. Aust. Math. Soc. 40 (1989), 413–415.
- [4] K. Bourque and S. Ligh, 'On GCD and LCM matrices', Linear Algebra Appl. 174 (1992), 65–74.
- [5] K. Bourque and S. Ligh, 'Matrices associated with arithmetical functions', *Linear Multilinear Algebra* 34 (1993), 261–267.
- [6] L. Chen, Y. L. Feng, S. F. Hong and M. Qiu, 'On the divisibility of matrices associated with multiplicative functions', *Publ. Math. Debrecen* 100 (2022), 323–335.

- [7] W. D. Feng, S. F. Hong and J. R. Zhao, 'Divisibility properties of power LCM matrices by power GCD matrices on gcd-closed sets', *Discrete Math.* 309 (2009), 2627–2639.
- [8] S. A. Hong, S. N. Hu and Z. B. Lin, 'On a certain arithmetical determinant', *Acta Math. Hungar.* **150** (2016), 372–382.
- [9] S. F. Hong, 'On the Bourque–Ligh conjecture of least common multiple matrices', J. Algebra 218 (1999), 216–228.
- [10] S. F. Hong, 'On the factorization of LCM matrices on gcd-closed sets', *Linear Algebra Appl.* 345 (2002), 225–233.
- [11] S. F. Hong, 'Notes on power LCM matrices', Acta Arith. 111 (2004), 165–177.
- [12] S. F. Hong, 'Divisibility properties of power GCD matrices and power LCM matrices', *Linear Algebra Appl.* 428 (2008), 1001–1008.
- [13] S. F. Hong, J. R. Zhao and Y. Z. Yin, 'Divisibility properties of Smith matrices', Acta Arith. 132 (2008), 161–175.
- [14] I. Korkee and P. Haukkanen, 'On the divisibility of meet and join matrices', *Linear Algebra Appl.* 429 (2008), 1929–1943.
- [15] H. J. S. Smith, 'On the value of a certain arithmetical determinant', Proc. Lond. Math. Soc. (3) 7 (1875), 208–212.
- [16] Q. R. Tan and M. Li, 'Divisibility among power GCD matrices and among power LCM matrices on finitely many coprime divisor chains', *Linear Algebra Appl.* 438 (2013), 1454–1466.
- [17] J. R. Zhao, 'Divisibility of power LCM matrices by power GCD matrices on gcd-closed sets', Linear Multilinear Algebra 62 (2014), 735–748.
- [18] J. R. Zhao, L. Chen and S. F. Hong, 'Gcd-closed sets and divisibility of Smith matrices', J. Combin. Theory Ser. A 188 (2022), Article no. 105581, 23 pages.
- [19] G. Y. Zhu, 'On the divisibility among power GCD and power LCM matrices on gcd-closed sets', Int. J. Number Theory, to appear.
- [20] G. Y. Zhu, 'On a certain determinant for a U.F.D.', Colloq. Math., to appear.
- [21] G. Y. Zhu, K. M. Cheng and W. Zhao, 'Notes on Hong's conjecture on nonsingularity of power LCM matrices', AIMS Math. 7 (2022), 10276–10285.

GUANGYAN ZHU, Mathematical College,

Sichuan University, Chengdu 610064, PR China

and

School of Teacher Education, Hubei Minzu University, Enshi 445000, PR China e-mail: 2009043@hbmzu.edu.cn, zhuguangyan45@gmail.com

MAO LI, School of Mathematics and Statistics,

Southwest University, Chongqing 400715, PR China

e-mail: limao@swu.edu.cn