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A GENERALIZATION OF SMITH’S DETERMINANT

BY
P. J. MCCARTHY

ABSTRACT. We shall evaluate the determinants of n X n matrices of the
form [f(i,j)], where f(m,r) is an even function of m (mod r). Among the
examples of determinants of this kind are H. J. S. Smith’s determinant
det [(i,/)], where (m,r) is the greatest common divisor of m and r, and a
generalization of Smith’s determinant due to T. M. Apostol.

Smith [11] showed that

det [(7,/)] = &(1). .. d(n)

where ¢ is Euler’s function. He also showed that if g is an arithmetical function and
if

fim,ry = 2 g(d),

dl(m, r)

then det [f(i,j)] = g(1)...g(n).
Apostol [1] extended Smith’s result by showing that if g and A are arithmetical
functions and if

fm,r) = 2 g(d)h(r/d),
d|(m,r)
then det [f(i,j)] = g(1)...g(n)h(1)". He noted that as a consequence of this,
det [c(i,j)] = n!, where c¢(m, r) is Ramanujan’s sum.
(A) Because we want our main result to properly contain Apostol’s, we shall give
an independent proof that det [c(i,j)] = n!. We have

rif rlm
2 c(m,r) = {

dir 0if rym.
Thus, if we set B(d,r) = 1 or 0 according as d does or does not divide r,

then [c(i,/)][B(i,j)] is equal to a lower triangular matrix having diagonal elements
1,2,...,n. Since det [B(i,j)] = 1, the result follows.
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(B) Suppose that for each r,f(m,r) is an even function of m (mod r), i.e.,
f((m,r),r) =f(m,r) for all m. Then, E. Cohen [3] showed that f(m, r) can be written
uniquely in the form

fim,r) = Z c(m,d)a(d,r).

dl|r
If we set a(d,r) = 0 whenever d}r, then [f(i,j)] = [c(i,j)][a(i,j)]. The matrix
la(i, )] is an upper triangular matrix, and therefore,

det [f(i,j))] = nla(1,1)...a(n,n).

This is the generalization of Smith’s determinant alluded to in the title of the paper. The
functions considered by Smith and by Apostol are even functions of m (mod r).

(C) Cohen showed in [3] that f(m, r) is an even function of m (mod r) if and only
if there is a function F of two positive integer variables such that

f(m,r) = 2, F(d,r/d) for all m.

dl(m.r)

In terms of the function F,

ald, r) 2% > F(r/e,e)e

elr/d)

for every divisor d of r. Thus, a(r,r) = F(r,1)/r, and
det [f(i,))] = F(1,1)...F(n,1).

For the functions considered by Apostol, F(m,r) = g(m)h(r).

(D) The determinant det [(7, j)'], where s is a real number, was evaluated by Smith.
Of course, it can be evaluated by using the result of (B) directly. For each r, (m, r)’
is an even function of m (mod r) and by ([4], Corollary 11),

ald,r) = r" 2 c(r/d,e)/e’

elr

for every divisor d or r. Thus,
1 , 1
a(r,r) = 5 2 (r/e)'ule) = 1 bi(r),
elr
and det [(i,/)'] = ¢,(1)...d(n).
(E) Let N(m, r, s) denote the number of solutions x, . . . , x, of the linear congruence
m=X,+...+ X, (mod r)

such that (x;,r) = 1 fori = 1, ..., s. Two solutions are considered to be distinct if and
only if they are distinct (mod r). If s is a positive integer then ([4], Corollary 12)

c(m,r)’ = 2 N(r/d,r,s)c(m,r).

dlr
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Thus, a(r,r) = N(1,r,s) and
det [c(i,j)'] = n!IN(1,1,s)...N(1,n,s).

N(1,1,s) = I, and using H. Rademacher’s formula for N(n, r,s) (see [9], and the
reference given there), if r > 1 then
_ 1 s _1 K
e Vil Gl bl
p‘r pS

N(l,r,s)
where the product is over the distinct prime divisors of r. From this we see immediately
that

det [c(i,j)'] = 0 if s is even and n = 2.

(F) For fixed r and s, N(m, r, s) is an even function of m (mod r), and a(d,r) =
c(r/d, r)'/r ([3], Theorem 6). Thus, a(r,r) = c(1,r)’/r = w(r)'/r, and

det [N(i,j,5)] = (u(D)...p(n))"

Therefore,
I fn=1,orn=2andsiseven,orn =3
det [N(i,j,s)] =¢y—1 if n = 2 and s is odd
0 ifn=4.
(G) Let (m, r)4 be the largest divisor of m that is a unitary divisor of r (see [5] for
the terms used in this paragraph). If N*(m, r, s) is the number of solutions x, . . ., x,
of the congruence in (E) such that (x;,r), = 1 fori =1,...,s, then N*(m, r,s) is an

even function of m (mod r) and o(d, r) = c*(r/d, r)’/r, where ¢*(m, r) is the unitary
analogue of Ramanujan’s sum ([9], Example 7). Thus, a(r,r) = c*(1,r)’/r =
w*(r)*/r and

det [N*(i,j, 5)] = (W*(1). .. p*(n))"

By (5], Theorem 2.5), p*(r) = 1 or —1 according as r has an even or an odd number
of distinct prime divisors. Therefore, det [N*(i,j,s)] = 1 if s is even.

(H) We can evaluate det [ f(i, )] when f(m,r) is any one of several generalizations
of Ramanujan’s sum. For example, consider the sum c¢,(m, r) introduced by Cohen in

[2]. For all r,
r* if rf|m
> cilm,r) =

dr 0 if rtm.

Thus, if B(d, r) is defined as in (A), then [c,(7,/)][B(i, )] is a lower triangular matrix
having all of its diagonal elements except the first equal to zero when k = 2. Therefore,

det [ci(i,j)] = 0ifn =2 and k = 2.
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If we argue as in (B), it follows that if f(m, r) is a k-even function of m (mod r), as
defined in [7], then

det [f(i,j)] = 0ifn=2and k = 2.

(I) Let A be a regular arithmetical convolution, defined by W. Narkiewicz in [10],
and let c4(m, r) be the corresponding generalized Ramanujan sum defined in {8]. Then
ca(m, r)is an even function of m (mod r), and a(r, r) = 1 ([8], Theorem 2). Therefore,
det [c4(i,/)] = n!. An analogue of the even functions (mod r) corresponding to A was
developed in [8]. For these functions a result exactly similar to the one in (B) holds,
and it contains in turn the unitary analogues of Smith’s results obtained by H. Jager in
[6].

() Forr = 1,...,n let D(r) be a nonempty set of positive divisors of r, and let
T(r)y={x:1<x<vrand (x,r) €ED(r)}. If

g(m’r) — e?_‘nimx/r’
XET(r)

then g(m,r) is an even function of m (mod r). In fact ([9], p. 138),

gm,ry = 2 c(m,r/d).

deD(r)

Thus, a(r,r) = 1 or 0 according as 1 € D(r), or 1 & D(r), and consequently

o n! ifleD(r)yforr=1,...,n
det [g(i,))] = )
0 otherwise.

The sum g(m, r) can be considered to be a generalized Ramanujan sum. If D(r) = {1}
then g(m,r) = c(m,r). Letk =2 and 0 < g <k, and let D(r) be the set of all divisors
d of r such that if p" is the highest power of a prime p dividing d then r =0, 1, ...,
orqg — 1 (mod k). Then g(m, r) = D, ,(m, r), the generalization of the Ramanujan sum
defined in [12]. Since 1 € D(r) for all r, det [D; ,(i,j)] = n!.
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