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Abstract. A relation between the Euler characteristicsof the Milnor fibresof areal anayticfunctionis
derived from asimple identity involving complex monodromy and complex conjugation. A corollary
is the result of Coste and Kurdyka that the Euler characteristic of the local link of an irreducible
algebraic subset of areal algebraic set isgenerically constant modulo 4. A similar relation for iterated
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1. Introduction

Let X beareal analytic variety, let z € X, and let f: X — R bearea anaytic
function with f(z) = 0. Let F' be the Milnor fibre at = of a complexification
fc of f. We construct a geometric monodromy homeomorphism 4 : FF — F
such that chch = 1, where ¢ is complex conjugation (Section 2.1). A special
case of this monodromy relation — for weighted homogeneous polynomials —
was first discovered by Dimca and Paunescu [DP]. The equation chch = 1 has
implications for the action of ¢ on eigenspaces of the algebraic monodromy h,.
As a consequence, the difference between the Euler characteristics of the real
Milnor fibresof f over +§ and —¢ can be expressed in terms of the dimensions of
generalized eigenspaces of k.. (Section 2.2). Applying this result to a nonnegative
function f which vanishes only at the point «, we obtain Sullivan’s theorem [Su]
that the link of = in X has even Euler characteristic,

x(lk(z; X)) =0 (mod 2).

Applying our result to a nonnegative defining function f for the subvariety Y of
X, werecover (Section 2.4) atheorem of Coste and Kurdyka [CK]:
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If X isareal algebraic set and Y is an irreducible algebraic subset, then there
exists a proper algebraic subset Z of Y such that for all pointsz and 2z’ inY \ Z,

x(Ikz (Y; X)) = x(Iky (Y; X)) (mod 4).

Herelk,(Y; X) denotesthelink at = of Y in X (Section 2.3), and x (Ik,(Y’; X))
is even by Sullivan’s theorem.

Akbulut—-King and Benedetti-Dedd have proved that a compact triangulable
space of dimension less than or equal to 2 is homeomorphic to a real algebraic
set if and only if the link of every point has even Euler characteristic (see [AK,
p. 192]). Akbulut and King introduced further topological invariants with which
they have characterized 3-dimensional algebraic sets [AK, Ch. VII]. Coste and
Kurdykashowed that the mod 4 invariance theorem for thelocal link of asubvariety
Y C X, and an analogous mod 8 invariance theorem for subvarietiesZ C Y C X,
are sufficient to recapture the 3-dimensional Akbulut—King invariants [CK]. Using
anice stratification of X', Coste and Kurdyka also defined combinatorial invariants
for longer chains of algebraic subsets, and they asked whether these invariants can
be expressed in terms of Euler characteristics of links. We give anew definition of
their invariants in amore general setting, and we express these invariants in terms
of Euler characteristics of iterated links, which we define using iterated Milnor
fibres. In particular we prove that the Coste-Kurdyka invariants depend only on
topological properties of the given chain of algebraic subsets.

We generalize the Coste-Kurdyka invariants as follows. The relation between
complex conjugation and the monodromy of thecomplex Milnor fibre of an ordered
family of functions { f1, ..., fx} (Section 3.1) gives a relation between the Euler
characteristics of the real Milnor fibres over the points (%61, ...,+d;) (Sec-
tion 3.2). Thisin turn givesinformation about the Euler characteristic of theiterated
link Ik, (X1, ..., Xg; X) of an ordered family { X3, ..., Xy} of algebraic subsets
of X. We show how to compute this Euler characteristic in terms of the topology of
the family { X1, ..., Xx} (Section 3.3). We prove that x (Ik; (X1, ..., Xk; X)) is
divisible by 2*, and that, as = varies along an irreducible algebraic subset Y of X,
x(Ikz (X1, ..., Xg; X)) isgenerically constant mod 2#+1 (Sections 3.4 and 3.5).

Akbulut and King defined their invariants using resolution towers; Coste and
Kurdykaused val uation-theoretic methods and stratifying families of polynomials.
Our definition of invariants using complex monodromy introduces anew technique
for the topological characterization of real algebraic sets.

2. TheEuler characteristic of real Milnor fibresand complex monodromy
2.1. COMPLEX CONJUGATION AND MONODROMY

Let X be an analytic subset of R™ and let f: X — R be areal analytic function
defined in a neighbourhood of =g € X such that f(xzp) = O. Let X¢ C C",
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fc: Xc — C becomplexificationsof X and f, respectively. The Milnor fibration
of fc at zo (cf. [Lg], [Mi]) isthe map

U: B(zog,e) N f(;l(S(s) — S5

induced by fc, where B(xg,¢) isthe ball in C™ centered at 1o with radius e, Sj
isthe circlein C with radius 9, and 0 < § < ¢ < 1. Thefibre of W is called the
Milnor fibre of fc at zo. We are particularly interested in the fibres over the red
numbers,

F=v1), F =v1-9.

Let h: F — F be the geometric monodromy homeomorphism determined
(up to homotopy) by ¥. The automorphism induced at the homology level h, :
H.(F;C) — H.(F;C) is caled the algebraic monodromy.

Since fc isacomplexification of areal analytic function, complex conjugation
acts on the total space of the Milnor fibration ¥ of fc at xo, fixing F and F' as
sets. We denote the restriction of this action to ' and F’ by ¢ and ¢/, respectively.
It was observed by Dimca and Paunescu [DP] that, for weighted homogeneous f,
the monodromy homeomorphism h and the complex conjugation ¢ on F' satisfy
chch = 1. We shall show that, in general, one may always choose 4 such that this
relation holds. Thiswill allow us to describe, for arbitrary f, the relation between
the induced automorphisms k.. and ¢, of the homology of the Milnor fibre F.

To this end, we construct a special geometric monodromy 4 compatible with
complex conjugation. A triviaization of ¥ over the upper semicircle S = {z €
Ss | Im(z) > 0} induces a homeomorphism

g:F — F'.
Then
Gg=cgc: F - F' D
comes from the conjugate trivialization of ¥ over the lower semicircle, and
h=g'g

is amonodromy homeomorphism associated to .

Let hy,ce : H(F,C) — H,(F,C) be the homomorphisms induced by #,
¢, respectively, on the homology of F' with complex coefficients. Let E) ,, =
ker(h, — Al)™. Then E) , isthe eigenspace of ., corresponding to the eigenvalue
A, and Ey n, for N large enough, is the generalized eigenspace corresponding to
). Note also that ¢, and hence ¢, is an involution; that is, ¢ = 1.

PROPOSITION 1. Letg: F — F’, g: F — F' and h = g—1¢ be asabove. Then
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(i) ch correspondsvia g to ¢; that is, g~ 1c'g = ch. In particular, chch = 1, and

hence
(i) ¢, interchangesthe eigenspacesof k.. correspondingto conjugate eigenval ues,
that is,

By m = EZ\,m-
Proof. Part (i) follows directly from the definition of k. Indeed, by (1), g~ =
cg~1d, which gives

ch = cg_lg = C(Cg_lcl)g = Q_lclga

asrequired. By induction on m, (2) gives
cihl'e, = h;™,
which implies
B¢, (hy — M) ™e, = B(A7E = AD)™ = (I = Ahy)™ = A" (A" — )™

Taking the kernels of both sides of the above equality we get c. E) ,;, = Ey-1,,
Then (ii) followsfrom the monodromy theorem [L €], which saysthat al e igenval ues
of h, areroots of unity; in particular A=% = \. O

2.2. REAL MILNOR FIBRES

Let f: X — R be, asabove, area analytic function defined in a neighbourhood of
zo With f(zg) = 0. Thereisno real analogue of the Milnor fibration. Nevertheless,
we may define the positive and the negative Milnor fibres of f at zg by

Fy = B(zo,€) N f7(6),
F_ = B((I;Oag) n f_l(_é)a

where0 < § < ¢ < 1, and B(xo, €) isnow the ball of radius e about zo in R™. In
general, F'; and F_ are not homeomorphic.

Let fc be acomplexification of f. Consider the associated Milnor fibration ¥
described in Section 2.1. The positive real Milnor fibre F; is the fixed point set
of the action of complex conjugation ¢ on the complex Milnor fibre FF = U—1(4).
In particular, by the Lefschetz fixed point theorem, the Euler characteristic of F
equals the L efschetz number of ¢; that is,

X(Fy) =L(c) = > (-1)' Trle; : Hi(F;C) — H;(F;C)].

i
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Similarly,
X(F) = L(d) =Y (1) Tr[c; : Hy(F';C) — H,;(F';C)].
The following observation establishes a link between the complex monodromy

h and the real Milnor fibres of f. It plays a crucia role in our interpretation and
generalizations of the Coste-Kurdykaresults.

PROPOSITION 2. x(Fy) — x(F-) isalways even, and
x(Fy) — x(F-) =21(h;—1) (mod 4),
where, for the eigenvalue )\,

I(hA) =Y (1) dimE) (hy),

and E) (h;) = ker(h. |, (r,c) — A", for N large enough.
Proof. By Proposition 1(i),
X(F}) = X(F-) = L(¢) — L(ch).
By Proposition 1(ii), for A # —1,1, ¢, interchanges E)(h;) and E5(h;). Hence,
the trace of ¢, on E)\(h;) & E5(h;) is 0. Consequently, in the calculation of L(c)

only the eigenvalues —1 and 1 matter. Both E_1(h;) and E1(h;) are preserved by
ci and h; = h.|g,(r,c)- By Proposition 1(ii), ¢; preservesthefiltration

Eiq(h;) = ker(h; — )N O - D ker(h; — 1)t > {0}.

Onthequotient spacesof thisfiltration, &; actsastheidentity, and hencec; = (ch);.
This shows, by additivity of trace,

Tr(Ci|E1(hi)) — Tr((ch)Z|E1(hZ)) =0.
Hence the eigenvalue A = 1 does not contribute to L(c) — L(ch). By a similar

argument
Tr(Ci|E,1(hi)) = —Tr((ch)i|E,1(hi)).
This gives
x(Fy) = x —22 ) Tr (il B-a(hi).

Since ¢ isan involution, it can have only 1 and —1 as eigenvalues. Thisimplies
Tr(c;|E-1(h;)) = dimE_1(h;) (mod 2),
which compl etes the proof. O

By asimilar argument, x(F) + x(F_) iseven, and
X(Fy) +x(F) = 21(h; 1) (mod 4).
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Remark 1. In the proof of Proposition 2 we used only the relation between c,
and the semisimple part of h, given by (2). But from (2) we also get a relation
between ¢, and the nilpotent part of the monodromy. The nilpotent part of A,
defines the weight filtration on H*(F') (cf. [AGV]). Clearly, by Proposition 1(ii),
c, preservesthisfiltration. Fix aneigenvalue ) of h,. Let N = h, — M\l respectively
N = h, — )l denotethe nilpotent part acting on E,, respectively Ey. Thenon E),

hici N = M(—=N)c,

which gives
AexN + AN¢, = —Ne, N,

and hence, on the associated graded Gr( E)) with respect to the weight filtration,
Aexs N + ANe, = 0.

2.3. TUBULAR NEIGHBOURHOODS AND LINKS

Fix an algebraic set X C R”, and let Y be a compact algebraic subset of X. We
can always find a nonnegative proper polynomial function f: X — R definingY;
thatis, Y = f~1(0). Then, for § > 0 sufficiently small,

T(Y,X) = 710, 4]

is atubular neighbourhood of Y in X. By Ik(Y'; X), thelink of Y in X, we mean
the boundary of T'(Y, X), that is

k(Y; X) = f1(5).

IfY = {zo}, thenlk(Y"; X) iscalled thelink of zo in X and denoted by Ik (zo; X).
(For the dependence of Ik(Y"; X') on f and 6 see Remark 2 below.)

Let Y be smooth at 2o and let N, be the normal space in R™ to Y at xo.
Following [CK] we define the link of Y in X at g as Ik(zo; X N N,,) and we
denote it by Ik,,(Y"; X). Note that Ik,,(Y’; X) is defined only at a generic point
of Y; that is zg has to be a nonsingular point of Y, and X has to be sufficiently
equisingular along Y at zg so that Ik(zo; X N N,,) does not depend on the choice
of N,. We give adifferent definition which makes sense at any point of Y. Let f
be anon-negative polynomial defining Y. For 2o € X definethelocalization at g
of Ik(Y'; X) asthe positive Milnor fibre of f at xo; that is,

ke (Y; X) = B(zo,2) N f71(6),

where0 < § € e < 1.
Let zo be a generic point of Y. In particular we assume that, near zg, Y is
nonsingular and is a stratum of a Whitney stratification which satisfies the Thom
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condition a;. Then, by Thom's isotopy lemmas (cf. [CG]), there is a stratified
homeomorphism

ke (V; X) 22 1kyy(Y; X) x BY, ©)

where d isthe dimension of Y at zo and B denotesthe ball of dimension d. Then,
in particular, 1k;,(Y; X) and Ik, (Y'; X) are homotopy equivalent. Note that for
thelocalized link Ik, (Y"; X) we do not need the compactnessof Y'; the assumption
that Y isclosedin X issufficient.

Note that the notion of the link of a subset can be reduced to that of the link of
apoint, since any real algebraic subset Y of X can be contracted to a point so that
X/Y naturally has the structure of areal algebraic set (cf. [BCR, Prop. 3.5.5]).

All the above definitions and remarks make perfect senseif X andY areclosed
semialgebraic subsets of R™, and f is continuous and semialgebraic. In particular,
choosing a semialgebraic triangulation of (X,Y), which exists and is unique up
to isotopy by [SY], we see that links in the PL category are specia cases of
semialgebraic links.

Similarly one defines the tubular neighbourhood and the link of Y in a closed
semialgebraic subset of X, or in afinite family of closed semialgebraic subsets of
X, and so in any semialgebraic stratification of X.

Finaly, let U be an arbitrary (not necessarily closed) semiagebraic subset of
X,andletY C X becompact and semiagebraic. Then the tubular neighbourhood
and link of Y in U can be defined by

T(Y,U) = f~Y0,6]nU, Ik(Y;U)=f"10)NU,

for § > Osufficiently small. Every semialgebraic subset U of X isaunion of strata
of asemialgebraic stratification of X . This allows us to use stratifications to study
the properties of such links and tubular neighbourhoods, in particular to show that
they are well-defined up to homeomorphism.

LEMMA 1. Let Y be a compact semialgebraic subset of X, and let U be another
(not necessarily closed) semialgebraic subset of X . Then the following spaces are
homotopy equivalent:

Y ~YUT(Y,U), U\Y~U\T(Y,U),
wherethe closureistakenin U. In particular,

x(k(Y;U)) =x(Y) + x(U\Y) = x(UUY). (4)

Proof. For U closed in X the statement follows, for instance, from the trian-
gulability of the pair (Y, U). If U is not closed, then we can find a semialgebraic
stratification compatible with Y and U, and then simultaneously triangulate the
closures of the strata.
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The last statement follows from
k(Y;U)=T(Y,U)nU\T(Y,U).
The details are |eft to the reader. O

Remark 2. (Uniqueness of links and tubular neighbourhoods)

(a) For real algebraic (or even closed semialgebraic) X ¢ R", thelink at a
point iswell-defined up to semialgebraic homeomorphism [CK, Prop. 1]. A similar
result holdsfor the link of Y in X at zg [loc. cit.].

(b) Uniqueness up to stratified homeomorphism was established also in [Du,
Prop. 1.7, Prop. 3.5].

(c) In [DS] the authors define a functor which allows one to study the sheaf
cohomology of links without referring to the actual construction of the link. Let
be a (semialgebraically) constructible bounded complex of sheavesonU = X'\ Y.
Denotebyi: Y — X,j: U — X theembeddings. Thenthelocal link cohomology
functor Ay of Y in X isdefined by

Ay F =i*Rj.F.
In particular, it isshownin [loc. cit.] that
H*(Ik(Y; X); Q) = H*(Y; AyQy), ®)

where Qy; is the constant sheaf on U and H denotes hypercohomology. Clearly
the right-hand side of (5) does not depend on the choice of thelink. Let g € Y
and denote by i, the embedding of z¢ in Y. Using arguments similar to [DS],
one may show that the cohomology of Ik, (V'; X) equalsthe stalk cohomology of
Ay Qp = i*Rj.Qq; that is,

H* (kg (Y; X); Q) = H*(Ay Qp) zo-

2.4. THE COSTE—KURDYKA THEOREM

Let X be an algebraic subset of R” and let Y be an algebraic subset of X. By a
theorem of Sullivan [Su], for any = € X, the Euler characteristic x (Ik(z; X)) of
thelink of X at z is even. Hence the sameis true for x (Ik,(Y’; X)) for = generic
inY, sincethen Ik, (Y; X) = Ik(z; X N Ng).

Let f: X — R be a non-negative polynomia such that f~1(0) = Y and
let Xc,Ye and fc : Xc — C be complexifications of X,Y and f respectively
(cf. [BR, Section 3.3]). Consider the real and complex Milnor fibres of f and fc,
respectively, at z € Y. The negativereal Milnor fibre F._ is empty, and the positive
real Milnor fibre F'y isthelocalized link Ik, (Y; X). Consequently, by Proposition
2, x(Ik,(Y; X)) isaways even and

x(ks(Y; X)) = 21(hy; —1)  (mod 4), (6)
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where h,, denotes the complex monodromy induced by the Milnor fibration at z.
Thus we obtain Sullivan’s theorem as a corollary of Proposition 2.

Assume now that Y is an irreducible algebraic set. Then Y¢ isaso irreducible
(cf. [BR, Section 3.3]). Note that the left hand side of (6) is constant on strata
of some semialgebraic stratification of Y. Nevertheless, the generic value of the
Euler characteristic x(lk,(Y, X)) adong Y may not be well-defined. Indeed, even
for irreducible Y, asemialgebraic stratification of Y may have more than one open
stratum.

The right-hand side of (6) makes sensefor any = € Yc and is constant on strata
of some algebraic stratification of Y¢. For instance, it sufficesto take the restriction
to Yc of a Whitney stratification of X which satisfies the Thom conditon a fo-
Now if Y¢ is irreducible, then there is only one open (and dense) stratum So
in Yc. Thus it makes sense to talk about /(h,; —1) for generic x € Yc. Since
dime (Yc \ So) < dime Y, wehavedimg (Y \ So) < dimg Y. Hence (6) implies
the following result of Coste and Kurdyka[CK, Thm. 1].

THEOREM 1. Let Y be an irreducible real algebraic subset of the algebraic set
X. TheEuler characteristic x (Ik,(Y; X)) of thelink of Y in X at = isgenerically
constant modulo 4; that is, there exists a real algebraic subset Z C Y, with
dmZ < dimY, suchthat for all z,2' € Y \ Z,

Y(Iky (Y3 X)) = x(Ike (Y5 X)) (mod 4). 0

Remark 3. Theorem 1 can also be proved using Akbulut and King's resolution
towers[AK, Exercise, p. 192].

Remark 4. Theorem 1 is equivalent to the constancy along Y of x(Ik(z; X))
mod 4. Indeed, let z be ageneric point of Y. ThenY is nonsingular of dimension
d = dimY at z, and there is a homeomorphism

Ik(z; X) = Ik, (Y; X) % S%72,
where x denotesthe join. This, together with (3), implies
2 — x(Ik,(Y; X)), dodd

x(lk(z: X)) = { Ak (V: X)),  deven,

At special points of Y the relation between Ik, (Y; X) and Ik(z; X) is more
delicate. Using arguments similar to the proof of Lemma 1, the interested reader
may check that at an arbitrary point z of Y,

x(Ik(z: X)) = x(Iks (Y X)) + x(Ik(z;Y)) = x(k({{z}, Y }; X)),

wherelk({{z}, Y }; X) istheiterated link defined in section 3.3 below. In particular,
by Theorem 2

x(Ik(z; X)) = x(Iko(Y; X)) + x(Ik(z;Y)) (mod 4).
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3. Iterated Milnor fibresand Coste-Kurdykainvariants
3.1. MONODROMIES INDUCED BY A FINITE ORDERED SET OF FUNCTIONS

Let X beacomplex analytic subset of C*, andlet f = (f1,..., fx) : X — CFbea
complex analytic map defined in aneighbourhood of g € X suchthat f(zp) = O.
If & > 1then, in generdl, it is not possible to define the Milnor fibre of f at g
unambiguously (see, for instance, [Sa]). But if we consider {f1,..., fx} a an
ordered set of complex-valued functions, then we will show that the notions of
Milnor fibre and Milnor fibration make sense.

LEMMA 2. Let f = (f1,...,fx) : X — CF be a complex analytic map and let
ro € Y = f~1(0). Then f induces a locally trivial topological fibration

U: B(wo,e) N fHT}) — TF,

whered = (d1,...,0;) ande arechosensuchthat 0 < § < -+ K §1 K € K 1,
and T¥ isthetorus {(z1,...,2;) € CF | |zi| = 6;, i = 1,... k}.
Moreover,
(i) up to a fibred homeomorphism, themap ¥ = W( f, z) does not depend on the
choiceof § and ¢, and
(ii) there exists a dtratification S of Y such that, as zg variesin a stratum of S,
the type of the map W ( f, zo) islocally constant up to fibred homeomor phism.

Proof. The statement is well known if f is sans éclatement, in particular if
there exist Whitney stratifications of X and C* which stratify f with the Thom
condition a . Such stratifications always exists if k£ = 1. The general case can be
reduced to the sans éclatement case by Théoréme 1 of [Sa], or derived directly
from Lagrangian specialization. We present the latter argument.

First recall briefly the proof for £ = 1. Choose a Whitney stratification of X
compatiblewith Y = f~1(0). Define the projectivized relative conormal space to
fas

Cy=J{(z, H) eC" xP" |z e S, H DT, fls},
S

where T, f| s denotes the tangent spaceto thelevel of f|s through z, and the union
is taken over al strata S € X \ Y. Let 7: Cy — C be the composition of f
with the standard projection Cy — X. Then, by construction, 7~ %(\), for A # 0
and sufficiently small, is a Lagrangian subvariety of C* x P" " = PT*C". By
Lagrangian specialization (see, for instance, [HMS, Cor. 4.2.1] or [LT]) the same
istruefor A = 0, and then

7.(.71(0) = U CYom

where Y,, are analytic subsets of Y and Cy,, aretheir (absolute) conormal spaces.
Then any stratification compatible with {Y,, } satisfiesthe Thom condition a.
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For k > 1 this argument fails only if the dimension of 7—1(0) is bigger than
that of 7=1(\), A > 0; that is, dimc 7=1(0) > n — 1. But as we show below in
Lemma 3, the dimension of the set of limits7=1(A), A = (A1,..., \x) — O, adlong
acuspidal neighbourhood 0 < [A\;| < -+ < |A1] < 1, cannot jump, and so in our
case it stays constant. Hence the limit is a Lagrangian subvariety of C™ x prt
Now using a standard argument we may refine any Whitney stratification of X
compatible with Y to a stratification which satisfies the Thom condition a for
al limitsz — zp € Y suchthat 0 < |fx(z)| < -+ < |fi(z)] < 1. Then
the statement follows by standard arguments of stratification theory asin the case
k=1

To complete the proof of Lemma 2, we have to show that taking limits along
a cuspidal neighbourhood does not increase the dimension of the fibre. Thisis a
general fact which holdsalso in the real analytic case. We present a proof based on
standard properties of subanalytic sets and the t.ojasiewicz inequality (see [BM]).

LEMMA 3. Let Z be a compact subanalytic subset of RY, and let ¢ : Z — R
be a continuous subanalytic mapping. Given positive real numbers ma, ..., my,
consider the spaceof limitsof o ~1(A1, ..., Ag), (A1,..., Ax) — O, over acuspidal
neighbourhood

T={AeRF|0< | \|™ <--- < |\™},
that is,

Zro=¢ H0) N~ YI).
Then, if 72,..., mk L are sufficiently large,

dimZro < dlmZ k.

Proof. The proof is by induction on k, the case k = 1 being obvious.

Let Z' = ¢, }(0). Without |oss of generality we may a$umethat Z=7Z\2Z.
Hencedim Z' < dimZ— 1. Let ' = (¢1,...,05-1): Z' — RF~1 By inductive
assumption, for 24,... 7E-2 sufficiently large and I' = {X' € RF-110 <

[Ap—1|™h=1 < -0 < | Ag|™ Y, theset
Zivo=¢' 1 0) Ny XY

is of dimension not greater than dim Z — k. Thus to complete the inductive step
we show that for m;, small enough

va’o == ZI"O. (7)

Theinclusion C of (7) is obvious. To show D wereplace Z by

Z={2€Z]0< |pp_1(z)™1 < < [ps(z)[™}
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and in what follows we shall work on Z. Since dist(z, Z') and ¢, are continuous
subanalytic functions with the same zero sets, by the L ojasiewicz inequality, for m
sufficiently large,

[dist(z, Z)]™ < |k (2)]-
Also by the . ojasiewicz inequality, for M sufficiently large,
dist(z, ¢ *(0)) > |pg—1(2)[™

Weclaimthat (7) issatisfied providedmy, < T5-2. Indeed, | ()| < |@g—1(z)|["*—1
then implies

mE—1

dist(z, Z') < |ir ()™ < |pp_1(z)| ™
< Joop_a(a)|M < dist(z, 9~ %(0)),

which implies D in (7). This completes the proofs of Lemmas 2 and 3. O

We call the map ¥ defined in Lemma 2 the Milnor fibration and its fibre F' =
B(z,€) N f~1(8) the Milnor fibre of the ordered family of functions { f1, ..., fi}
at xo. Such a fibration defines, up to homotopy, homeomorphisms h; : F — F,
i =1,...,k, called the geometric monodromy homeomorphisms. Since the fun-
damental group of T} is commutative, the induced homomorphisms on homology
(the algebraic monodromies) commute.

The sheaf cohomology of the Milnor fibre of {f1,..., fx} can be defined in
terms of neighbouring cycles. Recall that for f : X — C, and a constructible
bounded complex of sheaves 7 on X, the sheaf of neighbouring cycles ¢ F (in
fact, again a complex of sheaves) on Xo = f~1(0) is defined as follows [KS,
p. 350]. Let

Py F =i R(j om).(j o @) F,

wherei: Xo — X,j: X\ Xo — X denotethe embeddings,and7: X — X \ X
isthe cyclic covering of X \ X induced from the universal covering of C* by the

diagram
X C
T T=exp
X\ Xo c*

Then, for z € X and the Milnor fibre F' = B(z,¢) N f~1(6),
H'(F;F) = H' (Y1 F)q.
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In general, if F isthe Milnor fibreof {f1,..., fi} ax € f~1(0), then

HYF;F) = H' (b, b5 Fo (8)

We show this by induction on k. Choose a Whitney stratification S of F” =
f720)n...n £71(0) such that <y, - - -4, F is constructible with respect to S,
and satisfiesthe Thom condition af,. Then for aregular value 6 of f; restricted to
all strataof S,

(Yt g )|f (G)NfHONF" = ¢f2((¢f3 ¢fk]:)|ffl(§1)ﬁF”)‘

In particular, we may take 61 # 0 and sufficiently small. Repeating this procedure,
we show

(g, Yy, )|f Gonsoner = YR wfk(ﬂffl(él))'
Hence, for F' = B(x,e) N f{t (61) Nf2H0)N...N f740),
H'(pig, 1 Flo = H'(Fitpgy - 4pp F)
= Hi(FI;¢f2"'wfk(f|fl_1(61)))
= H'(F;F).

The last equation follows from the inductive assumption applied to the sheaf
]-"|f ponXnfy 1(81) and the set of functions { fa, .. ., fi}.

3.2. REAL MILNOR FIBRES OF A FINITE ORDERED SET OF FUNCTIONS

Let X be areal analytic subset of R”, and let f = (f1,...,fx): X — RF be
area analytic map defined in a neighbourhood of zg € X, f(zp) = 0. Let X¢
and fc be complexificationsof X and f, respectively. In particular, by Lemma 2,
{f1ic,---, frc}, asan ordered set, induces the Milnor fibration ¥ at xo.

Similarly, for eachy = (y1,...,7) € {0,1}*, we may define the real Milnor
fibre

Fy = B(wo,€) N f7H((=1)"41,..., (=1)*d),

where0 < § < -+ < 1 € ¢ < 1and B(zo,¢) now denotesthe ball in R™.
Complex conjugation acts on ¥ and preserves each fibre

Fop = U H(=1)"81,..., (=1)7 ).

Denote the restriction of thisaction to F¢ , by c,. Then F, isthe fixed point set of
ny.

Asin Section 2.1, we let F' = Fc (,....0), and we construct complex mono-
dromies h., : F' — F compatible with complex conjugation; that is, satisfying

—1
9y CyGy = chy,
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where g, . F' — Fg, is a homeomorphism. Since the fundamental group of
the base space Tg“ of W is commutative, all the i, commute up to homotopy. In
particular the induced automorphisms A, . on homology are generated by those
which come from v(j) = (0,...,0,1,0,...,0), 1in the j-th place. Denote .,
by h(;y for short. Thusfor v = (v1,..., %),

k
_ i
e =11
Jj=1

Fortheset of eigenvalues A = (A1, ..., Ax) andmultiplicitiesm = (ma, ..., mg),
welet Ey,, = N ker(hj) . — Aj1)™. Then the argument of the proof of Propo-
sition 1 generalizes, and we have the following:

PROPOSITION 3. Let g, and /., and c, be as above. Then

(i) viag,, complex conjugation c,, on F¢ - correspondsto ch., on F; inparticular,
chychy =1,
(i) c. interchangesthe common eigenspacesof h; . corresponding to conjugate
eigenvalues; that is,
By m = E;\ym,
WhereX:(Xl,...,Xk). a

By Proposition 3(i), the Euler characteristic of the real Milnor fibre F, is given by
the Lefschetz number

x(Fy) = L(ch,).

For theeigenvalues A = (A1,..., Ag), let

Ex(hi) = (\ker(hgjoy .l (rcy — MDY,
J

for N sufficiently large. Let

(hiA) =D (=1)" dim B ().

i

For v = (y1,...,%) welet |y| = 3-¥_;~;. Then the argument of the proof of
Proposition 2 generalizes and gives:

PROPOSITION 4. Y. (—1)P"lx(F,) isdivisible by 2% and

ST(-1)x(F,) = 2¥1(h; (—1,...,-1)) (mod 28+1), 9)
Y
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3.3. ITERATED LINKS

Let X be acompact algebraic subset of R", and let X = {X;}*_; be an ordered
family of algebraic (or closed semialgebraic) subsetsof X. Thenwe definethelink
of XinX as

IK(X; X) = f1 5(82) N+ 0 f H(00),
where f; : X — R are nonnegative polynomials (or continuous semialgebraic
functions) with zero sets X;, and the §;,’s are chosen such that 0 < §;, < -+ <K
d1 < 1. (Notethat Ik(X'; X) = 0 if N; X; = 0.) Similarly, we define the localized
link 1k, (X'; X). Note that Ik(X'; X') depends on the ordering of the X;'s, but it

does not depend on the choice of the f;’sand §;'s; we show thisin Remark 6 below.
For agiven family {X;}%_, of subsetsof X, welet X;,; = X and Xo = 0.

LEMMA 4. LetX = {Xi}le bean ordered family of closed semial gebraic subsets
of X,andletU; = X; \Uj—1 X;,i=1,...,k + 1. Then

k+1
x(k(x; X)) => (-1 > x(UyU---UUy) (10)
Jj=1 1ip <<y <h+1

and locally at any z € R”

k+1
k(X)) =S Y (K@U U U D). (1)
Jj=1 1€ <<t <k+1

Proof. For k = 1, (10) follows from (4) of Lemmal,
x(Ik(X1; X)) = x(X1) + x(X \ X1) — x(X),
snceX; =Uy, X\ X1 =Uyand X = U UUs.
Let f1: X — R be anon-negative polynomial function defining X;. For the

inductive step choose d; so small that Lemma 1 holds for Y = X7 and for al
U=UyU---UU; UY, 1< <+ <ij < k+ 1. SinceU; = X, thisgives

X(Ui U+ U T) N fH61)
=x(Ui, U---uU) + x(U1) = x(U1UU;; U---UTy,) (12)
for2gig<--- <ij <k+ 1L
Apply the inductive hypothesis to the set &' = {X/}¥_, given by X! =
X; N f{}(61). By consgtruction, Ik(X; X) = Ik(X"; X 0 f; *(d1)). The inductive
hypothesis gives
X(K(X'; X 0 f74(61))
k
=> (-1t > X((Ui U=~ U U;) N frH(62)).
=1 2<i1<+<i;<k+1

J

https://doi.org/10.1023/A:1000126025773 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000126025773

226 CLINT McCRORY AND ADAM PARUSINSKI

Now the result follows from (12), since the coefficient of x (U1) is

i(—l)ﬂ'“(lf.) =1

i=1 J

The proof of the local caseis similar. O

For k = 2, if X; C X5 theright hand side of (10) equals

X(X1) + x(X2\ X1) + x(X \ X2)
—x(X2) — x(X \ X1) — x((X \ X2) U X1)) + x(X).

Thisexpression appearsin [C, Section 8] in acontext which we explain in the next
section.

Remark 5. The sets U; in Lemma 4 do not change if the ordered family
X = {X;}F_, isreplaced by the nested family Y = {Y;}F_,, ¥; = Ui_; X;. Fur-
thermore Ik(X; X) = Ik(); X). Forif f;: X — R,i =1,...,k, are nonnegative
continuous semialgebraic functions with f{l(O) = X, theng; = min(f1,..., f;)
is a nonnegative continuous semialgebraic function with ¢;7(0) = Y;, and if
0< b < -+ < dq, then

f6) N0 f(6k) = g0 (62) NN gy N0k

Similarly, for the nested family Z = {Zi}f?:l, Z; = ﬂ;?:i X;,wehavelk(X; X) =
Ik(Z; X). Forif h; = max(fi,..., fx), thenh=1(0) = Z;,andif 0 < & < -+~ <
01, then

FH0) N0 fNO) = hiN(E1) N VR (OR).

Itfollowsthat Lemmadistrueif thesetsU; arereplaced by U/ = N1 (X;\ X; 1).

Remark 6. (8) Using Proposition 1 of [CK] we show that iterated links are
well-defined up to semialgebraic homeomorphism.

First consider the case of the link Ik(X; X) of afamily X = {X;} , in X.
It is more convenient to work in the semialgebraic category, so we assume that
X is semialgebraic and X; are compact semialgebraic subsets of X. We show
uniqueness by induction on k.

For k = 1wemay collapse X1 toapoint x;, and thereisaunique semialgebraic
structure on X/ X; such that the projection X — X /X is semialgebraic. Then
Ik(X1; X) = Ik(z1; X/X1) hasaunique semialgebraic structure by [CK, Prop. 1].
Moreover, if welet X! = X;/(X; N X1),1 = 2,..., k, bethe induced semialge-
braic subsets of X /X1, then, by [loc. cit.], Ik(z1; X;/(X; N X1)) are well-defined
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semialgebraic subsets of Ik(z1; X/X1). Let X = {Ik(z1; X;/(X; N X1))}e,. It
follows from the inductive hypothesis that

Ik(X; X) = Ik(X; X/X1)

is unique up to semialgebraic homeomorphism.

To show the uniqueness of localized links 1k, (X; X)) we may argue as follows.
First notethat [loc. cit.] gives, infact, the semialgebraicinvariance of semialgebraic
tubular neighbourhoods. In particular, we may take X N B(x, €) asarepresentative
of aneighbourhood of = in X. Then we apply the above argument to X N B(z, ¢)
and the family {X; N B(z,¢)}.

(b) For iterated linksto bewell-defined, we do not actual ly need the compactness
of X'; the compactness of N, X; is sufficient. For localized linksit sufficesthat the
X; areclosedin X.

(c) In Section 3.5 below we show that the iteration of the link operator of [DS]
allowsusto study the sheaf cohomology of iterated links. Thisshowsindependently
that the sheaf cohomology of an iterated link is well-defined.

3.4. COSTE—KURDYKA INVARIANTS

We use iterated links to generalize Coste and Kurdyka's invariants of chains of
algebraic subsetsto invariants of ordered families of algebraic subsets of arbitrary
codimensions.

Let X = {X;}¥ , be an ordered family of closed algebraic subsets of the
algebraic set X C R™; we do not assume X to be compact. Let

k1
AX;X) =) (1)t > x(Uiy U---UU;)
= 1<iy <y <kl

and similarly forz € X

k+1
AdXX) =Y (-1 3 XK@ Uy U UT)),
Jj=1 1€ << <k+1

WhereUi:Xi\U;;lXj,i:l,...,k+1,Xo:®,Xk+1:X.

Remark 7. If X iscompact, then by Lemma 4,
AX;X) =x(k(X; X)),  Ag(X;X) = x(lky (X X)).

If X is not compact, we may compactify it by choosing an algebraic one-point
compactification S of R™, such that S C RY (cf. [BCR, Prop. 3.5.3]). Let oo
denote the point at infinity. Then X = {X; = X; U {oo}} isan ordered family of
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algebraic subsets of X = X U {oc}. Note that U; = X; \ U/Z] X; = U, except
f]l =U1U {OO} Thus, if 71 > 1,

x(Uy U---UT;,) = x(Uy, U--- UUy).
Ifi1 =1, by Lemmal,

x(Uy U---UT;) = x({oo} UT U---UT,)
= X(UilU---UUij)+1—X(|k(oo;Ui1U---UUij)).

Summingup, A(X; X) = A(X; X) — A(X'; X'), where X' = {Ik(co; X;)} isthe
family of links at infinity of X', and X’ = Ik(oo; X). Thus the study of A(X; X)
can be reduced to the case of compact X.

We will also consider parametrized families. For the standard projection = :
R®" - R™ (n > m) andt € R™, we denote by ; the induced ordered family
of algebraic subsets of X; = 7 1(¢). Let ¢ vary in an algebraic set T C R™.
Then {X;} is an ordered algebraic family of algebraic subsets of X N 7~(T)
parametrized by ¢t € T'.

THEOREM 2. Let X = {X;}%_, bean ordered family of algebraic subsets of the
algebraicset X C R™. Then

() Foranyz € X, A(X; X) and A, (X; X) are divisible by 2*;

(i) Let z vary along an irreducible algebraic subset Y of X. Then A, (X; X) is
generically constant modulo 2¢*1; that is, there exists a real algebraic subset
Z CY,withdmZ < dimY, suchthat for any 2,2’ € Y\ Z,

Ay (X;X) = Ay(X; X)  (mod 28+1),

(iii) Let ¢ vary in an irreducible algebraic subset 7' of R™. Then A(A}; X;) is
generically constant modulo 2¢11; that is, there exists a real algebraic subset
Z C T,withdimZ < dimT, suchthat for any t,t' € T'\ Z,

A(Xt/;Xt/) = A(Xt, Xt) (mOd 2k+l).
Thisalso holdsfor £ = 0for A(X;) = x(Xy).
Proof. To show (i) for A, (X; X ) and (ii), we follow the proof of Theorem
1. By Lemma 4, A,(X; X) = x(lk;(X; X)). Let f;: X — R be nonnegative
polynomials such that f;*(0) = X;, and let X¢, (X;)c and (fi)c : Xc — C be
complexifications of X, X; and f;, respectively. Consider the real and complex

Milnor fibres of (f1,..., fx) ad ((f1)c,---,(fx)c), respectively, at x € X. For
A #(0,...,0),therea Milnor fibre F isempty, and F\q ... o) isthelocalized link

Ik, (X; X). Consequently, by Proposition 4, x(Ik,(X; X)) isdivisible by 2¥, and

(ks (X; X)) = 281(he; (—1,...,—1)) (mod 28+1). (13)
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If Y is an irreducible algebraic subset of X, then Y¢ is aso irreducible, and the
right hand side of (13) is constant on strata of some algebraic stratification of Y.
Hence the left-hand side of (13) is constant modulo 25+ for genericz € Y.

Toshow (i) for A(X; X)) weargueasfollows. Let f(x,. .., z,) beapolynomial
defining X. Then f2— 22, definesthe double cone X over X inR" ™. Thelink of
theoriginpgin X consistsjust of two copiesof X . Similarly wedefinethefamily .
LetX!,, = X;fori=1,...,kand X] = {po}. Then A, (X'; X) = 2A(X; X),
and the global case follows from the local case.

To show (iii) we may assume that 7(X) = T and that X is compact. Apply
the above double cone construction to the fibres of 7. Let Y be the zero section of
thisfamily of cones. SinceY isisomorphicto T, it isalsoirreducible. Then, by an
argument similar to the above, (iii) follows from (ii). O

Theorem 2 generalizes Theéoreéme 5 and Proposition 4 of [C] and the corollary after
Lemma 3 of [CK]. Indeed, in the notation of Lemma 3 of [CK], for X1, X red
algebraic sets, S anonsingular semialgebraic set suchthat S € X; C X5, and z
genericin S,

(S, X1, X2) = x(Iky(S; X2) \ Ik (S; X1))
—x(Ikz (85 X2)) + x(Ikz (S5 X1))
= x(Iks (N N X1; N N X3))
= Ay(S, X1; X2)
= x(Iks (8, X1; X2)),

where N, is the norma space at = to S in X,. Similarly, in the notation of
Théoreme 5 of [C], for algebraic subsets Y> C Y7 of X and S C Y> anonsingular
semialgebraic set,

A3(S, Y2, Y1; X) = x(Iks (¥; X)),

where) = {S, Yo, Yl}.

Theorem 2 seems to be the result anticipated in section 8 of [C]. Moreover,
Theorem 2 shows that the dimensional assumptions of Lemma 3 of [CK] and
Théoreme5of [C] (dm X, =dimX;+1=dimS+2anddimX =dimY;+1=
dimY> + 2 = dim .S + 3) can be dropped, answering positively the question stated
in part (c) of the last remark of [CK].

3.5. THEITERATED LINK COHOMOLOGY FUNCTOR

By reformulating Theorem 2 in terms of the local link cohomology functor Ay~ of
[DS], we show that our invariant A generalizes Coste and Kurdyka's invariant &
for achain of algebraic subsets of X. We obtain Coste and Kurdyka's fundamental
result about ® [CK, Thm. 4] as an immediate corollary of Theorem 3 below.
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LetY beaclosed semialgebraic subset of thealgebraic set X . We do not assume
that X or Y iscompact. We slightly modify the definition of Remark 2(c), so that
now Ay isdefined only for bounded constructible sheaveson X ; that is,

AyF = i*Rj.j*F,

where, asbefore, i: Y — X and j: X \ Y — X denote the embeddings.
Suppose that we have afinite ordered family & = {X;}¥_; of closed semialge-
braic subsetsof X. Then, forany z € X,

H*(Ik,(X; X);Q) = H*(Ax, ... Ax,Qy)a. (14)

Indeed, (14) can be considered as area analogue of (8), with the same proof.
Moreover, supposethat (; X; is compact. Then

H*(Ik(X; X);Q) = H*(Y; Ax, ... Ax, Qx),

whereY = N, X; and H denotes hypercohomology.

A function ¢: X — Z is called semialgebraically constructible if there exists
alocally finite family { X;} of closed semialgebraic subsets of X, and integers ¢;
such that

0= cilx,. (15)

We refer the reader to [Sch] for the main properties of constructible functions.
The theory of subanalytically constructible functions devel oped there holds also,
of course, for semialgebraically constructible functions.

Similarly one may define algebraically constructiblefunctionson areal algebra-
ic set X by demanding al the X; in (15) to be algebraic. With this definition, one
can easily check that the basic operations on semialgebraically constructible func-
tions given by duality D x and push-forward f,, for apolynomial map f: X — Y,
do not preserve the family of algebraically constructible functions.

The following theorem is equivalent to Theorem 2.

THEOREM 3. Let X = {X;}¥_, bean ordered family of algebraic subsets of the
algebraicset X C R". Thenthe stalk Euler characteristicof Ax, ... Ax, Qx,

o(z) = x(H*(Ax, ... Ax,Qx)z),

is always divisible by 2* and algebraically constructible mod 2++1, O

Define the link operator A on the constructible function ¢ = >~, ¢;1x, by

Ap(z) = 2 cix(Ik(z; X3));
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forY c X welet
Ayo(z) = eix(k (Y X))
i

Then the duality operator of [Sch] satisfies

Dxp(z) = ¢(z) — Ap(z).

The following corollary is equivalent to Theorem 1.

COROLLARY 1. If ¢ isan algebraically constructible function, then A¢ always
has even values, and both Ay and D x o are algebraically constructible mod 4.

Finally, we show that Theorem 4 of [CK] is a corollary of Theorem 3. Let
X; C -+ C X = X berea agebraic sets and let dim X; = d + i. Suppose
that we have a stratification of X given by a stratifying family of polynomials (see
[loc. cit. Section 1]) compatible with each X;. For a given d-dimensional stratum
S C X3, Coste and Kurdyka'sinvariant ®(S, X1, ..., Xj) isthe number of flags
of strata

Tk—1>Tk_1—1>---—l>T1—l>T0:S;

thatis, T; C T;,1,dimT;,; = dimT; +1,and T; C X;. Theorem 4 of [CK] states
that ®(S, X1, ..., X}) isdivisible by 2*, and

(S, X1,...,Xp) = (S, X1,...,X;) (mod 28+

if S and S’ have for Zariski closure the same irreducible algebraic set. This result
follows immediately from Theorem 3 provided we show that

O(S, X1,...,Xg) =AsAx, ... Ax, ,1x(2), (16)

for an arbitrary point z of S.

The strata of a stratification given by a stratifying family of polynomialsform a
very regular cell decomposition, and (cf. [CK, end of Section 1]) we may calculate
the Euler characteristic of the link just by counting the number of strata; that is, for
anyx € S,

n

X(ka(S; X)) = 3 (1) tmy(S),
i=d+1

where d = dim S and m;(.S) is the number of i-dimensional strata 7" contained
in X with S C T. Clearly this gives, for any constructible function ¢ compatible
with the given stratification (i.e. ¢ constant on the strata),

Asp(z) =Y (—1)dmT=dms=L,(T), 17)
T
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where p(T') denotes the value of p onT'.
Now we show (16) by induction on k. Consider on X; a constructible function
@ whichonstrataT € X1, dimT = d + 1, sdtisfies

o(T) =@(T, X3,...,X;) =ArAx,... Ax, ,1x.

(The valuesof ¢ on smaller dimensional strata do not matter, thanksto the assump-
tion on the dimensions of S and X3). Hence by (17), for z € S,

(I)(S7 X1,... 7Xk) = Z(,O(T) = AS(P(J:%
T
as required.

3.6. THE ANALYTIC CATEGORY

All local statements of this paper hold in the real analytic category, by virtually
the same proofs, where — whenever necessary — we replace semialgebraic sets by
subanalytic sets.
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