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We optimize jet mixing using large eddy simulations (LES) at a Reynolds number of
3000. Key methodological enablers consist of Bayesian optimization, a surrogate model
enhanced by deep learning and persistent data topology for physical interpretation. The
mixing performance is characterized by an equivalent jet radius (Req) derived from the
streamwise velocity in a plane located 8 diameters downstream. The optimization is
performed in a 22-dimensional actuation space that comprises most known excitations.
This search space parameterizes the distributed actuation imposed on the bulk flow and at
the periphery of the nozzle in the streamwise and radial directions. The momentum flux
measures the energy input of the actuation. The optimization quadruples the jet radius
Req with a 7-armed blooming jet after around 570 evaluations. The control input requires
2 % momentum flux of the main flow, which is one order of magnitude lower than an ad
hoc dual-mode excitation. Intriguingly, a pronounced suboptimum in the search space is
associated with a double-helix jet, a new flow pattern. This jet pattern results in a mixing
improvement comparable to the blooming jet. A state-of-the-art Bayesian optimization
converges towards this double-helix solution. The learning is accelerated and converges
to another better optimum by including a deep-learning-enhanced surrogate model trained
along the optimization. Persistent data topology extracts the global and many local minima
in the actuation space. These minima can be identified with flow patterns beneficial to the
mixing.
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1. Introduction

Jet flows are ubiquitous in nature and technology and belong to a handful of configurations
described in any fluid mechanics textbook. Jet mixing plays a pivotal role in many
engineering applications, e.g. fuel injection in engines, combustor cooling, chemical
mixing, printing and noise generation (Jordan & Colonius 2013), just to name a few.
Hence, jet mixing optimization plays an important part in academic research and
engineering applications.

Laminar jets are affected by the Kelvin–Helmholtz instability of the initial shear layer
(Ball, Fellouah & Pollard 2012). The jet shear layer rolls up into pronounced vortex rings.
Excitation at the nozzle exit provides authority over the vortex formation, e.g. allowing
for the speed up of the vortex formation, to promote or mitigate vortex pairing, and
to influence the far-field coherent structures. Vortex pairing in the streamwise direction
promotes larger mixing regions observed as orderly ‘vortical puffs’ with axisymmetric
excitation (Crow & Champagne 1971). More importantly, a significant increase in the
spreading angle can be obtained by vortex splitting evolving along several branches (Lee
& Reynolds 1985).

The actuation may promote axisymmetric, helical, dual-mode, flapping and bifurcating
dynamics. In particular, acoustic excitation of the bulk affects the jet spreading via
controlled vortex pairing (Crow & Champagne 1971; Hussain & Zaman 1980). Jet mixing
is more effectively augmented with helical forcing (Mankbadi & Liu 1981; Corke & Kusek
1993). Bifurcating, trifurcating and blooming jets appear with a spreading angle up to 80◦
when axisymmetric and helical modes are combined (dual mode) with different frequency
ratios (Lee & Reynolds 1985). The flapping mode is composed of counter-rotating helical
modes, and the combination of axisymmetric and flapping modes is referred to as the
bifurcating mode. Both the flapping and the bifurcating modes can produce bifurcating
jets with impressive jet spreading (Parekh 1989; Danaila & Boersma 2000; da Silva &
Métais 2002).

The world of multiple-mode actuation for mixing optimization holds considerable
promise and is still to be explored. The radial excitation with three flapping modes,
including 9 parameters, is optimized by evolution strategies (Koumoutsakos, Freund &
Parekh 2001). Only one dominant flapping mode remains after 400 direct numerical
simulations at Re = 500. In the sequel, the bifurcating mode using axial forcing is
optimized for Re up to 1500 using the amplitudes and two Strouhal numbers as control
parameters (Hilgers & Boersma 2001). In an adjoint-based optimization study at Re =
2000, radial forcing is found to be more effective than axial actuation in dual-mode forcing
(Shaabani-Ardali, Sipp & Lesshafft 2020). In an experiment at Re = 8000, jet mixing is
manipulated with periodic operation of six radial minijets. In 200 evaluations, Bayesian
optimization minimizes a streamwise centreline velocity when tuning 12 parameters, the
frequency, amplitudes and phase differences (Blanchard et al. 2021). The optimal mixing
is facilitated by combining flapping and helical forcing, like machine learning control
for the same configuration (Zhou et al. 2020). Moreover, the control performance also
benefits from the deployment of more actuators and a richer actuation space. For example,
an intelligent nozzle with eighteen electromagnetic flap actuators (Suzuki, Kasagi &
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Jet mixing enhancement with machine learning

Suzuki 1999) and 8-channel localized arc filament plasma actuators (Utkin et al. 2006)
have been developed for jet control.

In flow control, machine learning techniques have recently gained attention due
to their successful applications (Duriez, Brunton & Noack 2017; Brunton, Noack &
Koumoutsakos 2020). Examples are genetic programming and variants (Cornejo Maceda
et al. 2021), reinforcement learning (Rabault et al. 2019; Guastoni et al. 2023; Nair & Goza
2023; Sonoda et al. 2023; Vignon et al. 2023a; Vignon, Rabault & Vinuesa 2023b; Xu &
Zhang 2023) and Bayesian optimization (Blanchard et al. 2021). These methods encode
the input–output relations in various forms without requiring prior knowledge. Function
regression solvers like genetic programming and deep reinforcement learning can provide
a large model capacity for exploration. However, deriving the optimal solution in finite
time cannot be guaranteed. Alternatively, a predefined control law can be tuned to near
optimal by parameter optimizers like Bayesian optimization (BO), genetic algorithm (GA)
and particle swarm optimization (PSO), to name a few. Pino et al. (2023) compares genetic
programming, deep reinforcement learning and BO in increasingly complex control
problems. The authors highlight BO’s potential to balance both sample efficiency and the
performance of the final solution. With the recent advances in the design of the acquisition
function (Blanchard & Sapsis 2021) and surrogate models (Pickering et al. 2022), BO is
moving forward in conquering high-dimensional search spaces. This work leverages these
advancements to optimize and understand high-dimensional jet forcing modes.

The present study builds on a jet mixing plant employing large eddy simulations
(LES) and a rich streamwise and radial actuation space at the nozzle exit. This plant
can reproduce virtually all previously considered actuated jet dynamics as elements of
a high-dimensional search space. High-dimensional optimization constitutes a challenge
that is tackled by a Bayesian optimizer enhanced by deep learning.

The paper is organized as follows. The configuration, actuation and metrics are defined
in § 2. The optimizer and numerical solver are presented in § 3. We discuss the learning
process and the optimized solutions in § 4. Finally, § 5 concludes the findings with outlook.

2. Set-up and problem definition

2.1. Configuration and actuation
The configuration is a jet flow exiting a circular nozzle of diameter D as shown in
figure 1. The flow is described in a Cartesian coordinate system (x, y, z) where x represents
the streamwise direction and the origin coincides with the centre of the nozzle. The
computational domain starts from the exit and covers a rectangular region with size
12D × 16D × 12D. The actuation ub(r, θ, t) is imposed with the mean streamwise velocity
um(r) as the inlet velocity profile u(r, t)

u(r, t) = um(r)ex + ub(r, θ, t), (2.1)

where r measures the radial distance from the centreline, ex is the unit vector in the
x direction, and θ is the azimuthal angle. The mean streamwise component has a
hyperbolic–tangent profile

um(r) = Uj + uc

2
− Uj − uc

2
tanh

(
1
4

R
δ2

(
r
R

− R
r

))
, (2.2)

where Uj is the jet centreline velocity, R is the radius of the nozzle, and uc = 0.03Uj is
the co-flow velocity to mimic a natural suction process and δ2 = R/20 is the momentum
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Configuration with unforced jet
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f β(θ, t) f γ(θ, r)

uβ uγ
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x

×××

BO-DL

D0 = {bi, Ji}i=1
N0

J̃  = fGP (b) J̃  = fDeepONet (ûb)

ûb

bn = arg min a(b; J̃, Dn–1)

Dn = Dn–1       {bn, Jn}

Yes
n < Nmax–

No

b∗ = arg min Ji

(b)(a)

bi∈B

bi∈Dn

Figure 1. Problem set-up including the jet configuration with the designed actuation (a) and the deep-
learning-enhanced BO (b). Here, b is the actuation parameter, ûb is the actuation command at the 9 red points
indicated in the dashed box.

boundary layer thickness of the initial shear layer. At the side boundaries, we impose that
the vertical velocity equals uc, and the remaining velocity components equal zero. The
pressure at the side boundaries is computed from the Neumann condition n · ∇p = 0 with
n as the vector normal to the boundary. At the outlet plane, the velocity is computed from
a convective boundary condition ∂u/∂t + ṼC∂u/∂n = 0, where ṼC is the instantaneous
convection velocity VC limited to positive values: ṼC = max(VC, 0). Here, VC is the
velocity averaged over the outlet plane. The pressure at the outflow equals zero. Such a
defined outflow boundary condition ensures stable simulations and has negligible impact
on the turbulent flow structures leaving the computational domain (Tyliszczak & Geurts
2014; Tyliszczak 2018).

As introduced in § 1, the jet control techniques for mixing enhancement are usually
designed according to the instability mode, described by their azimuthal wavenumber at
order 0 (axisymmetric mode) or 1 (helical mode). The perturbation is either axial or radial.
We combine both axial and radial perturbations and define the actuation ub with a general
expression of θ and t, without assumption on the forcing mode. Therefore, the term ub
includes an axisymmetric streamwise bulk forcing uα(r, t), and a peripheral forcing with
a streamwise component uβ(r, θ, t), and a radial uγ (r, θ, t)

ub = (uα + uβ)ex + uγ er. (2.3)

The forcing components are the product of a perturbation f m(θ, t) and a radial profile
gm(r): um(r, θ, t) = f m(θ, t)gm(r), m = α, β, γ with gα(r) = 1 for r ≤ R and 0 for r > R,
and gβ(r) = gγ (r) = exp(−1000(R − r)2.5). The profiles of the three forcing components
are depicted in figure 1. The perturbation terms f m(θ, t) are defined as the sum and product
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of space- and time-harmonic functions

f α(t) =
L∑

i=−L

αiΘi(ωαt), (2.4)

f β(θ, t) =
∑

i,j=−L,...,L

βijΘi(θ)Θj(ωβ t), (2.5)

f γ (θ, t) =
∑

i,j=−L,...,L

γijΘi(θ)Θj(ωγ t), (2.6)

where αi, βij, γij and ωα , ωβ , ωγ are the actuation amplitudes and angular frequencies,
respectively, and Θi(φ) is the harmonic function basis defined as: Θi(φ) = sin(iφ) for i >

0, Θi(φ) = 1 for i = 0, and Θi(φ) = cos(iφ) for i < 0. The forcing ansatz can approximate
any periodic function of θ and t as the expansion order increases. In this study, focus
is placed on the first-order expansion (L = 1) of (2.4)–(2.6). Thus, the control law is
parameterized by a 22-dimensional vector b

b = [Stα, Stβ, Stγ , α1, {βij}i,j=−1,0,−1, {γij}i,j=−1,0,−1]ᵀ ∈ B, (2.7)

where the Strouhal numbers Stm = ωmD/2πUj, m = α, β, γ . Note that α0 is set to 0 as a
constant bulk flow can be incorporated into the steady profile. In addition, α−1 = 0 can be
assumed by a translation in time. The range of Stm is set as [0.1, 1] to include the Strouhal
number of the preferred mode at Stp = 0.3–0.64 (Crow & Champagne 1971; Gutmark &
Ho 1983; Sadeghi & Pollard 2012), and the range of axisymmetric mode Stα ∈ [0.15, 0.8]
where bifurcating and blooming jets are observed (Lee & Reynolds 1985; Parekh 1989;
Tyliszczak 2018). The actuation amplitudes are limited to −0.1 ≤ α1, βij, γij ≤ 0.1, lower
than the 0.15 used by Danaila & Boersma (2000) and Gohil, Saha & Muralidhar (2015),
Tyliszczak (2018) and 0.5 by Koumoutsakos et al. (2001).

This high-dimensional search space allows the actuation to emulate various forcing
modes, such as axisymmetric, helical, flapping, bifurcating, dual mode and harmonic
waves discussed in § 1. In short, the forcing can be axisymmetric, statistically
axisymmetric and non-axisymmetric.

2.2. Mixing and actuation performance
The mixing process in turbulent jets is typically characterized by quantities such as
the decay of centreline velocity and its fluctuations, or the entrainment (Nathan et al.
2006). However, these quantities only measure the local statistics and cannot reflect the
mixing process of non-axisymmetric jets, such as bifurcating jets and asymmetric jets.
For example, the velocity in these jets may locally drop to zero due to a jet-splitting
phenomenon, rather than as a result of enhanced mixing. The entrainment is rather
a measure of the amount of surrounding fluid entrained into the jet vicinity, without
guaranteeing that it mixes with the jet. In asymmetric jets, the amount of fluid flowing
towards the jet may characterize significant radial non-uniformity not revealed by the
entrainment. Considering the non-axisymmetric forcing in search spaces, we define a
new metric, the equivalent mixing radius Req, to estimate the spatial uniformity of
the streamwise velocity. Req is defined as the normalized streamwise velocity variance
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computed at a given y–z cross-section

Req =
√

2σ, σ 2 =

∫∫
�( y, z)[( y − yc)

2 + (z − zc)
2] dy dz∫∫

�( y, z) dy dz
, (2.8)

with �( y, z) = (〈u(x = X0, y, z)〉t − uc)/(Uj − uc), X0 = 8D, and ( yc, zc) the jet centre,
as an analogue to the centre of mass: yc = ∫∫

y�( y, z) dy dz/
∫∫

�( y, z) dy dz and zc =∫∫
z�( y, z) dy dz/

∫∫
�( y, z) dy dz. The

√
2 coefficient is chosen so that the equivalent

mixing radius of a top flat jet flow of radius R is R.
The amplitude and mass flow rate have been adopted to evaluate the control input.

Inspired by Parekh (1989), we define the momentum flux P of the actuation to estimate
the energy input from a practical perspective. The momentum flux is time averaged and
normalized by the jet axial momentum flux at the inlet

P =

〈∫∫
u2

b dA
〉

t

πR2U2
j

. (2.9)

3. Methodology

3.1. Deep learning-enhanced Bayesian optimization
The optimization problem to maximize the mixing as a response to the actuation input
parameterized by b is formulated as

b∗ = arg min
b∈B

J(b), (3.1)

where B = [0.1, 1]3 × [−0.1, 0.1]19 ⊂ R
22. Cost function J is defined as the inverse of

the equivalent mixing radius and normalized by the unforced case, J = Req,0/Req. Better
mixing with large Req is related to the decrease of J. The assumed optimization goal leads
to the spatial uniformity of 〈u(x = X0, y, z)〉t.

To optimize this 22-dimensional search space, we employ techniques inspired by BO
(Williams & Rasmussen 2006). Bayesian optimization has shown to be advantageous in
optimizing expensive black-box functions by systematically reducing uncertainty in the
black-box mapping and incorporating prior assumptions of the cost function (Shahriari
et al. 2015). Through a sequential approach, BO identifies the next actuation to evaluate, or
‘data point’ to acquire, for the purpose of finding the optimum. This is generally achieved
via a surrogate model trained on all the queried data and an acquisition function (Williams
& Rasmussen 2006). A sketch of the method used in this study is shown in figure 1.
The algorithm is initialized with the evaluation of a set D0 of N0 actuation vectors in
B generated by Latin hypercube sampling. Here, N0 is equal to ND + 1 with ND the
dimension of the search space B. We recall that, for this study, ND = 22. The set D0

includes all the evaluated parameter vectors and their cost {bi, Ji}N0
i=1. A surrogate model

J̃ is trained on the available data to approximate the latent objective function J. After
the initialization, the algorithm explores the search space B one new query at a time. At
each iteration, BO determines the optimal actuation to implement next by minimizing an
acquisition function a(b). The acquisition function leverages the surrogate model J̃ and
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available data Dn−1 to guide the data selection in the search space. After each query, the
data set is enriched by the new data point {bn, Jn} into Dn to further refine the surrogate
model. When the query budget is met, the algorithm ends with the best design vector b∗
recorded during the optimization.

The two key elements in BO are the choice of the surrogate model and the sequential
strategy (Blanchard & Sapsis 2021). We focus on the former for a better estimation of
the high-dimensional flow control system. Gaussian processes (GP) serve as a successful
surrogate model in moderate dimensions and can provide closed-form solutions with
the posterior distribution. However, the computation of the posterior costs O(n3), where
n is the number of observations due to the inverse of the covariance matrix. The
number of evaluations required to effectively cover the domain grows exponentially
with the dimensionality. This makes GP difficult to scale to large training sets for
high-dimensional problems. Recently, the deep operator network (DeepONet) has shown
small generalization error for systems where functions are acted upon by an operator
(Lu et al. 2021). Different from GP, that parameterizes the input, DeepONet can map
input functions, which are then transformed by an operator to an output function or
scalar with improved accuracy. This means that DeepONet does not fall victim to the
scaling difficulties of GP when training. Therefore, DeepONet is capable of learning
from infinite-dimensional functions. Empirically, DeepONet’s utility as an operator
surrogate model for Bayesian-inspired experimental design has been shown to significantly
outperform GP in several infinite-dimensional systems that exhibit extreme events in
Pickering et al. (2022), ranging from stochastic pandemic spikes, to catastrophic structural
failure, to rogue wave identification. Through a study of the Bayesian optimizer based
on GP (BO) and DeepONet (BO-DeepONet) for the defined 22-dimensional problem
(see § 4.2), we propose a new algorithm, deep learning-enhanced Bayesian optimization
(BO-DL). By incorporating both GP and DeepONet as the surrogate model, BO-DL
presents a better explorative capability and faster convergence. We alternate between
DeepONet and GP every 10 iterations to query the next sample. The value of 10 is chosen
empirically to balance the characteristics of the two models and combine their advantages.
If the interval is too long, such as 100, the models will be more independent rather than
interacting with each other. On the other hand, if the interval is too short, such as 1,
the exploitation may be interrupted by uncertainty due to the exchange of models. In GP
implementations, the parameter space of a stochastic process is used for both regression
and searching. Instead, DeepONet performs regression in the functional space, leveraging
the typically disregarded basis functions associated with the parameterization. Here, the
function ûb is designed as the actuation command at 9 points located at the jet exit,
including the centreline and 8 equidistant points on the periphery.

The acquisition function employed is the likelihood-weighted lower confidence bound
proposed by Blanchard & Sapsis (2021), with superiority in finding rare extreme
behaviours

a(b) = μ(b) − κσ(b)w(b), w(b) = pb(b)

pμ(μ(b))
. (3.2a,b)

Here, κ balances exploration (large κ) and exploitation (small κ), and is chosen as 1.
The mean model μ(b) and standard variance model σ(b) are estimated by the mean
and variance over a 2-ensemble of trained DeepONet. For the case of GP, these can
be calculated in closed form using standard expressions from GP regression (Williams
& Rasmussen 2006). The likelihood ratio w(b) measures relevance by weighting the
uncertainty of the point (the input density pb) against its expected impact on the cost
function (the output density pμ).
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3.2. Governing equations and numerical solver
We consider an incompressible flow described by the Navier–Stokes equations in the
framework of LES

∂ ūj

∂xj
= 0, (3.3)

∂ ūi

∂t
+ ∂ ūiūj

∂xj
= − 1

ρ

∂ p̄
∂xi

+ ∂τij

∂xj
+

∂τ
f

ij

∂xj
, (3.4)

where ui represents the velocity components, p denotes pressure and ρ is density. The
overbar denotes spatially filtered variables, f̄ (x, t) = ∫

Ω
f (x′, t)G(x − x′, Δ) dx′ and G is

the filter function that fulfils the condition
∫
Ω
G(x, Δ) dx = 1. A local filter width equals

the cube root of the computational cell volume, Δ = (�x�y�z)1/3. The stress tensor
includes the large-scale term τij and the sub-grid term τ

f
ij defined as

τij = 2νSij, τ
f

ij = (ūiūj − uiuj), (3.5a,b)

where ν is the kinematic viscosity and Sij = 1
2(∂ ūi/∂xj + ∂ ūj/∂xi) is the rate of strain

tensor of the resolved velocity field. In this work, the sub-filter tensor is modelled by an
eddy-viscosity model with τ

f
ij = 2νtSij + τ

f
kkδij/3. The diagonal terms τ

f
kk are added to

the pressure, resulting in the so-called modified pressure P̄ = p̄ − ρτ
f

kkδij/3. The Vreman
subgrid-scale model is used for its low computational cost and very good accuracy in
simulating jet flows (Wawrzak, Boguslawski & Tyliszczak 2015; Boguslawski, Wawrzak
& Tyliszczak 2019).

The simulations are conducted with the in-house high-order LES solver SAILOR.
The solution algorithm is based on the projection method for the pressure–velocity
coupling for half-staggered meshes where the pressure nodes are shifted half a cell
size from the velocity nodes (Tyliszczak 2014, 2015a). A predictor–corrector method
(Adams–Bashforth/Adams–Moulton) is applied for the time integration. Derivative
approximations and interpolation on staggered nodes are defined using sixth- and
tenth-order compact difference formulas. The SAILOR solver has been used in jet studies
with similar dynamic scales as the present work, such as jets undergoing laminar/turbulent
transition (Boguslawski et al. 2019) and excited jets (Tyliszczak & Geurts 2014; Tyliszczak
2018). The applied high-order discretization schemes led to grid-independent results
already with relatively coarse meshes.

4. Results

4.1. Validation of the LES with a bifurcating jet
The Reynolds number Re = UjD/ν is decided as 3000 for this study. This allows for the
use of a relatively coarse computational mesh to obtain reliable and fast simulations as
the database. Two meshes are employed in this study. A coarse mesh with 80 × 160 × 80
nodes is used for the learning process and a refined mesh with 192 × 336 × 192 nodes is
used for the validation and flow analysis of selected cases. The mesh points are compacted
in the axial direction towards the inlet using an exponential function and radially towards
the jet axis by a tangent hyperbolic function. In the region −1.2D < y, z < 1.2D, the
mesh spacing is almost uniform and equal to �y = �z = 0.05D (46 nodes) on the
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Figure 2. Validation of the LES solver on the bifurcating jet at Re = 4300 (Lee & Reynolds 1985).
Instantaneous isosurfaces of Q-parameter (Q = 0.5) in the bifurcating (a-i) and bisecting planes (a-ii), coloured
by the radial velocity ur. Radial profiles of the time-averaged axial velocity in the bifurcating planes (b-i–iii).
The square symbols represent the experimental results of Lee & Reynolds (1985), and the lines represent the
simulation results obtained in this study.

coarse mesh and �y = �z = 0.02D (115 nodes) on the dense one. In the axial direction,
the sizes of the cells in the direct inlet vicinity are �x = 0.067D and �x = 0.032D
for the coarse and dense meshes, respectively. The time step varies according to the
Courant–Friedrichs–Lewy (CFL) condition, with the CFL number equal to 0.5. The jet
impulsively injects into quiescent flow and becomes fully developed after 100D/Uj time
units. The time-averaging procedure then starts and lasts for 500D/Uj time units for the
statistics to converge. A single simulation on the coarse mesh takes 20 CPU-hours. The
whole optimization process with 1000 converged simulations lasts around 21 days, using
40 CPUs of an AMD EPYC 7742 (2.25 GHz) processor. On the dense mesh, a single
simulation run takes approximately 576 CPU-hours. The parallel computation is carried
out with the Open MPI interface.

As presented in § 3.2, the numerical code employed has been well validated against
experimental and numerical data for a series of studies of jet dynamics and control.
Here, the code with the assumed perturbation design (2.4–2.6) is verified to obtain the
well-documented flow pattern of an excited jet, the bifurcating jet at Re = 4300 (Lee
& Reynolds 1985). The well-known jet is shown in figure 2, produced by the combined
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axisymmetric and flapping excitation at the frequencies 0.4 < Stα < 0.6 and Stβ = Stγ =
Stα/2. Based on the current control definition, the bifurcating jet is reproduced by

f α(t) = α1Θ1(ωαt), (4.1)

that produces the axisymmetric excitation and

f β(θ, t) = β−1,1Θ−1(θ)Θ1(ωβ t), f γ (θ, t) = γ−1,1Θ−1(θ)Θ1(ωγ t), (4.2a,b)

as the flapping mode, simulating the orbital motion of the nozzle tip in the experiment.
We take α1 = 0.17, Stα = 0.5 and assume Stβ = Stγ = Stα/2, β2

−1,1 + γ 2
−1,1 = α2

1 with
β−1,1 = α1 cos(20◦). This type of excitation is also used in the previous LES simulations
of the bifurcating jet (da Silva & Métais 2002; Tyliszczak & Geurts 2014).

Figure 2(b-i–iii) shows the time-averaged axial velocity profiles along the radius in the
bifurcating plane at the distance x/D = 5.0, 6.5, 8.0 from the inlet. These results were
obtained for Re = 4300, as in Lee & Reynolds (1985), and for Re = 3000 assumed in the
present study. The effect of the Reynolds number on the velocity profiles is small. We
attribute such behaviour to a dominating role of the perturbation. The location and level of
two peaks, which are associated with the split jet arms, are well predicted by the numerical
solutions. The impact of the mesh density on the solution is also negligible, owing to the
employed high-order numerical method. This also holds for the optimized jet, see figure 6
of § 4.4.

4.2. Bayesian optimization with different surrogate models
We first study the capability of the surrogate model, GP and DeepONet, to predict the cost
function J as a response to the excitation input b. Then, the Bayesian optimizers based on
each of the two surrogate models (BO and BO-DeepONet) are tested on our plant. Finally,
the performance of the proposed method BO-DL in § 3.1 is illustrated.

A k-fold cross-validation training (k = 5) of the GP and DeepONet model is performed
over 1000 data points with 80/20 train/test split. The data are extracted randomly out of
the database from realizations of Bayesian optimizers. Figure 3(a) shows the prediction
J̃(b) vs the truth J(b) obtained. The distribution of points along the diagonal shows that
DeepONet achieves a lower prediction error than GP. This is further explained by the
correlation coefficient of R = 0.89 for DeepONet, and 0.71 for GP. The average error of
the k tests is measured by the mean squared error (MSE). The MSE for GP model is
0.01, 1 % of the range of J value. The prediction of the DeepONet model is superior,
with a MSE equal to 0.005. The learning process of the Bayesian optimizer with GP (BO)
and DeepONet (BO-DeepONet) is shown in figure 3(b-i,ii). In figure 3(b-i), the learning
curve of BO displays a plateau after the initial samples (triangles). After 160 samples, new
optima are found and followed by continuous exploitation of the samples near the learning
curve. The final solution is reached with J = 0.274 after 745 evaluations. When DeepONet
is employed (figure 3b-ii), a better solution J = 0.256 is found quickly within 300 samples.
This may be attributed to DeepONet’s capability to generalize better for previously unseen
data than GP, as the cross-validation indicates (Lu et al. 2021). After m = 300, the newly
tested parameters cover the entire range of J, but no further improvement is observed in
the learning curve. This suggests that the optimizer focuses on exploration of the search
space rather than exploitation like BO. Based on the above observations, a joint surrogate
model is proposed for this study to combine the advantages of GP in local exploitation and
DeepONet in exploring new minima. The Bayesian optimizer based on this new model is
described in § 3.1 and referred to as BO-DL. The learning process of BO-DL is given in
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Figure 3. (a) Prediction of J by GP (crosses) and DeepONet (dots). Learning curves of Jmin using BO (b-i),
BO-DeepONet (b-ii) and BO-DL (c). (d) Average learning curves of Bayesian optimizers with/without deep
leaning.

figure 3(b-iii) with the samples queried by GP and DeepONet. As indicated by the data
points on the learning curve, the queries made by DeepONet (red dots) discovers a new
minimum with significant reduction of J, and GP (blue dots) continues to descend. The
best solution is obtained at J = 0.237 within 600 evaluations.

The average performance of the three Bayesian optimizers above is further studied.
Each optimizer is employed for three realizations with a fixed budget of 1000 evaluations.
Figure 3(c) reports the average value of the current optimum Jmin from each optimizer
with the standard deviation (shaded region) of three runs. The learning curve starts
from Jmin = 0.45, the lowest cost value after initialization of 23 samples, including the
unforced case and the other 22 controlled cases from Latin hypercube sampling in the
search spaces. The unforced case (J = 1) is omitted for better visibility of the data.
The maximum cost of the controlled flow is around 0.7. With around 750, 580 and 570
queries, the average lowest costs Jmin achieved by BO, BO-DeepONet and BO-DL are
J = 0.274 (diamond), J = 0.268 (square) and J = 0.237 (star), respectively. On average,
BO-DeepONet shows the fastest learning speed (dotted line) but with the largest variation.
This is owing to DeepONet’s capability of predicting the potential minima with a small
generalization error. Although the descent of BO is the slowest, the optimal results of
the three realizations are consistent. This indicates that GP provides better interpolation
around the minima than DeepONet due to its deterministic nature. By combining GP and
DeepONet, BO-DL not only demonstrates a comparable learning speed to BO-DeepONet
but also inherits the small variance of the final solution from BO. Finally, among the
three optimizers, BO-DL derives the best solution. In addition, the warm-up phase during
queries 0 to 100 appears to be significantly shortened, denoted by the rectangle in
figure 3(c).
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Figure 4. Learning process of BO and BO-DL on the proximity map. The unforced case (filled square), the
local minima (unfilled symbols) and the final solutions explored by BO (blue-filled diamond) and BO-DL
(red-filled star) are highlighted, with related jet patterns.

The computational cost of the BO loop is also noteworthy. With BO, the computation
of the posterior costs is O(N3), where N is the number of observations (Williams &
Rasmussen 2006). This makes the algorithm quite slow, even after only a few hundred
observations. The experience of this study shows that the computation of BO increases
from 10 CPU-seconds to 600 CPU-seconds after 1000 iterations on an AMD EPYC
7742 (2.25 GHz) processor. The BO-DeepONet procedure scales much more favourably.
Initially, the first iteration takes 120 CPU-seconds, increasing only to 180 CPU-seconds
after 1000 iterations. The combination of the two models in BO-DL compromises the cost
to an average level.

For the high-dimensional physical problem, we show that BO can benefit not only from
more accurate surrogate models but also from combining the advantages of parametric and
non-parametric predictors. The proposed BO-DL holds a fast convergence and efficient
exploration with a GP-DeepONet surrogate model. Compared with GP, the proposed
surrogate model can provide more accurate predictions by leveraging the hidden functional
input with DeepONet and scales better as both data size and dimensionality increase.
In addition, a comparison between the Bayesian methods and bio-inspired approaches is
given in the Appendix. It is shown that the optimizer with a surrogate model employed,
particularly a deep-learning model, shows more advantage in the current problem.

4.3. Exploration and characterization of the search space
In this section, we explore the learning processes of the BO and BO-DL in the
22-dimensional space with persistent data topology (Wang, Cornejo Maceda & Noack
2023a; Wang et al. 2023b). This data analysis identifies the cost function minima and their
depth, i.e. their persistence to noise, and was inspired by Edelsbrunner & Harer (2008).
The analysis includes the identification of local minima in the high-dimensional actuation
space, a dimension reduction to a two-dimensional proximity map and corresponding data
visualization, as shown in figure 4. The 22-dimensional data obtained by both BO and
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BO-DL are projected on a two-dimensional proximity map by classical multidimensional
scaling. The feature coordinates γij are chosen to optimally preserve the dissimilarity
between control parameters defined by the Euclidean distance Dij = |bi − bj|. The map
features two large basins of attraction with low values of J, as well as small basins
distributed around the border. A point b0 is supposed as a local minimum m, if there
exists a neighbourhood B of b0 that satisfies J(b0) ≤ minb∈B J(b). Here, B is an open
set which should include the K nearest neighbours of b0 measured by Euclidean distance,
K ≥ ND + 1. Note that the local minima are assumed based on the obtained discrete data
and may change with additional data. A total of 57 local minima are extracted from the
data, with 36 found by BO-DL and 21 by BO. In the proximity map, the unforced case
is represented by a black square where both algorithms begin. The other symbols denote
the derived minima m found by BO (blue) and BO-DL (red). The final BO and BO-DL
solutions highlighted by the filled diamond (J = 0.27) and the filled star (J = 0.24) are
located in the large basins of attractions. Most of the minima queried by BO are located
in the centre of the map, whereas BO-DL also explores outward regions. Forced by the
control commands corresponding to these minima, different jet patterns are observed,
corroborated with the control modes. The axial puffs (circles) are close to the unforced
case. The bifurcating type (cross) distributes widely in the cost range. The lower the J
value is, the closer to the helix (filled diamond) basin. The jets bifurcating to one side
are away from the centre, surrounded by the other unidentified patterns (triangles). Helix
(diamond) and blooming (star) jets feature the most substantial performance, but the latter
is only detected by BO-DL. Among the 20 minima explored by BO, the identified patterns
include 6 helix, 5 flapping and 4 axial puffs. Among the 37 minima explored by BO-DL,
the identified patterns include 6 flapping, 5 asymmetric flapping, 2 helix, 1 blooming and
1 axial puff. In addition, most (22) of the 27 unidentified patterns are detected by BO-DL.

The proposed BO-DL explores not only more minima than BO but also more diverse
flow patterns beneficial to the mixing. This is probably owing to DeepONet’s capability to
extrapolate the mapping from the high-dimensional actuation to the mixing response more
accurately. Two solutions with large basins of attractions in the search space are revealed –
the optimal solution with a 7-armed blooming jet generated, and the suboptimal with a
double-helix shape.

4.4. Discussion of the optimized solutions
Here, we include three solutions for the discussion: an ad hoc forcing with the best mixing
in Tyliszczak (2018), BO optimized solution and the optimal solution of BO-DL. The
forcing command, the instantaneous snapshots and the mean flow fields are presented in
figure 5. The forcing commands are expressed by the operators in an order of constant,
spatial periodic, temporal periodic and travelling waves in figures 5(a-i), 5(b-i) and 5(c-i).
The axial excitation combining axisymmetric and helical modes has been widely employed
to study the bifurcating and blooming jets since Lee & Reynolds (1985). A parametric
study of the blooming jets with this type of excitation was performed in Tyliszczak (2018)
under the same Reynolds number as this study. Among various multi-armed jets, the one
with 11 arms led to the best mixing performance. The excitation was imposed on the axial
velocity and combined the axisymmetric mode with the Strouhal number Sta = 0.45 and
the helical mode with Sth = 0.164 at the same amplitude, 15 % of the bulk jet velocity
(figure 5a-i). The BO solution contains mainly the axisymmetric mode at an amplitude of
8 % with Stα = 0.497 for the bulk, a helical mode at an amplitude of 7 % and a flapping
mode at an amplitude of 4 % with Stγ = 0.232 for radial components in the periphery.
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Figure 5. Comparison between three mixing jet solutions: (a) the ad hoc solution with the best mixing in
Tyliszczak (2018), (b) the best solution learned with BO and (c) the best solution learned with BO-DL.
Top – forcing modes with the associated mixing and actuation metric. Middle – (contour online) bottom view
of instantaneous isosurfaces of Q = 0.5 coloured by the radial velocity ur. Bottom – (contour online) contour
plots of the streamwise velocity on cross-sectional planes at x = 2D, 4D, 6D, 8D.

After removing the expansions with negligible amplitudes, less than 1 % of the bulk jet,
the control law approximately reads

f α(t) = 0.08 sin(2π × 0.497Ujt/D),

f β(θ, t) ≈ 0,

f γ (θ, t) ≈ 0.04 cos(θ) sin(2π × 0.232Ujt/D)

−0.07 cos(θ − 2π × 0.232Ujt/D).

⎫⎪⎬
⎪⎭ (4.3)

Because the removed terms hold an amplitude lower than the turbulence intensity at the jet
outlet, the approximation hardly changes the flow patterns, with the relative cost difference
being less than 1 %. The BO-DL solution contains mainly the axisymmetric mode at an
amplitude of 6 % with Stα = 0.519 for the bulk, a helical mode at an amplitude of 8 % with
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Stγ = 0.223 for radial components in the periphery. The simplified control law reads

f α(t) = 0.06 sin(0.519t),
f β(θ, t) ≈ 0,

f γ (θ, t) ≈ 0.08 cos(θ + 2π × 0.223Ujt/D).

⎫⎬
⎭ (4.4)

Two significant factors to be noted are the axisymmetric forcing Strouhal number Stα ,
and the frequency ratio between the axial and helical modes, α = Stα/Stγ . For both BO
and BO-DL solutions, the axisymmetric forcing Strouhal number falls into the range
0.4 � Stα � 0.6 to observe bifurcating and blooming jets, and coincides with around
Stα = 0.5 where the peak spreading occurs (Lee & Reynolds 1985; Gohil et al. 2015;
Shaabani-Ardali et al. 2020). The BO-DL actuation takes a frequency ratio of 2.34, which
very well agrees with a theoretically derived value α = 7/3 of Tyliszczak (2015b) and
Gohil et al. (2015). Interestingly, the ratio of the BO solution which produces a helix jet
(α = 2.14) also falls into this range. Moreover, different from the ad hoc excitation using
only the axial forcing, the radial component in the periphery plays an important role in
solutions optimized by both BO and BO-DL. Shaabani-Ardali et al. (2020) also concludes
radial forcing is the dominant component of helical modes to maximize the spreading
angle of a bifurcating jet. We extend the importance of radial forcing to the jet spreading
globally. From an estimate of the momentum flux, the solutions in this study take only
2.8 % (BO-DL) and 4.8 % (BO) of the main jet, one order lower than the ad hoc excitation
(25 %). One reason is the low amplitudes, and another is the forcing applied into the local
boundary region (see § 2.1) rather than the whole jet, which leads to a more efficient
control. This represents the physical reality of small actuators installed on the wall of the
inlet nozzle, like flap arrays in Suzuki et al. (1999), only affecting the boundary layers.

The flow structures are presented by the bottom view of the instantaneous Q-parameter
isosurfaces (figures 5a-ii, 5b-ii, and 5c-ii). The arms of the ad hoc blooming jet
are not explicitly observed due to the interaction between the closely aligned vortex
rings. A double-helix jet is formulated by the BO solution. The jet bifurcates into two
branches, which rotate with a specific frequency (see figure 8) and then experiences
continuous bifurcation along the azimuth until the vortex rings break. This type of jet
has not been reported in the literature so far. We reserve it for future investigation. The
BO-DL optimized jet produces a 7-armed blooming jet, with the vortex rings eventually
propagating along 7 different trajectories. The contour slices of the time-averaged
streamwise velocity also confirm the spreading observed from the vortex rings. The 11
branches generated by the ad hoc forcing can be traced to x = 8D. The BO-optimized
jet shows a more continuous distribution along the circumference due to the azimuthal
bifurcation of two helix-shaped arms. The blooming jet is the earliest and furthest
spreading. This leads to the largest effective mixing radius, 4.22Req,0 at x = 8D, followed
by BO optimized jet with Req = 3.65Req,0 and the ad hoc forced jet with Req = 2.77Req,0.

Figure 6 shows the axial profiles of the time-averaged centreline velocity and its
fluctuation for the unforced and forced jets. The results obtained on the coarse and dense
meshes agree well, except for slight discrepancies in the region 5D < x < 8D. Compared
with the unforced case in figure 6(a), the length of the potential core shortens significantly
from 7.5D to 2D for both helical and blooming jets. Beyond the potential core, the velocity
drops steeply and even reaches small negative values in the blooming jet. As with a similar
behaviour observed by Tyliszczak (2018), this is the effect of jet splitting resulting in a
local pressure drop. As a result, the reversal flow amplifies the local turbulence intensity
to the peak at x ≈ 5D, as indicated in figure 6(b). The initial fluctuation level in both jets
corresponds to the imposed forcing amplitudes of the bulk forcing term. A small decrease
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Figure 6. Mean profiles (a) and fluctuations (b) of the axial velocity for the unforced flow, the helical (BO
solution) and the blooming jet (BO-DL solution). The solid and dashed lines denote the results calculated
separately by the coarse and dense meshes.

at x < 1D is caused by the lack of energy in a range of low wavenumbers (Kempf, Klein
& Janicka 2005). For the controlled jets, the waves of the fluctuation profiles around the
peak are attributed to the interactions between the Kelvin–Helmholtz instability and the
forcing disturbance. Further downstream, the fluctuations drop nearly to zero along with a
low mean velocity. The fluctuation profile for the unforced jet shows a very low turbulence
level until x ≈ 7D, and then slowly increases to the maximum around x = 10D.

Figure 7 shows the amplitude spectra of the centreline velocity at four locations
along the axis, x = 0D, 2D, 4D and 6D. These results are presented vs the Strouhal
number StD = ωD/2πUj. The spectrum of the unforced jet is nearly flat at the inlet
as the imposed turbulent signal does not contain any characteristic frequency. The
high-frequency components (StD > 1) are dampened downstream, and a broadband peak
emerges around StD = 0.52. This falls within the range of the preferred mode frequency
Stp = 0.3 − 0.64 (Crow & Champagne 1971; Gutmark & Ho 1983; Sadeghi & Pollard
2012). Note that the optimal Stα predicted by BO-DL for the blooming jet perfectly
matches the current preferred mode Stp = 0.52. This finding is consistent with previous
studies (Tyliszczak & Geurts 2014; Gohil et al. 2015; Tyliszczak 2018) which concluded
that the jet splitting phenomenon is most pronounced when Stα is equal to Stp. The initial
spectra of the helix and blooming jets characterize a distinct peak at Stα . The peaks related
to the helical forcing Stγ can be observed from x = 2D. The high-frequency harmonics
also appear due to the interactions between generated toroidal vortices. In the case of
the helical jet, the peak at StD ≈ 0.032 is also noteworthy. We find that this frequency
coincides with the azimuthal motion of the helical arms, with a period Tr equal to
62.5D/Uj. Figure 8 shows the snapshots of the helical jet, depicting the positions of its
arms during the period of 31.25D/Uj, which corresponds to the detected StD ≈ 0.032.
The relationship between the frequency of the rotation and the one associated with forcing
terms is left for future study.

5. Conclusions and outlook

We perform a global optimization of the jet control modes, parameterized in a
22-dimensional search space. The forcing includes axial and radial components that are
defined to approximate a general periodic function of time and azimuthal angle. The
design space allows the actuation to emulate various forcing modes that have been studied.
This high-dimensional problem for jet mixing improvement is tackled by BO. We advance
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Figure 7. Axial velocity spectrum for the unforced (a-i–iii), the helical (b-i–iii) and the blooming jet (c-i–iii)
at x = 0D, 2D, 4D and 6D.

BO by incorporating a deep-learning-enhanced surrogate model. This surrogate model
combines the non-parametric method GP for fast local descent and the parametric method
deep operator network (DeepONet) for efficient exploration of the search space. The
proposed optimizer BO-DL is more efficient in searching for minima and more scalable
to large datasets. To further understand the optimized high-dimensional solutions, we
propose a topological analysis of the optimization data. The achieved control landscape
features two persistent (pronounced) minima, a global minimum corresponding to a
7-armed blooming jet being generated, and a suboptimal parameter with a double-helix
shape that performs comparably. Intriguingly, many of the less persistent minima also
correspond to known actuated jet mixing mechanisms.

Compared with the unforced jet, both the helical and the blooming jet shorten the
length of the potential core substantially from 7.5D to 2D. The valley of the mean
centreline velocity is located around 6D in the downwash, corresponding to the peak of the
fluctuation profiles. The reversal flow in the blooming jet amplifies the local turbulence
intensity, and leads to even negative velocity in the centreline. Both of the optimized
control laws show the radial component dominates the non-axisymmetric forcing mode.
The optimized forcing for a helical jet is a triple mode that combines the axisymmetric
bulk component, a helical and a flapping mode in the periphery. The 7-armed blooming
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Figure 8. Instantaneous isosurfaces of Q-parameter (Q = 0.5) for the helical jet, coloured by the radial
velocity, in a half-period of the arm rotation. Here, Tr = 62.5D/Uj.

jet is produced by a dual-mode forcing with only axisymmetric and helical modes. The
better performance of the latter is attributed to the exact match between the axisymmetric
forcing Strouhal number and the preferred mode frequency found by BO-DL. The forced
flows are characterized by a distinct peak at the Strouhal number of the axisymmetric
mode, and the effect of the helical forcing appears later. Intriguingly, a peak at the low
Strouhal number in the helical jet coincides with the azimuthal motion of the helical arms.

This study emphasizes the importance of effective exploration for machine
learning-based optimization in flow control, particularly in high-dimensional design
spaces. The proposed BO-DL enhances the explorative feature of BO by improving
the model accuracy and increasing the solvable model capacity. Therefore, BO-DL can
serve as an alternative to classical BO when there is a need for greater complexity. In
addition to parallelizing GP and DeepONet in the Bayesian framework, we can also
incrementally increase the model complexity. For example, we can use the controller
obtained by GP to accelerate the learning process of DeepONet. Furthermore, DeepONet
can also be employed as a function approximator like deep reinforcement learning which
deserves future study under a different framework – Bayesian experimental design. As
an add on, the proposed persistent data topology analysis can help to characterize the
control landscape from the discrete data produced by different optimizers. Persistent data
minima indicate literature known and unknown mixing mechanisms. Finally, we expect the
proposed BO-DL and topological data analysis for effective learning and characterization
of the search spaces could contribute to more flow control problems.
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Appendix. Comparison of Bayesian optimization with two bio-inspired optimizers

The Bayesian optimizers, BO and BO-DL, employed in this study have been compared
with two popular biologically inspired methods (Wahde 2008): PSO and GA. Here, a
variant of PSO, particle swarm optimization through targeted, position-mutated, elitism is
employed (Shaqarin & Noack 2023), and GA is realized following Wright (1991). Figure 9
displays the learning curve of one realization of the four methods. The learning curves
give an indication of the learning speed of each method. Particle swarm optimization
converges to a solution with the cost J = 0.283 slightly higher than BO (J = 0.273),
and GA ends with a even higher cost J = 0.3. Figure 10 presents all the evaluated points
(a), and the local minima (b) derived from the combined database. The tested solutions
during the search are denoted by the coloured dots in figure 10(a). The derived minima
are denoted by the filled circles with corresponding colours in figure 10(b). The converged
solutions are depicted by stars; PSO and GA fall into the local minima in the upper left
and the upper right corner, respectively. Interestingly, the search process of these methods
show different features. Particle swarm optimization moves all the particles (magenta dots)
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Figure 10. Landscape with visited data (a) and derived local minima (b) of BO (blue), BO-DL (red), PSO
(magenta) and GA (green) from unknown in the whole space.

towards the best region detected. Finally, all particles accumulate in the upper left region
and get stuck. The minima (magenta circles) are found along the direction of gradient
descent. The genetic algorithm searches the minima in one neighbourhood but is extremely
inefficient in exploring further regions. Most of the exploration away from the global
minimum in the right upper region in figure 9(a) ends with no local minima in figure 9(b).
Owing to the prediction by GP, BO converges to the region with a lower cost quickly.
Moreover, with the deep-learning-enhanced surrogate model, BO-DL not only obtains the
best minimum (red star) but also reveals more potential minima in a wider neighbourhood
(red circles). In high-dimensional search spaces, exploration based on accurate estimators
is more efficient than random exploration. For the current problem, the optimizer based
on a surrogate model, particularly a deep-learning model, shows more advantages than
bio-inspired optimizers.
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