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Abstract

The representation theory of Clifford algebras has been used to obtain information on the possible
orders of amicable pairs of orthogonal designs on given numbers of variables. If, however, the same
approach is tried on more complex systems of orthogonal designs, such as product designs and
amicable triples, algebras which properly generalize the Clifford algebras are encountered. In this
paper a theory of such generalizations is developed and applied to the theory of systems of
orthogonal designs, and in particular to the theory of product designs.

1980 Mathematics subject classification (Amer. Math. Soc.): 15 A 66, 05 B 15.

1. Introduction

(1.1) DEFINITION. An orthogonal design of order n, type (w,,. . . , up) on the

distinct commuting variables xv . . . , xp, is an n X n matrix X with entries from

{0, ±xx, . . . , ±xp) satisfying

(U) positive integers, / the identity matrix).

(1.2) DEFINITION. A pair of orthogonal designs X, Y of order n on disjoint sets

of variables is called amicable when XYT = YXT and anti-amicable when

XYT = -YXT.
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2 H. M. Gastineau-Hills 12]

Thus a. product design as defined in [6], [8] is a triple of orthogonal designs one
pair of which is amicable and the other two pairs anti-amicable. A further
requirement in [6], [8] is that each anti-amicable pair have zero Hadamard
product (the Hadamard product * being defined as component wise multiplica-
tion (a0) * (6y) = {atjbfj)).

The amicable triples studied in [9] are triples of orthogonal designs which are
pairwise amicable.

Both product designs and amicable triples may be embraced in a wider
concept.

(1.3) DEFINITION. A K-system of orthogonal designs of order n, genus (8/y),
1 < / <j < K (where each 8tj = 0 or 1), is a /f-tuple of order n orthogonal
designs (Xx, . . . , XK) on disjoint sets of variables, satisfying X}Xj = {r\f

l'XlXj
for all / <j, (thus each pair is either amicable or anti-amicable). The system is
called regular if in addition the Hadamard product Xt * Xj is zero whenever
Sjj = 1 (thus the non-zero entries of anti-amicable pairs nowhere "overlap").

It may be noted that if Xit XJt . . . , Xk are pairwise anti-amicable members of
a regular system, they may be added to make a design Xt + • • • +Xk. This
design is orthogonal for

(A, + • • • +Xk)(X, + • • • +Xk)
T = ( 2 uiaxl + • • • + 2 ukcx

2
kc)l,

V a c I

where (*,•„), (uia), . . ., (jcfa), (u^) are respectively the variables, types of
X,, ...,Xk (since for X * M, XxXf + Xrf = 0).

So & product design (X, Y, Z) defined by

YXT = -XYT, ZXT = -XZT, ZYT = YZT,

X*Y=X*Z = 0, each X, Y, Z orthogonal,

is a regular 3-system of genus (8^: 8l2 = 8l3 = 1, S^ = 0), and X + Y, X + Z
are orthogonal designs.

If, for each i, Xt is of type {un, . . . , uip) then we say the AT-system (1.3) has
t y p e (Uij) = ( u u , . . . , u l p i ; u 2 i , . . . , u ^ ; • • • ; u K i , . . . , u ^ ) .

(1.5) LEMMA. A system of type (1, 1, . . . , 1; • • • ;1, 1, . . . , 1) is regular.

PROOF. With this type each A7, has each of its variables occurring just once in
each row. So if Xt, Xj are anti-amicable then since the diagonal elements of
XjXT = -XtXj are zero the non-zero elements of X{, X} can nowhere overlap.
The result follows.
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[3] Quasi Clifford algebras 3

Let (Xv . . ., XK) be a AT-system of order n, genus (8,^), type {utj), on the
/>, + 1, p2, . . . , pK variables xl0, xn, . . . , xlpi; x2l, . . . , x^, • • • ;
XATI> • • • > -̂ A .̂̂ - F ° r e a c h '' ~ 1, • • •, K write Xt = 2 7 >4,yXy where each Atj is a
constant {0, ±l}-matrix. Substitution into the defining equations XtXj =
2y Uijxfjl, XjXj = (-YfvXiX? (i <f) and comparison of coefficients of each xtJ

yields the Hurwitz-Radon like relations:

AtjAjj = uul, AikA?j = -AuA,l (j * k)

These imply

Put

(1.6)

Then the (/», + 1) + p2 + • • • +pK real n X n matrices Ei0, Eu,
. . . ,Eip . . . , EKp/c are found to satisfy the following:

Ei0=I, ££« ( - l ) ' " 7 , 0 ^ 0 )

(1.7) EikE0 =-EuEik, (0<j<k)

EjtEik = ( - i ) 5 " + ^ + H * £ , v , («• <y; * ^ o),

where it is assumed that if / = 1, 8U = 1.
Thus we have an order n representation of an algebra which is reminiscent of

the Clifford algebras studied in [7]. But while in [7] the generators were assumed
pairwise anti-commutative, here some pairs of generators commute (unless all
«>,. + 8y + SiJ = 1).

In the following as structure and representation theory of such algebras is
developed. Using this theory it is then shown how to find for given />,, . . . ,pK

and (8^) the possible orders n of ^f-systems of genus {8tj) on (/>,, . . . ,pK)
variables. Further it is to be shown that, for each such n, such a /^-system may
be constructed which has type (1, 1, . . . , 1; • • • ;1, . . . , 1) and hence, by (1.5),
is regular.

The particular class of 3-systems defined by (1.4) are then considered in more
detail (the product designs).
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2. Quasi Clifford algebras

(2.1) DEFINITION. Let F be a commutative field of characteristic not 2, m a
positive integer, (&,)1<1<m a family of non-zero elements of F, and (SiJ)1<i<j<m a
family of elements from {0, 1}. The Quasi Clifford, or QC, algebra Q =
SF[w, (&,), (Sjj)] is the algebra (associative, with a 1) over F on m generators
a,, . . . , am, with defining relations

(i) a,2 = *,., 0,0, = ( - 1 ) S « , ( '<. /)

(where kt of /" is identified with kt times the 1 of (2).

If all Sjj = 1 we have a Clifford algebra corresponding to some non-singular
quadratic form on Fm (see [2]). If in addition each kt = ± 1 we have those
special Clifford algebras studied in [7]. In this paper we are particularly inter-
ested in QC algebras for which each kt = ± 1, and we call such algebras Special
quasi Clifford, or SQC, algebras. First however we develop some theory of QC
algebras in general.

The QC algebra 6- of (2.1) is defined to within isomorphism by the following
properties.

(a) It has m elements, a,, . . . , am, which generate Q (that is,
each element of (2 is expressible as a polynomial in the a,-
over F) and which satisfy (2. l)(i).

(2-2) (b) If fy is any algebra over F containing elements
fiu...,fim which satisfy fl2 = k,, p,fi, = (-lflfi,fij (' </),
there is an F-algebra homomorphism Q —» ^ which maps a,
to /?, for each /.

Because of (2.1)(i), any product of the a, reduces to an /"-multiple of one of
the 2m elements a'1 • • • aft" (each e, = 0 or 1). So as a vector space over F, 6 is
spanned by these 2m elements and dim Q < 2m. Let us define D̂ to be the vector
space of all formal /"-linear combinations of the 2m formal expressions
fi'1 ' ' ' &m (ei = 0' 0- Make ^ an algebra by defining products

where £• is e, + TJ, reduced mod 2, and
ml m

nfe n
/ - I \ y-i+i
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[ s I Quasi Clifford algebras 5

It may be verified that this product is associative with a 1 (which is in fact

0 ° • • • fi£), a n d t h a t if w e w r i t e fi, f o r 0 ° • • • A ° _ , # 0 , ° . , • • • # > , t h e ft
generate D̂ and satisfy (2.2)(b). It follows that <>D is an epimorphic image of G,
so dim G > dim <$ = 2m. We have proved:

(2.3) THEOREM. The QC algebra G of (2.1) has dimension 2m as a vector space
over F, and a basis is {af1 • • • a^~: e, = 0 or 1}.

We use [ • • • ] for /"-algebra generators, and < • • • > for F vector space
generators. Thus

G = [<*„ . . . , am] = <1, a,, . . . , o^, a^,. . . , axa2 • • • O -

In discussing the structure and representation theory of QC algebras the
concepts and elementary theory of semi-simple (associative) algebras, direct
sums and tensor products are assumed (see [3], [4]).

Certain QC algebras of low dimension are of special importance. For b
non-zero, in F, let Cb denote the QC algebra on one generator, fi say, satisfying
fi2 = b. For c, d non-zero, in F, let Qcd denote the QC algebra on two
generators y, S say, where y2 = c, S2 = d, Sy = -yS. These algebras are in fact
Clifford algebras and their structures are known (see [1]). An outline of the facts
follows.

(2.4) (i) If b is a square in F, say b = p2, there is an isomorphism Cb a
IF ( = F © F) a direct sum of two copies of F. For

-fi

(since (p + 0)/2p • (p - j8)/2p = 0) = F © F (since ((/> + p)/2p)2 =
(/» + fi)/2p). There are two irreducible matrix representations, of order 1, given by
/ 3 ( ) d p ( )

(ii) If b is not a square in F, then Cb » F[Vb ], a field extension of rank 2,
since any x + yfi =£ 0 (x, y in F) has an inverse (x2 — by2y\x — y/3); {x2 —
by2 cannot be 0). To within equivalence the regular representation is the only
irreducible representation. It is of order 2, and is given by fi —* (̂  £)•

(iii) If d = p2 — cq2 for some p, q in F, there is an isomorphism Qc d — F2, the
full 2 x 2 matrix algebra over F. The correspondence

•(i ?)• ' " ( ? lr
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gives an isomorphism, and to within equivalence gives the only irreducible represen-
tation which is of order 2. (These four matrices are linearly independent since the
determinant

1 0 0 1
0 c 1 0
P cq -q -p

-cq -cp p cq

4c(p2 - cq2) = 4cd

< p2 — cq2, then Qc d is a division algebra,
is non-zero.)

(iv) If there is no p, q in F with d
since any t\ + xy + yS + zyS ¥= 0 (t, x,y, z in F) has an inverse

(t2 - ex2 - dy2 + cdz2)'\t\ - xy - yS - zyS).

(t2 — ex2 — dy2 + cdz2 cannot be zero. For suppose it is zero with not all of
t, x,y,z = 0. Now if i = z = 0 then ex2 + dy2 = 0, y ^ 0, and d = 02 -
c(xy-')2; while if t2 + cdz2 = 0 ^ z then d = 02 - c(tz~lc-x)2. If t2 + cdz2 =t 0
then cu2 + dv2 = 1 where

u = (tx + dyz)/ (t2 + cdz2), v = (ty - cxz)/ (t2 + cdz2).
If v ¥= 0 then d = (tT1)2 - c(uv~1)2, and if v = 0 then d = ((d + l) /2)2 -
c((d - l)u/2)2. In all cases there a re p , q in F with d = p 2 - cq2) To within
equivalence the regular representation is the only irreducible representation. It is of
order 4 and is given by

0
1
0
0

c
0
0
0

0
0
0
1

0
0
c
0

8 —>
, u *

0
0
1
0

0
0
0

-1

d
0
0
0

0
-d

0
0

The importance of the algebras Cb, Qcd lies in the fact that any QC algebra
decomposes into a tensor product of such algebras. To show this the following
well-known property of tensor products will be used (see [1], Ch. I, §5).

(2.5) LEMMA. Let & be a finite dimensional algebra over F, and %, %
subalgebras each containing the 1 of &. Suppose (i) each element of % commutes
with every element of %, (ii) %% = & {where %% is the set of finite sums
2 hikf-. ht G %, kt G %), and (iii) dim & = dim % dim %. Then there is an
isomorphism & s= % <S)F % (the tensor product of algebras over F), given by
hk<r+ h ® k. (In such cases we shall identify h with h ® 1, k with 1 <S> k).

The decomposition of Q = Q[m, (&,), (8^)] = [a,, . . . , am] proceeds as fol-
lows.
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[ 7 ] Quasi Clifford algebras 7

Suppose that all Su = 0, so that G is commutative. If m > 1, [a, , . . . ,ocm\ —
[a^fa, . . . , <*„] since each basis element a,e"a|2 • • • a^1 of 6 is the product
(af'Xal2 • • • «C) °f elements of [at], [a2, . . . , am] respectively. Also dim G —
2m = 2 X 2"1"1 = dimKldimlaj, . . . , am]. So by (2.5)

G « [a , ] ®[a2, . . . , ou] = Cki ® e[m - 1, (*ft (8,})],

where &/_, = Jfc,. (2 < i < w), fi,'_ ,,,•_, = 80 (2 < / <j < m).
Suppose on the other hand that some 8^ — 1. We may suppose (possibly after

reordering the a, and correspondingly the kit fiy) that 512 = 1, so that a1( a2

anticommute. If m > 2, [au . . . , o^] = [a,, aJUaf^a"1^, . . . , af^al'-o^]
since each basis element af1 • • • a^- of G is the product:
( a ^ ^ ^ ^ a f ^ ' ^ j / 3 • • • (a^"-aZ'"-amy») (perhaps divided by the plus or minus a
product of some of the kt), where TJ, = e, + 2™_3527£, reduced mod 2, and
TJ2 = e2 + 2^-3 ̂ ijej reduced mod 2. Now products of the ĉ Sx*"**, (3 < i < m)
yield non-zero multiples of precisely 2m~2 of the basis elements a,'1 • • • afc of
Q, so dim G = 22 X 2m~2 = dimta,, a jd imlaf^ l 1 ^ , . . . , a , ^ * 1 " ^ ] . Also a,
and a2 commute with each af̂ otf"**,. So by (2.5)

e « [ a , , «2] ® [ « N | ^ 3 , . . . . «?-«!-«„] = QfcijJt2 ® e [ « - 2, (*;>, («£)],
where /t/_2 = (-if'^'kf^k^ (3 < / < m)-found by evaluating (ap'ot^'a,)2,
and 8i'_2j_2 = 6,,52y + 8l782, + 6^ reduced mod 2 (3 < i <j < m)-found by
comparing (af^a^'^Xaf^al'-o,) with (af2'a|"a,)(af^a2

Il-'a,).

(2.6) REMARK. If G is a Clifford algebra, with all 80 = 1, then clearly all
8^ = 1 and so the second factor in this tensor product is again a Clifford
algebra.

In general however G decomposes into an algebra CAi or QClijl tensored by a
QC algebra G[m - 1 or m - 2, (it/), («/•)] of dimensionless than 2m. Note that
the new parameters k[, as well as the bx or cu dx are each one of the original kt,
or plus or minus a product of some of them.

Induction on m gives the following decomposition theorem:

(2.7) THEOREM. Any QC algebra G[m, (*,), (80)] = [a,,. . . , a j is expressible
as a tensor product over F:

0) e » c6i ® • •

5ay w/iere r, s > 0, r + 2s = /n, anrf eac/i bif cp dk is plus or minus a product of
some of the kt. Each /?„ yjt 8k {where fi,2 = b,, y2 = c,, 8k = dk, and all pairs
commute except 8,Y, = -y,8(, 1 < i < s) is, to within multiplication by plus or
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minus a product of some of the kit one of the basis elements a[x • • • aj™ of Q.
Conversely each a*1 • • • a%" is, to within division by plus or minus a product of
kt's, one of /??• • • • fiSt^t1 • • • Y*5,* (each 9,, y, $k = 0 or 1). Thus the latter
2r+2s = 2m elements form a new basis of S, and {/?,, yy-, 8k) is a new set of
generators.

The numbers r, s are invariants of (B, as can be deduced from the following:

(2.8) LEMMA. The centre of S = [/?,] ® • • • ®[/?,] ® [y,, 8,] ® • • • ®[y,, 8,]
(A» fy 8* ̂  ' " 2-7) " tfie 2<-dimensional subalgebra [/?,] ® • • • ®[/?r].

PROOF. Clearly this subalgebra is contained in the centre. Conversely, let £ be
in the centre. Expressing £ as a linear combination of the basis
{ySf- • • • AS?*i*' • • • Y/ 'S/ '} we have { = 2A0?' • • • j8,V*i*' • • • Y,««,*
where /J = h{9v . . . , 9r, <p,, ^, , . . . , %, ^,) is in F. For each / = 1, . . . , s, £ =
Yr'ly, = S ± A/8?' • • • tf'yf'Sf' • • • 7*8* where the sign is negative when
\pi = 1 (since y, commutes with all /^, yy, 8, except 8,).

Comparison of the two expressions for £ shows that h = 0 for any basis
element with tp,, = 1. A similar argument using £ = S/'1^ shows that for each
i, h = 0 for any basis element with <p, = 1. So | e [/?„ . . . , 0r] = [/8J
® • • • ®[ Pr] as required.

(2.9) REMARK. The converse of (2.7) is obviously also true-that is, any
algebra of the form (2.7)(i) is a QC algebra. Indeed, regarded as an algebra
on the generators {/?,., yy, 8k), 6 of the form (2.7)(i) is the QC algebra
Q[r + 2s, (£,), (8^)] where kx, . . ., kr+2s = bv . . . , br, c,, < / „ . . . , c,, rf,, respec-
tively, and all 80 = 0 except 8r+2i_x r+2i = 1 for 1 < i < s.

From these facts it is clear that a tensor product of QC algebras is itself a QC
algebra.

If Q is a Clifford algebra it follows from (2.6) that the decomposition process
splits off only Qc ^ type algebras, except for a possible final commutative
algebra on one generator. In other words: r of (2.7) must be 0 or I if Q is a
Clifford algebra. Conversely, any algebra of the form (2.7X0 w'tn r = 0 or I is a
Clifford algebra. This can be proved by induction on 5. For suppose (3 is a
Clifford algebra on 2s generators [a,, . . . , a^]. Then

6 ® Qc_d = [ a , , . . . , a*] ®[y, 8] say,

a [a,, . . . , a^, a, • • S]
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[9] Quasi Clifford algebras 9

using (2.5). This is a Clifford algebra on 2s + 2 generators since, as is easily
verified, a,, . . . , a^, a, • • • a^y, a, • • • a^S all anti-commute. Similarly 6 ®
C6 = [a,, . . . , a^] ® [0] say, » [a,, . . . , a^, a, • • • a ^ ] is a Clifford alge-
bra.

Collecting these facts we have the following relationships between the classes
of QC algebras and Clifford algebras over a field F of characteristic not 2.

(2.10) THEOREM. The class of QC algebras over F is the smallest class which is
closed under tensor products oner F and which contains the Clifford algebras
corresponding to non-degenerate quadratic forms over F, It is the smallest class
which is closed under tensor products over F and contains the algebras Cb, Qcd

(b, c, d non-zero, in F). The Clifford algebras are the QC algebras with 1- or
2-dimensional centres {general QC algebras can have 2'-dimensional centres, r any
non-negative integer).

(2.11) THEOREM. Every QC algebra 6F[m, (it,.), (80)] (fc, ¥> 0, 6 F ; characteris-
tic of F not 2) is semi-simple.

PROOF. This can be shown by a suitable adaptation of the familiar proof (see
[4]) of Maschke's Theorem for group algebras (the 2™ basis elements a,*1 • • • a£-
of a QC algebra behave somewhat like a group with product closed to within
non-zero F multiples). Alternatively the decomposition theorem (2.7) may be
used:

Let K be the algebraic closure of F. Over K all algebras Cb = Cb(K) are 2K
(2.4(i)), and all algebras Qc>(, = QCid(K) are K2 (2.4(iii)). So

K ®F e = Q(K) « Cbl(K) ®K • • • ®K Cbr(K)

a 2K ® K • • • ®K2K®KK2®

as 2rK2,

since ® distributes over © and Km®KKn = Krm.
Hence K ®F & being a direct sum of full matrix algebras over K is semi-sim-

ple. Hence Q = Q(F) is semi-simple (since if % was a null ideal of S, K ® f %
would be a null ideal of K ®/r C).

3. Special quasi Clifford algebras

Being semi-simple any QC algebra has a Wedderburn structure as a direct
sum of full matrix algebras over division algebras. We now discuss the possible
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10 H. M. Gastineau-Hills [10]

structures of SQC algebras (algebras Q[m, (&,), (8,7)] with each kt = ± 1). (See
[5] for a study of general QC algebras.)

As in [7] it is convenient to classify the possible fields F into three types:
I. F contains p such that - 1 = p2;
II. F is not of type I, but contains p, q such that - 1 = p2 + q2;
III. F is not of type I or II.
From (2.4) the following summary of structures and representations of Cfc,

Qcd for b, c, d = ± 1 is readily deduced:

(3.1)

Algebra

C,=[/8]

Qi,-i - Vi,

Field Type Structure Irreducible Representation's)

Q-i,-i = [y, 8]

any

\ l

t i l or III

any

any

I

II

HI

IF

IF

C

F2

F2

F2

F2

)3->(l)or/3->(-l)

y-

y-

y-

y-

C denotes the field F[V^l ] (F type II or III),
division algebra over F (F type III).

Q denotes the quaternion

(3.2) REMARK. For fields of type III there are irreducible representations of
Cb, Qcd (b, c, d = ± 1) in which P,y,8 are each represented by {0, ±1}
matrices with just one non-zero entry in each row and column.
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[ill Quasi Clifford algebras 11

Now in the decomposition of an SQC algebra, each of the bk, cJt dk of (2.7(i))
is ± 1. From (3.1) it follows that the decomposition of an SQC algebra takes
(possibly after reordering the factors) the form:
(3-3)

e =[«„. . . ,«„]
» 2F ® • • • ®2F <8> F2 ® • • • <8>F2 (Ftype I) or

IF ® • • • ®2F <S> C ® • • • ®C ® F2 ® • • • ®F2 (II) or
IF ® • • • ®2F ®C® • • • ®C ® Q ® • • • ®Q®F2® • • • ®F2 (III)

^[Px]®--- ® [ A ] «>[Yi, «i] ® • • • ®[ys,Ss] say
where each /?,, y., 5fc is plus or minus a product of the a,-, and conversely each at is

plus or minus a product of the /?,, yp Sk.

(3.4) LEMMA, (i) C ® C s IF ® C (F type II or III).
(ii) C®QaC®F2(F(VK III),
(iii) Q ® Q s F 2 ® f 2 ( F #pe III).

PROOF, (i) C ® C = C_, ® C_, = [^J ® [j82] (where /5,2 = -1) = [y8,, ^ J «
[ & /?2] ® [ y3,] (by 2.5 since /?, /82, /?, commute and generate [ /?„ 02]) SB 2/1 ® Q
(since(J8lJ82)2=l).

(ii) C ® Q = C_, <E» Q_lt_, = [0] ® [y, «] (say) « [0, y, 8] a [/8] ® [ jffy, «]
(by 2.5) a C ® F2 (by 3.1 since (/?y)2 = 1).

(iii) Q ® Q = Q_, _, ® Q_, _, = [y,, 8,] ® [y2, 82] (say) a [Yl, «„ y2, 82] a
2l 6>y 2-5) a Q, _, ® Q, _, a F2 ® F2.

Note that in the proof of each part of (3.4) tensor products of algebras in
terms of certain generators are converted to tensor products of algebras in terms
of new generators. In each case the new generators are certain products of the
old, and each old generator is plus or minus a product of the new. Hence

(3.5) COROLLARY. If (3.4) is applied to pairs of factors in (3.3), the new
generators are still plus or minus products of the original a,, and each a, is plus or
minus a product of the new generators.

Application of (3.4) sufficiently often to (3.3) yields:

C « (i) IF ® • • • ®2F ® F2 ® • • • ®F2 (any type of field) or
/3 6x (ii) 2F <8> • • • ® 2 F ®C®F2<8>- • • ®F 2 (type II or III) or

(iii) 2F ® • • • ®2F ® Q ® F2 ® • • • ®F2 (type III).
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12 H. M. Gastineau-Hills [12]

If we use the fact that <8> distributes over ©, and Fm® Fn = Fm we
immediately obtain the possible Wedderburn structures of SQC algebras:

(3.7) THEOREM. The Wedderburn structure of an SQC algebra Q =
<B[m, (k,), (8jj)] (k( = ± 1) as a direct sum of full matrix algebras over division
algebras is (depending on m, (A:,), (8,j)) one of

(i) 2rFv (any type of field),
(ii) 2r~ 'C <8> Fr (type II or III), or
(iii) 2rQ <g> Fr-, (type III),

where in each case r + Is = m, and 2r is the dimension of the centre. Conversely
(as in 2.9) any such algebra (i), (ii) or (iii) is an SQC algebra Q[r + 2s, (&,), (fiy)]
(kj = ± 1) with respect to certain generators. Also (as in 2.10) the subclass of
algebras with structures (i), (ii) or (iii) for which r < 1 is precisely the class of
algebras isomorphic to Special Clifford algebras on r + 2s generators (the genera-
tors anticommuting and squaring to ±1).

(3.8) COROLLARY. In case (i) of (3.7) there are 2r inequivalent irreducible
representations, of order 2s; in case (ii) 2r~1 of order 2s+l, and in case (iii) 2r of
order 2s + l. Any representation must be of order a multiple of (i) 2s, (ii) 2J + 1 , (iii)
2 J + 1 respectively.

Explicit matrix representations may be constructed using (3.1) and (3.6) as
follows.

Suppose

G as 2 F ® • • • ®2F <8> F2 ® • • • ®F 2 as in 3.6(i)

[y,, «,] ® • • • ®[y,, «,] say.

By (3.1) we have irreducible matrix representations for each [/?,], [yJt 5,] of
orders 1, 2 respectively. Suppose /?, ^ Bt, y, -» C, and 8k -» Z) .̂ Then a represen-
tation \ say of 6 is defined by setting

(3 9)

(each Of, 95,, i//k = 0 or 1) where here ® denotes the Kroneker product. The
Kroneker product L ® M of matrices L, M = (m^) of orders /, m respectively is
the Im order matrix formed by replacing each m^ of M by the block mi}L (see
[3]-other writers define the Kroneker product in the opposite way: they would
denote (m^L) by M ® L).

Clearly X is of order 1 X • • • X 1 X 2 X • • • x 2 = 2s so by 3.8(i) is irreduc-
ible. The two inequivalent choices for each [/},-] give rise to all 2r inequivalent
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[13] Quasi Clifford algebras 13

irreducible representations of 6 . Now since (3 is semi-simple, to within equiva-
lence any representation JX of Q may be formed from some family {\t, . . . , \ }
of irreducible representations by defining ju(y) to be the block-diagonal matrix

for all y in Q.MY)

Any matrix representation /x' equivalent to JU. is of course given by JU'(Y) =

71"'/i(y) T for some non-singular matrix T over F.
Representations of C in the cases 3.6(ii), (iii) are formed similarly.
Now the class of {0, ±1} matrices with just one non-zero entry per row and

column is closed under the operations
(a) taking plus or minus ordinary products,
(b) taking Kroneker products,
(c) forming the block-diagonal matrix

from matrices Xx, X2.
So using (3.2) and (3.5) the following can be deduced:

(3.10) THEOREM. If F is a field of type III (-1 is not the sum of two squares)
each representation of an SQC algebra G[m, (A:,), (5iy)] (&, = ± 1) on generators
(a,) is equivalent to a matrix representation in which each a, corresponds to a
{0, ± 1} matrix with just one non-zero entry in each row and column (an
orthogonal {0, ±1} matrix).

4. Orders of systems

We now apply the theory of SQC algebras to the problem of determining,
given/», + \,p2, • • • ,PK

 a n <i ($y)> the possible orders of Jf-systems (Xt) of genus
(SjJ) on/?, + l,p2, • • • ,PK variables.

It has been shown that the existence of such a system of order n, whatever its
type, implies the existence of an order n representation of a certain real algebra
6 say on m = /?, + p2 + • • • +pK generators (see 1.7). In fact Q is the SQC
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algebra on generators a , , , . . . , alpi, a21, . . . , a ^ , . . . , aKX, . . . , aKf>K with de-
fining relations

, . ,s <*£ = (-i)*"> «,*«*, = -«.y«,vt> U *= k )

(i)*"+'v+V (
where Sn is to be interpreted as 1.

Hence by (3.7, 3.8) the possible orders of the system are restricted to multiples
of p, where p = 2s, 2s+\ 2s+i according as Q has structure (3.7)(i), (ii), (iii)
respectively (here F is the reals, a field of type III). Call this number p the order
number of the family (pl + l,p2, . . . ,pK; (fiy)).

Conversely let n be any multiple of the order number of (/>, + 1,
p2, . . . ,pK; ($,))• Then by (3.10) an order n matrix representation of the
algebra (4.1) can be constructed in which each a,7 is represented by a (0, ±1}
matrix, Eti say, with just one non-zero entry per row and column. The matrices
Eu satisfy E* = (-1)*"/, EikEtJ = -EtjEik V*k), EJtEik = (-l)«"+a"+*/£'tt£/,
(/ <j) and are orthogonal. It follows that EtJ = (-1)*1 'E^ for all i,j. Hence since
Su = 1, all Ey are anti-symmetrical, so / * EXJ = 0. Also if 1 < j < k < p(,
then EikE* = (-if'-E^j = -(-if-E^ = -JSy£^ It foUows that Eo * E*
= 0 since Ey, Eik have only one non-zero entry per row (as in the proof of 1.5).

Hence we may form designs Xx = xiol + xnEn + • • • +xlp EXp, X2 =
*2i^2i + • • • + XipE^, ...,XK = xKlEK1 + • • • + XKPKEKPK on the distinct
variables (xtJ).

Now EXJI
T = -IEjp EikE? = -E,jEl (J * k), and E^J = ( - l )H j = /• It

follows that each Xt is orthogonal. Since for i <j, Ej,E-[ = (-Xf"E,,Eik =
{-Xfu+'u+txj-HjE^Ej, = (-\)s"EikEj, it foUows that XjXj = (-ifaxf.
So (Xj) is a A^-system of genus (6y)> order n. Its type is
(1, 1, . . . , 1; • • • ; 1, 1, . . . , 1) so by (1.5) it is regular. We have shown:

(4.2) THEOREM. Suppose p is the order number of (px + 1,
p2, . . . ,pK; {8y)x<i<j<K) (pt > 0, Sij =0or 1). Then any K-system of any type,
genus (Sjj), on px + 1, p2,. . . ,pK variables has order a multiple of p. If n
is a multiple of p there is a regular K-system of order n, type
(1, 1, . . . , 1; • • • ; 1, 1, . . . , 1), genus (8tJ) onpx + l,p2, . . . ,pk variables.

N o t e that this theorem does not give information on which multiples of p are
the possible orders of ^f-systems (genus (6^.), onpx + \,p2,. . . ,pK variables) for
types other than (1 , 1, . . . , 1; • • • ; 1, 1, . . . , 1).

By considering the corresponding SQC algebra we are now able, given
(/?, + \,p2, . . . ,pK; (Sjj)), to calculate the order number p, and produce suita-
ble regular /f-systems of order any multiple of p. In practice we may wish to
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produce tables of order numbers of (px + \,p2, . . . ,pK; (8y)) for fixed K, (S;/)
and varying/?,. The following result is useful in this context.

(4.3) THEOREM. If the order number of (/>, + \,p2, • • . ,pK; (5,y)) is p, then the

order number of each of (/>, + 9, p2, . . . , pK, (8^)), (/>, + I, p2 + 8,

p3, . . . ,pK; (fiy)), . . . , ( / > , + \,p2, . . . ,pK_x,pK + 8; (5y)) is 24p.

That is, increasing any pt by 8 multiplies the order number of 16. This means
that from a table giving order numbers for the 8* cases 0 < />, < 7, the order
number for any other values of (/>,-) is readily calculated.

PROOF. Let G = [a,, . . . , am] be the SQC algebra (4.1) corresponding to

(/>, + l,p2, . . . ,pK; (S/j)) (where the notation of the generators has been sim-
plified), and let Q' = [a,, . . . , am, /?„ . . . , /J8] be the corresponding SQC alge-
bra when pj say is increased by 8. From (4.1) it is clear that the /?,, . . . , /?8

anti-commute with each other and either all square to 1 or all square to - 1 . Also
each a, either commutes with all of /?„ . . . , /}g or anticommutes with all of
them. By (2.5)

where e, = 0 if a, commutes with the /?„ . . . , /?g, and = 1 otherwise, (since each
(%(>8j - - - /Jg)*1 clearly commutes with each PJ).

Now (a,(/81 • • • /fg)'1)2 = a,2 and a,(/?, • • • )88)^ commutes or anti-commutes
with a,-(/8, • • • )3g)̂  according as a, commutes or anti-commutes with a,. So
C » <3 ® [ / ? „ . . . , yS8]. Decomposition yields:

[ iSi A] s [ A, ys2] ®[ A ft ft, ftftft] ®[ ftftftftft, ftftftftft]
® [ /8i ̂ 2 y33 A, ft ft ft, ft ft ft ft ft ft ft ]

,usmg(3.1)
Q ® F2 ® Q ® F2 (if >S,2 = -1)

=zF2® F2® F2®F2 (3.4)

^ F 2 < .

Hence S ' a 6 ® F16. So if the structure of 6 is 2 * ^ ® Fn (̂ D a division

algebra) then the structure of 6' is 2* ̂ D ® Fj^ . The result follows.

It may be remarked that the process of constructing an SQC algebra from a
Jf-system (A7,) on (/>, + l,/>2, . . . ,pK) variables seems to involve a certain lack
of symmetry, in that while any of p2, . . . ,pK could be zero (in which case in an
obvious sense (Xt) is equivalent to some (K — 1) system), it would appear that

https://doi.org/10.1017/S1446788700024368 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700024368
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pl + 1 cannot. However this restriction (on the number of variables in X{) may
be removed since in (1.6) w10, Al0 can be replaced by uip AtJ respectively for any
other i,j. Different SQC algebras (4.1) may arise in this way, but in the light of
(4.2) it is clear that their irreducible representations would be of the same order.
It also follows, in the light of (4.3), that the order number of
(0,p2, . . . ,pK; (8^)) (obtained using an alternative to (1.6)) is ^ t h the order
number of (8, p2, . . . , pK; (S,7)), and (4.3) remains valid.

For convenience we define the order number of (0, 0, . . . , 0; (5^)) to be 2"1.
This is consistent with (4.3) since, for example, the order number of
(8, 0, . . . , 0; (8/j)) is 23 (that is, the minimal order of single orthogonal designs
on 8 variables is 8, as is well-known: see [6]).

5. Product designs

We conclude by considering a particular genus of 3-systems-the product
designs (1.4) which have proved of particular value in the theory of orthogonal
designs (see [6], [8]). Here K = 3, 8l2 = 8n = - 1 , 823 = 1. Suppose we have a
product design on (p + 1, q, r) variables. Write p = 2/(4-1), q = 2m(+1), r =
2n(+1). For convenience we rename the generators in (4.1):

e = | o,, 5 , , . . . , a,, a,(,5), 0,, 0 , , . • •, 0m, &,(,/?), yv y , , . . . , yn, yn(,y) j

(where a, /?, y respectively is included when/>, q, r respectively is odd]

= fa,, a,, . . . , a,, a,, /?„ /?„ . . . , /3m, (im, y,, yv . . . , yn, Y,,(,a)(,/?)(,y)j.

Here every generator squares to - 1 , and all pairs anti-commute except that each
P commutes with each y.

The decomposition process yields:

Q —[av a,] <8>[a,a,a2, axaxa2~\ ® • • •

®[alal • • • a/.jO/.ia,, a,a, • • • al_lal_lal'^

lal • • • a,d,liv alal • • • 0,0,

a , 5 , - • •

®[aiax • • • a,a,y,, axax • • • a,a,y,] ® • • •

®[aiax • • • a/a/YjY, • • • yn_,y,,_iYB, a,a, • • • a,a,yiy1 • • • Yn_iYn_iyn]

Neither (i) no other factors (p even, q even, r even) or
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(ii) [«,a, • • • 0,0,0/?, / ? , • • • 0J? m 7i7 i • • • YnYn] (odd, even, even)

(iii) [axax • • • 0,0",/?, P, • • • PmPmlP\ (even, odd, even) or

(iv) [a^ • • • 0,5,7,7, • • • YnYnYl (even, even, odd) or

(v)

or

[a ,5 , • • • 01,0,7,7, • ' • YnYnYl (even, odd, odd) or

(vi) [o,a, • •

a,a, • • • a,d,Pu

(vii) [axax • •

(viii)

(odd, odd, even) or

«i«i • • • «/«/YiYi • • • 7nYMf] (odd, even, odd) or

• • -0,5,5)8,ft- • • pj

Q® F2®Q® F2® • • • <?

F2 (/odd) 0

Q (/ even)

F2 ( /odd) ^

Q (/ even)

(i) ® no other factors

,... [IF (1+ m + n odd)

( C (/ + m + n even)

f2F ( / + W o d d )
[ C (/ + m even)

" ' - YnYn7] (odd, odd, odd)

Q (/odd)

•F2 (' even)

Q (/ + m odd)
/"2 (1 + m even)

Q (/ + n odd)
F2 (/ + n even)

1 C (/ + n even)

. f 4F (/ + m, I + n both odd)
[ 2C (otherwise)

f Q (I + m + n, I + m both even)
1^ ( (otherwise)
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, [ Q (I + m + n,l + n both even)

" 1 F2 (otherwise)

(C <8> F2 (m + n odd)

(viii) \ 2Q (w + n, I + w + n, I + m all even)

2F2 (otherwise)

with (i), (ii), . . . , (viii) as above.
Thus the structures of C for each p, q, r can be obtained, giving the order

numbers for each (/? + 1, q, r).

(5.1) EXAMPLE. We find the possible orders of product designs on (2, 2, 4)
variables and construct such a design of minimal order.

e = [ 0 i . 0 i . YP 7i> Y2> Y2, « ]

SB Q (8) Q (g> F2 ® 2F

= [0 iY i , 0,1 ® [0 iY i . Yil ®[YIY"IY2. YIYIY2] ® T « 0 I 0IYIYIY2Y2l (using 3.4)

:=c.)

So the order number is 23 = 8 (3.8(i)), and the possible orders of product designs
(1.3) on (2, 2, 4) variables are multiples of 8. Such a product design of order 8
may be constructed as follows:

(0i7i)® (YI)® l ® l

(? AW? > ( J

(by (3.1)).
Similarly

0
0
0
1

0
0
1
0

O

0
1
0
0

1
0
0
0

0
0
0

-1

0
0

-1
0

O

0
-1

0
0

-1
0
0
0

= £•, say

- ' • • " •
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1 <8> 1

(? X J !WJ !)•«

(? X ? JWJ ?)•« -

X J !
±Y2 =

±72 =

Set X = xo7 + x,£,, 7 =
(A', y, Z) is the product design:

J X ! JW»
(fty.y.) <8>

+ y2F2, Z = z ,G, + • • • +z4G4. Then

0

0 Xj

0

0

0

x,

0

z3

0

x,
0

0

x,

0

z.

x,

0

0

(superimposing X, Y, Z for convenience, and writing x, for -x , , etc).
Similarly each of the 83 = 512 cases p, q, r (mod 8) can be considered. A

suitable computer program (see [5]) quickly produces the appended tables of
order numbers for product designs (/> + \,q, r), in which the entries are the
powers to base 2 of the order numbers.

The case/7 + 1 = 0 reduces in effect to a table of order numbers for amicable
pairs and, if two of p + 1, q, r are zero, order numbers of single orthogonal
designs result.

From this table order numbers for p + \,q,r>l can quickly be deduced,
using (4.3).
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Appendix

120]

Table of order numbers {indices base 2) of product designs {p + 1, q, r)

p + 1 = 0

/•= 0 1 2 3 4 5 6 7

q = 0
1
2
3
4
5
6
7

-1
0
1
2
2
3
3
3

0
0
1
2
3
3
4
4

1
1
1
2
3
4
4
5

2
2
2
2
3
4
5
5

2
3
3
3
3
4
5
6

3
3
4
4
4
4
5
6

3
4
4
5
5
5
5
6

3
4
5
5
6
6
6
6

p + 1 = 1
2 3

9
1
2
3
4
5
6
7

0
1
2
2
3
3
3
3

1
1
2
2
3
3
4
4

2
2
2
2
3
4
5
5

2
2
2
2
3
4
5
5

3
3
3
3
4
5
6
6

3
3
4
4
5
5
6
6

3
4
5
5
6
6
6
6

3
4
5
5
6
6
6
6

+ 1 = 2

r =
q = 0

1
2
3
4
5
6
7

0

1
2
2
3
3
3
3
4

1

2
2
3
3
3
3
4
5

2

2
3
3
3
3
4
5
6

3

3
3
3
3
4
5
6
6

4
3
3
3
4
5
6
6
7

5
3
3
4
5
6
6
7
7

6

3
4
5
6
6
7
7
7

7

4
5
6
6
7
7
7
7
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p + 1 = 3

21

r =

<7 = 0
1
2
3
4
5
6
7

0

2
2
3
3
3
3
4
5

1

2
2
3
3
3
3
4
5

2

3
3
4
4
4
4
5
6

3

3
3
4
4
5
5
6
6

4

3
3
4
5
6
6
7
7

5

3
3
4
5
6
6
7
7

6

4
4
5
6
7
7
8
8

7

5
5
6
6
7
7
8
8

+ 1

r =

q = 0
1
2
3
4
5
6
7

0

2
3
3
3
3
4
5
6

1

3
3
4
4
4
4
5
6

2

3
4
4
5
5
5
5
6

3

3
4
5
5
6
6
6
6

4

3
4
5
6
6
7
7
7

5
4
4
5
6
7
7
8
8

6
5
5
5
6
7
8
8
9

7

6
6
6
6
7
8
9
9

+ 1 = 5

r =
9 = 0

1
2
3
4
5
6
7

0

3
3
3
3
4
5
6
6

1

3
3
4
4
5
5
6
6

2

3
4
5
5
6
6
6
6

3

3
4
5
5
6
6
6
6

4

4
5
6
6
7
7
7
7

5

5
5
6
6
7
7
8
8

6

6
6
6
6
7
8
9
9

7

6
6
6
6
7
8
9
9
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r =

p + 1 = 6

2 3 4

9 = 0
1
2
3
4
5
6
7

3
3
3
4
5
6
6
7

3
3
4
5
6
6
7
7

3
4
5
6
6
7
7
7

4
5
6
6
7
7
7
7

5
6
6
7
7
7
7
8

6
6
7
7
7
7
8
9

6
7
7
7
7
8
9

10

7
7
7
7
8
9

10
10

/> + 1 = 7

r =

9 = 0
1
2
3
4
5
6
7

0

3
3
4
5
6
6
7
7

1

3
3
4
5
6
6
7
7

2
4
4
5
6
7
7
8
8

3

5
5
6
6
7
7
8
8

4

6
6
7
7
7
7
8
9

5
6
6
7
7
7
7
8
9

6

7
7
8
8
8
8
9

10

7

7
7
8
8
9
9

10
10
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