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Abstract
The relationship between dietary habits and microbiota composition during adolescence has not been well examined. This is a crucial
knowledge gap to fill considering that diet–microbiota interactions influence neurodevelopment, immune system maturation and
metabolic regulation. This study examined the associations between diet and the gut microbiota in a school-based sample of 136 adolescents
(Mage= 12·1 years; age range 11–13 years; 48 % female; 47 % Black, 38 % non-Hispanic White, 15 % Hispanic or other minorities) from urban,
suburban and rural areas in the Southeast USA. Adolescents completed the Rapid Eating Assessment for Participants and provided stool samples
for 16S ribosomal RNA gene sequencing. Parents reported their child and family socio-demographic characteristics. The associations between
diet and socio-demographics with gut microbiota diversity and abundance were analysed using multivariable regression models. Child race and
ethnicity, sex, socio-economic status and geographic locale contributed to variation within microbiota composition (β-diversity). Greater
consumption of processed meat was associated with a lower microbial α-diversity after adjusting for socio-demographic variables.
Multi-adjusted models showed that frequent consumption of nutrient-poor, energy-dense foods (e.g. sugar-sweetened beverages, fried foods,
sweets) was negatively associated with abundances of genera in the family Lachnospiraceae (Anaerostipes, Fusicatenibacter and Roseburia),
which are thought to play a beneficial role in host health through their production of short-chain fatty acids (SCFAs). These results provide new
insights into the complex relationships among socio-demographic factors, diet and gut microbiota during adolescence. Adolescence may
represent a critical window of opportunity to promote healthy eating practices that shape a homoeostatic gut microbiota with life-long benefits.
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The gut microbial community plays a crucial role in human
physiology, and there is a growing appreciation for microbiome-
based interventions in a wide spectrum of diseases(1–3).
To harness the gut microbiota for therapeutic applications, it is
necessary to characterise the dramatic microbial community
changes that occur across the life course from birth to old age(4).
It is well understood that the gut is colonised by microbiota
during infancy, followed by a period of rapid microbial diversity
expansion after the cessation of breast- or bottle-feeding and
transition to solid foods(5–7). A large body of research has shown

how mode of delivery, gestational age, longevity of breast-
feeding and antibiotics moderate this colonisation process(5–8).
Later in the lifespan, investigations have focused on howdiet and
lifestyle shape the gut microbiota in adulthood(9,10). However,
considerably less is known about the gut microbiome in the
period between early childhood and adulthood. While it has
been generally accepted that the infant microbiota reaches a
stable adult-like state within the first 3 years of life(6,7), new
evidence indicates that the development of the gut microbiota
continues through childhood(11) and early adolescence(12).
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However, few studies have examined how diet and other
environmental factors shape the gut microbiota during adoles-
cence(13). This is a crucial knowledge gap to fill considering the
important roles of diet–microbiota interactions in neurodevel-
opment, immune system maturation and metabolic regulation
during adolescence(14–16).

Adolescence marks a developmental period of increasing
autonomy from caregivers in many cognitive, social and
behavioural domains, including food acquisition, preparation
and consumption(17,18). Adolescent eating behaviours are shaped
by a variety of factors, such as food availability, peer influences,
socio-economic status (SES) and personal and cultural beliefs(19).
The overall quality of US adolescents’ diet is poor(20), with few
adolescents meeting the US Department of Agriculture recom-
mended daily intake of fruits and vegetables(21). These trends are
not unique to the USA, with longitudinal studies from other
Western countries also finding decreasing intake of fruits and
vegetables and increasing consumption of sugary drinks during
adolescence(22). Diet quality is further negatively impacted by
skipping breakfast(23), which becomes more common in older
youth(24). Skipping breakfast is associated not only with a poorer
diet quality but also with higher weight, other metabolic and
cardiovascular risk factors and worse mental health among
adolescents(25). However, links between skipping breakfast and
gut microbiota of adolescents have not been examined.

Dietary behaviours in adolescence are likely to impact health
later in life(26,27). Risk factors for diabetes and CVD in adolescence
can predict adult health outcomes(28,29). Although diet quality
improves somewhat from adolescence to adulthood, the overall
intake of the recommended macronutrients in young adulthood
remains sub-optimal(30). Thus, eating patterns developed
during adolescence may carry long-lasting health consequences.
However, little is known about how dietary intake during
adolescence affects the still developing gut microbiota(31,32).

Study aims

To address these knowledge gaps, this study examines
associations among nutritional intake, eating behaviours,
urban–rural locale classifications and SES with the gut micro-
biome in a community sample of adolescents. The overall goal of
this study is to provide insights into diet-related gut microbiota
associations during adolescence, a crucial period of rapid
physiological and neurological development that sets the stage
for long-term health outcomes.

Methods

Sample

This study included early adolescents participating in Wave 1 of
the Adolescent Diet Study, which examined the role of diet in
adolescent health. Students in their first year of middle school
attendance were recruited in 2019 from fifteen schools in urban,
suburban and rural locations around Birmingham, Alabama,
USA. The Generalizer program (www.thegeneralizer.org) was
used to specify the target population, stratify the population
and develop a sampling plan, including a list of schools for

recruitment(33,34). Stratification was based on variables at the
school level (including proportion female, proportion White,
Black, Asia, and Hispanic, proportion free and reduced lunch
and urbanicity) and district level (including mean family
income and education level). Thus, the fifteen schools in this
study were selected to represent the socio-demographic
characteristic of the state of Alabama. A total of 137 participants
who were recruited in Wave 1 completed the dietary survey
and provided a stool sample (online Supplementary Fig. 1).
One participant was not included in the analyses due to
insufficient sequencing depth of the faecal sample (< 5000
sequence reads), bringing the final number of participants
included in this study to 136.

Procedure

Trained project staff presented information about the study to
the students in their classrooms and distributed packets
containing information about the study and consent forms.
Signed parent consent and student assent forms were collected
at school approximately 1 week later (45 % participation rate).
All data collection activities occurred at school during a regular
school week. Trained research staff performed anthropometric
measurements of students’ height and weight using a
stadiometer and scale, respectively. Students completed a
battery of self-report measures using electronic tablets during a
non-academic class session, which included a self-report of
dietary intake. One primary caregiver of each child was sent an
online survey that included questions about child and family
socio-demographic characteristics. Children and parents were
compensated with gift cards for their time, with children
receiving additional compensation for providing a stool
sample. This study was conducted according to the guidelines
laid down in the Declaration of Helsinki, and all procedures
involving human subjects/patients were approved by the
University of Alabama at Birmingham Institutional Review
Board (IRB 300002344). Written informed consent/assent was
obtained from all subjects.

Stool sample collection. Collection of stool samples in a
non-clinical sample of adolescents is challenging, as many
individuals find the process off-putting and embarrassing. This
study utilised the wipe-based stool collection method, which
streamlines the collection process and has been validated against
other common collection procedures(35). Participants collected
a stool sample at home using a standardised wipe method
previously described(36). After a bowel movement, participants
were instructed to wipe with a provided pre-moistened wipe,
fold the wipe in half, seal it within a specimen bag and place the
sample in a conventional freezer (–20°C), which slows microbial
growth that could bias the microbiome results. Preservatives
have been shown to introduce biases towards the detection of
specific micro-organisms(37); therefore, immediate freezing after
stool collection was utilised in this study. After freezing the
sample overnight, students could choose to either hand in their
sample to the study staff at school or mail it using provided
postage paid envelope. The collected samples were transported
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on ice and stored in a –80°C freezer at the University of Alabama
at Birmingham prior to sequencing.

Microbial DNA extraction and sequencing. Stool sample
DNA was isolated with the Zymo Research Quick-DNA Fecal/
Soil Microbe Kit (catalogue # D6010). After DNA standardisation,
the V4 region of the 16S rRNA gene was amplified with the New
England Biolabs LongAmp Taq PCR kit (catalogue # E5200S)
using primers and barcodes with slight modifications from
the original Caporaso primers(38) as previously described(36).
Amplicon PCR products were resolved on agarose gels, purified
using the Qiagen QIAquick Gel Extraction Kit (catalogue #
28704) and standardised by fluorometry using the Quant-iT™
PicoGreen™ dsDNA Reagent from Thermo Fisher Scientific
(catalogue # P11495). Standardised amplicon libraries were
pooled and submitted for 2 × 250 bp paired-end sequencing on
the Illumina MiSeq System at the University of Alabama at
Birmingham Genomics Institutional Research Core. All samples
were sequenced on the same Illumina run to reduce batch
effects.

Sequence pre-processing and quality control. Quality filter-
ing, error estimation, merging of reads, dereplication, removal of
chimeras and selection of amplicon sequence variants (ASV)
were performed in the QIIME 2 platform (v2020.6.0)(39) with the
DADA2 plugin and default options (v2020.6.0)(40). To reduce
artefacts due to amplification and sequencing error, ASV that had
a count of less than three in each of five samples were filtered
from the dataset. DADA2 was used to assign taxonomy to the
ASV with the 138.1 SILVA small subunit ribosomal RNA
database(41,42) and the Ribosomal Database Project’s Training
Set 18 and 11.5 database release(43,44). ASV that were classified as
either mitochondria or chloroplasts were removed from the
dataset. The R package phangorn v2.9.0(45) was used to build a
reference-free maximum likelihood phylogenetic tree with the
General Time ReversibleþΓþ I model from a multiple align-
ment of the ASV made with DECIPHER v2.22.0(46). The resulting
ASV and taxonomy tables and phylogenetic tree were then
imported into R 4.1.2(32) using phyloseq v1.38.0 for visualisations
and statistical analyses(47,48).

Measures

Dietary intake. Traditional dietary assessment methods
are often too difficult and time-consuming to administer in a
school setting. Therefore, this study utilised the Rapid Eating
Assessment for Participants Short Version (REAP-S) that has been
designed to assess diet related to the US Dietary Guidelines(49).
The REAP-S takes the participant about 10 min to complete, is
written at a 5th-grade reading level(50) and has been validated
against 24-h dietary recalls and other measures of diet quality,
including the Healthy Eating Index-2010(49,51). The first thirteen
items of the REAP-S (provided in online Supplementary Table 1)
were utilised to evaluate how often adolescents consumed
common foods (whole grains, fruits, vegetables, dairy, low-
processed meat, processed meat, fried foods, sweets, fats/oils
and sugar-sweetened beverages) or exhibited unhealthy eating
behaviours (skipping breakfast, eating meals from a sit-down or

take-away restaurant). All items were coded on a 3-point scale
(1= rarely/never, 2= sometimes, 3= usually/often), with higher
scores indicating greater consumption of a food or a greater
frequency of dietary behaviour. To examine diet associations
with microbiota, the thirteen individual REAP-S items were
utilised. In addition, overall diet quality scores ranging from
13 to 39 were derived according to Segal-Isaccson et al.(49),
with higher scores indicating a greater diet quality. Z-scores of
diet quality were calculated and used in statistical modelling.
Internal reliability was assessed using Cronbach’s α, which
assesses how closely items correlate with each other(52). Strong
correlation (α> 0·70) between items in a dietary questionnaire
may not be required if each item is designed to assess different
aspects of the diet(53).

Socio-demographic characteristics. Parents reported their
child’s sex (0=male; 1= female) and race and ethnicity, which
was categorised as non-Hispanic White (set as the reference),
Black, Hispanic or other minority. Parents also reported annual
household income (13-point scale from 1=< $5000 per year to
13 > $90 000 per year) and their highest education level attained
(7-point scale from 1= no high school diploma to 7= graduate
or professional degree). A composite SES variable was created as
the average of standardised household income and parental
education (r= 0·51, P< 0·001). The geographic locale of the
school site was obtained from the National Center for Education
Statistics (NCES; http://nces.ed.gov/ccd/elsi/, accessed 23 June
2022) and categorised as rural (set as the reference), suburb or
city. NCES locale classifications are based on population size or
proximity to populated areas determined by the US Census
Bureau and are assigned to schools based on their reported
physical address location. School geographic locale correlates
well with the environment where children reside and complete
their daily routines. Missing data for demographic covariates
were imputed using the expectation–maximisation algorithm in
SAS 9.4.

BMI. Children were asked to remove shoes and bulky jackets or
sweaters before anthropometric measurements. Two readings
were taken for each weight and height to the nearest 0·01 kg or
0·10 cm. If the two readings differed by more than 0·20 kg or
0·50 cm, a third reading was taken. The two closest values were
then averaged. BMI was calculated using WHO References 2007
SPSS macro package to calculate age and sex-corrected zBMI
scores(54). Sex-specific BMI-for-age percentiles were calculated
based on the Centers for Disease Control and Prevention (CDC)
Children’s BMI Tool for Schools. Then, BMI-for-ageweight status
categories were assigned according to the CDC definitions for
underweight (less than the 5th percentile), healthy weight
(5th percentile to less than the 85th percentile) and overweight
or obese (equal to or greater than the 85th percentile).

Microbial α- and β-diversity. Diversity measurements are
sensitive to differences in amplicon sequencing library sizes.
Rarefying is a statistical tool that can successfully be imple-
mented for diversity analyses when applied over multiple
iterations(55). The Multiple Iterations of Rarefying for Library
Normalisation (mirlyn) R package v1.3.0 was used to rarefy
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libraries to the minimum sample size (24 341 sequences) over
1000 iterations. Then, α-diversity was estimated over the rarified
matrix for Shannon Diversity – based on the number of taxa in a
given community (richness) and their relative abundance,
Simpson Evenness – a measure of how evenly individuals are
distributed among taxa in a given community and Faith
Phylogenetic Diversity – which represents the sum of the
branch lengths of the phylogenetic tree linking all taxa in a given
community. β-diversity, or the relative compositional similarity
and differentiation among samples, was estimated with the
vegan package v2.6.2 for rarified ASV tables after applying a
Hellinger transformation(56). β-diversity was calculated for
Jaccard similarity, which is based only on the presence/absence
of taxa, and Bray–Curtis similarity, which is weighted by taxon
abundances.

Data analyses

Preliminary analyses

Preliminary analyses were conducted to examine the association
of each socio-demographic variable (sex, race and ethnicity,
geographic locale and SES) and zBMI with aspects of diet and
microbial diversity. Bivariate associations of continuous demo-
graphic variables with diet variables and microbial α-diversity
were tested using Pearson’s correlations using the cor.test
function in the base R stats package. The associations with
categorical variables were assessed with Wilcoxon rank sum
tests or Kruskal–Wallis rank sum tests followed by post-hoc
Wilcoxon rank sum tests with Benjamini–Hochberg false
discovery rate corrections. Bivariate associations between
β-diversity similarities and demographic variables were tested
using permutational analysis of variance (PERMANOVA) and
999 permutations with the ‘adonis2’ function in vegan(56).
PERMANOVA measures the percentage of variation in microbial
composition explained by the factors tested.

Main analyses

Multivariable analyses of microbial diversity. The associa-
tions between dietary variables and microbial diversity were
examined with multivariable general linearised models for
α-diversity and multivariable PERMANOVA for β-diversity that
simultaneously adjusted for zBMI, sex, race and ethnicity,
geographic locale and SES. Eta-squared (R2) values indicated
the relative explanatory value that each dietary or socio-
demographic variable had on the variance in β-diversity. The
associations of socio-demographic variables with β-diversity
were visualised with unconstrained principal coordinate
analysis of Bray–Curtis distances utilising the R packages
ggfortify v.4.14 and ggplot2 v3.3.6. The ‘envfit’ function from
the vegan package was used to fit the covariate vectors onto a
2D ordination of the first two principal coordinate components
with 999 permutations. P-values calculated from ‘envfit’ were
adjusted by the false discovery rate method for multiple
comparison.

Microbial taxon differential abundance. Differential abun-
dance testing was conducted on ASV count data with the

R package Microbiome Multivariable Associations with Linear
Models (MaAsLin2 v.1.8.0)(57). ASV were first summarised at the
genus, family and phylum taxonomic levels using the tax_glom
function in phyloseq. Then, data were scaled by the trimmed
mean of M-values method(58), which controls well for false
discovery rate with datasets that exhibit a high degree of
asymmetry and sparsity, like microbiome data in which a few
taxa are abundant while most are rare. The trimmed mean of
M-values scaling factor is calculated as the weighted mean of
log-ratios between each pair of samples, after excluding
the highest count ASV and ASV with the largest log-fold change.
The normalisation factors for each sample are the product of the
trimmed mean of M-values scaling factor and the original library
size. MaAsLin2 was implemented using negative binomial
models, which adjusted for sex, zBMI, race and ethnicity, locale
and SES with a Benjamini–Hochberg false discovery rate
correction (q= 0·15). Only taxa with non-zero values in at least
75 % of the study samples (min_prevalence= 0·75) were tested
in differential abundance models. Microbial differential abun-
dance was visualised with ggplot2 using the geom_tile()
function.

Results

Study sample

Characteristics of the 136 adolescents included in this study are
provided in Table 1. The median participant age at the time of
stool sample collection was 12 years (range, 11–13 years). The
study sample was 48 % female and had a racial and ethnic
breakdown of 47 % Black, 38 % non-Hispanic White, 9 %
Hispanic and 6 % other racial and ethnic minorities. Most
participants (53 %) were overweight or obese, while 45 %
had normal BMI and 2 % were underweight. The sample was
socio-economically heterogeneous, with a median family income
of $40 000–50 000 and median parent education being ‘some
college’, and closely mirrored the demographic composition of
the sampled area.

Diet and demographics

Ninety-three percentage (n 126) of the study sample completed
all thirteen questions on the dietary survey. The associations
between diet and socio-demographic variables are presented in
Table 2. The estimate of the internal consistency of the overall
REAP-S scale as measured by Cronbach’s α was 0·60, similar to
the reported values of other studies utilising the REAP-S(59,60) and
similar brief dietary questionnaires(53). Black adolescents had
reduced overall diet quality measured by the REAP-S survey
compared with non-Hispanic White and Hispanic adolescents
(P< 0·05). Black adolescents were also more likely to skip
breakfast compared with White adolescents (P< 0·05). Higher
SESwas linked to greater consumption of meat and fats (r= 0·20,
P= 0·02 and r= 0·17, P= 0·048, respectively), lower consump-
tion of sugary drinks (r= 0·17, P= 0·048) and lower frequency of
skipping breakfast (r= –0·22, P= 0·01). Children in suburban
locales consumed more meat compared with those in city and
rural locales (P< 0·05).
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Microbiome sequencing

Regardingmicrobiota, 96·7 % (∼6·57million) of sequences reads
were retained in the dataset after filtering rare taxa and those
classified as mitochondria or chloroplasts. Rarefying to the
minimum sample size of 24, 341 reads sufficiently controlled for
variation in sequence depth, which was not associated with α- or
β-diversity (P> 0·05 in all cases; online Supplementary Tables 2
and 5). The five most abundant phyla in decreasing order were
Bacillota (formally Firmicutes; mean relative abundance: 0·57
(SD 0·15)), Bacteroidota (0·32 (SD 0·16)), Actinomycetota
(formally Actinobacteriota; 0·05 (SD 0·07)), Pseudomonadota
(formally Proteobacteria; 0·03 (SD 0·09)) and Verrucomicrobiota
(0·02 (SD 0·04)) (online Supplementary Fig. 2).

Microbial β-diversity

Similarity in gut microbial composition, or β-diversity, was
evaluated using Jaccard distances, based on taxon presence/
absence, and Bray–Curtis distances, based on weighting
taxon abundance. The percentage of variation in β-diversity
explained by each demographic variable was examined with
PERMANOVA (online Supplementary Table 2). Multivariable
PERMANOVA revealed that adolescent race and ethnicity, SES
and geographic locale were associated with both Bray–Curtis
and Jaccard β-diversity and together explained around 7 % of the
total variation inmicrobial composition. Sex explained 1 % of the
variation in Jaccard similarity, while zBMI was not statistically
associated with either β-diversity metric. Figure 1 presents the

unconstrained principal coordinate analysis of Bray–Curtis
similarity fitted with demographic variable vectors. None of
the thirteen dietary variables was associated with β-diversity
in multivariable PERMANOVA after adjusting for SES, race
and ethnicity, geographic locale, sex and zBMI (online
Supplementary Table 3).

Microbial α-diversity

Bivariate associations between demographic variables and
α-diversity indices are displayed in online Supplementary Table 4.
In summary, zBMI was negatively correlated with Simpson
Evenness (r= –0·20, P= 0·02) and SES was negatively correlated
with Faith Phylogenetic Diversity (r= –0·19, P= 0·03). The
associations between diet variables and α-Diversity are shown
in online Supplementary Table 5. In summary, general linearised
models adjusting for SES, race and ethnicity, locale, sex and zBMI
showed that greater consumption of processed meat was
associated with lower Shannon Diversity (β= –0·19, SE= 0·08,
P= 0·03) and Inverse Simpson Evenness (β = –0·23, SE= 2·05,
P= 0·01; Fig. 2). Greater fruit consumption was associated with
greater Faith Phylogenetic Diversity (β = 0·17, SE= 1·03,
P= 0·045).

Microbial taxon differential abundance

The statistically significant results from Microbiome Multivariate
Association with Linear Models (MaAsLin2) examining the
associations between dietary and socio-demographic variables
and taxon abundance are shown at the genus level in Fig. 3
and at the family and phylum levels in online Supplementary
Fig. 3. Greater consumption of processed meat was associated
with lower abundance of the genus Roseburia, while more
consumption of fried foods was associated with lower
Anaerostipes, and greater intake of sodas/sugary drinks was
associated with lower Fusicatenibacter. Frequently skipping
breakfast was associated with greater abundance of the genus
Akkermansia (as well as its family, Akkermansiaceae, and
phylum, Verrucomicrobiota) and reduced abundance of the
genera Anaerostipes, Fusicatenibacter and Bifidobacterium.
Greater zBMI was statistically significantly associated with two
genera within the phylum Bacteroidota, albeit in opposite
directions, positive for Porphyromonas and negative for
Alistipes. Full results for all MaAsLin2 results are presented in
online Supplementary Table 6.

Discussion

Despite the crucial importance of the gut microbiota for the
development and regulation of the nervous, immune and
metabolic systems, surprisingly little is known about how dietary
intake and other environmental factors are associated with the
gut microbiota composition during adolescence. This study
addressed these gaps by examining relationships between diet
and intake of major food groups with the gut microbiota of
136 adolescents (11–13 years of age). The main findings showed
that socio-demographic characteristics (race and ethnicity, SES
and geographic locale) explained a relatively large degree of
microbial variation. Additionally, even after adjusting for BMI

Table 1. Characteristics of the Adolescent Diet Study cohort
(Numbers and percentages; mean values and standard deviations)

n 136

Characteristics n %

Age, years
Mean 12·1
Range 11–13

zBMI
Mean 1·2
SD 1·5
Underweight (<5th percentile) 3 2
Normal BMI (5th–85th percentile) 61 45
Overweight or obese (≥85th percentile) 72 53

Sex, female 65 48
Race and ethnicity
Non-Hispanic White 52 38
Black 64 47
Hispanic 12 9
Other racial and ethnic minorities 8 6

School locale
Rural 18 13
Suburban 86 63
City 32 24

Parent education
<12th grade, no diploma 14 12
High school graduate/GED 20 18
Some college no degree 27 24
Technical school/Associate degree 19 17
Bachelor’s degree 20 18
Graduate or professional degree 4 4
Missing 8 7

Household income per year, Median $40 000–50 000

zBMI, standardised BMI; GED, General Education Diploma.
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Table 2. Dietary associations with demographics
(Numbers; mean values and standard deviations)

Sex Race and ethnicity Locale SES zBMI

Diet variable* n

Male‡ Female‡

P§

Non-Hispanic
White‡ Black‡ Hispanic‡

Other
minority‡

P||

Rural‡ Suburb‡ City‡

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD P|| r P¶ r P¶

Diet quality
Z-score

134 1·8 0·3 1·8 0·3 0·68 1·8 0·3A 1·7 0·3B 2·0 0·3A 1·8 0·4AB 0·006 1·7 0·3 1·8 0·3 1·7 0·2 0·60 –0·04 0·61 0·05 0·54

Skipping breakfast 134 1·7 0·7 1·9 0·8 0·051 1·5 0·7A 2·0 0·7B 1·8 0·8AB 2·0 0·8AB <0·001 1·7 0·9 1·8 0·7 1·9 0·7 0·59 –0·20 0·02 0·07 0·40
Eating out 133 1·8 0·6 1·7 0·7 0·44 1·7 0·5 1·9 0·8 1·5 0·7 1·4 0·5 0·08 1·7 0·5 1·7 0·7 2·0 0·7 0·15 –0·03 0·71 –0·20 0·02
Whole grains 134 1·8 0·7 2·0 0·6 0·03 1·9 0·7 1·9 0·6 2·0 0·6 1·9 0·8 0·96 2·0 0·5 2·0 0·7 1·8 0·7 0·47 0·15 0·09 0·00 0·98
Fruits 134 1·9 0·8 2·0 0·7 0·49 1·8 0·7 2·0 0·7 1·8 0·8 1·9 0·6 0·32 2·2 0·9 1·8 0·7 2·0 0·6 0·10 –0·14 0·11 0·09 0·28
Vegetables 135 2·4 0·7 2·5 0·6 0·24 2·4 0·8 2·4 0·6 2·6 0·7 2·6 0·5 0·72 2·4 0·7 2·4 0·7 2·5 0·6 1·0 –0·06 0·46 0·06 0·46
Dairy/cheese 132 1·9 0·8 1·9 0·7 0·61 1·9A 0·8 2·0A 0·7 1·8A 0·7 1·3B 0·5 0·04 2·1 0·8 1·8 0·7 2·0 0·8 0·34 0·09 0·28 –0·03 0·73
Meat 134 2·1 0·6 2·1 0·7 0·73 2·2 0·6 2·1 0·7 1·8 0·6 2·0 0·8 0·42 1·8A 0·5 2·2B 0·6 1·9A 0·7 0·002 0·20 0·02 0·01 0·91
Processed meats 133 2·1 0·6 2·0 0·7 0·37 2·0 0·6 2·1 0·7 1·6 0·5 2·2 0·7 0·07 2·1 0·7 2·0 0·6 2·1 0·7 0·40 0·07 0·40 –0·05 0·55
Fried foods 134 2·1 0·7 2·0 0·8 0·66 2·0 0·7 2·1 0·8 1·6 0·5 1·9 0·8 0·10 2·1 0·8 2·0 0·7 2·1 0·7 0·51 <0·01 0·96 –0·08 0·35
Fatty snacks

(chips)
133 2·3 0·6 2·1 0·7 0·30 2·3 0·6 2·2 0·7 1·9 0·5 1·9 0·8 0·19 2·3 0·6 2·2 0·7 2·1 0·6 0·34 0·11 0·21 –0·04 0·64

Fats (oil, butter) 132 2·0 0·8 2·0 0·8 0·81 1·9 0·8 2·1 0·8 1·7 0·9 2·4 0·5 0·12 2·1 0·9 2·0 0·8 2·2 0·7 0·52 0·17 0·049 –0·02 0·79
Fatty sweet

products
133 2·0 0·7 1·9 0·7 0·50 1·9 0·7 2·1 0·7 1·7 0·7 1·8 0·7 0·23 1·9 0·5 2·0 0·7 2·0 0·8 0·90 0·04 0·67 –0·13 0·13

Sodas/sugary
drinks

132 2·0 0·7 2·0 0·8 0·96 1·8 0·7 2·1 0·7 1·8 0·8 2·4 1·0 0·03† 1·9 0·7 1·9 0·8 2·1 0·7 0·35 –0·22 0·01 0·01 0·88

SES, socio-economic status; zBMI, standardised BMI.
* Diet variables were scored on a 3-point scale as 1= rarely/never, 2= sometimes and 3= usually/often consume a food type or exhibit an eating behaviour. Supercript letters indicate statistical groupings based on Wilcoxon rank sum and
Kruskal–Wallis rank sum tests at α = 0.05.

† No significant pair-wise tests.
‡Mean (SD).
§ Wilcoxon rank sum tests.
|| Kruskal–Wallis rank sum tests.
¶ Pearson correlations.
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and socio-demographics, greater consumption of processed
meat was related to lower microbial α-diversity, a hallmark of
microbial dysbiosis, and greater intake of processed foods
(sugary drinks and sodas, fried and fatty snacks, processed
meats) and skipping breakfast were associated with reduced
abundance of potentially beneficial taxa known to pro-
duce SCFA.

Processed foods and SCFA-producing taxa

Greater consumption of processed meats was significantly
associated with lower abundances of the genus Roseburia,
which play an important role in the human gut by producing
SCFA, such as acetate, propionate and butyrate(61). Likewise,
greater intake of fried foods and sodas/sugary drinks was
associated with a reduction of the SCFA-producing bacteria
Anaerostipes and Fusicatenibacter, respectively. Results indicate
that greater consumption of processed foods may be associated
with a reduced abundance of potentially beneficial taxa involved
SCFA production.

The finding that intake of processed meat, fried foods and
sodas/sugary drinks reduced the abundance of Roseburia,
Fusicatenibacter and Anaerostipes, and other SCFA-producing
taxa is particularly noteworthy given that these taxa have been
identified as key players in gut homoeostasis through the
regulation of immune cells, cytokine release andmaintenance of
the gut barrier function(61,62). It is currently understood that
childhood and adolescence represent a critical time when
Roseburia and other SCFA-producing expand within the gut
microbial community(4). As evidence, a longitudinal study
tracking gut microbial colonisation across the first years of life
found that Roseburia, Faecalibacterium and other SCFA-
producing taxa within the Family Lachnospiraceae were
prevalent among children but had not yet reached adult levels
of abundance by 5 years of age(11). A greater intake of processed
foods during adolescence may limit the degree or slow the
timeline of expansion for key SCFA-producing taxa andwarrants
further investigation in longitudinal studies. Numerous studies
have shown that food additives, including emulsifiers, non-
energetic artificial sweeteners and preservatives, impact gut

Fig. 1. β-diversity or the inter-individual variation in gut microbiota composition represented by unconstrained principal coordinate analysis (PCoA) of the Bray–Curtis
distance. Global structure (a) of gut microbiota composition and grouping patterns based on (b) race and ethnicity with ‘non-Hispanic White’ as the reference,
(c) socio-economic status (SES) and (d) geographic locale with ‘rural’ as the reference are shown. Each point represents an individual from the study sample (n 136 for all
panels) and individuals whose points are closer together havemore similar gut microbiota composition. Vector arrows indicate the direction of gradient for covariates and
were obtained via the vegan R package envfit function and are scaled by the squared correlation, R2, from 999 permutations fitting each value of the covariate to the 2D
ordination space. Percentages on the axes represent the proportion of variation explained by the two first principal coordinates (PC) of the PCoA. Significance of
permutation tests after applying a false discovery rate correction is denoted as ‘**’ for q< 0·01 and ‘*’ for q< 0·05.
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microbial diversity and composition(63). Moreover, dietary
emulsifiers can directly alter the expression of bacterial virulence
genes and increase pathogenic interactions between the gut
microbiota and the host(64). Thus, a diet rich in processed foods
may alter the landscape of microbial competition or the gut
environment to either promote or inhibit the growth of certain
bacterial types.

Processed meat consumption

Greater processed meat consumption (e.g. hotdogs, bologna,
salami, bacon) was also associated with an increased abundance
of Pseudomonadota (formally Proteobacteria) independent of
other study variables. Elevated Pseudomonadota abundance
is considered a potential diagnostic signature of microbial
dysbiosis and risk of non-communicable diseases(65,66). Among
the five major bacterial phyla in the gut, Pseudomonadota is the
most unstable over time(67) and has been considered a ‘first-
responder’ to dietary and environmental changes(65). A greater
abundance of Pseudomonadota has been linked to metabolic
disorder, inflammation and increased levels of the proinflam-
matory IL-17(65,66). Multivariable models also revealed reduced

diversity with increased processed meat intake. Interestingly,
α-diversity was not related to consumption of low-processed red
meat and poultry. These results are consistent with those from
older adults, where consumption of high-processed meat was
negatively associated with α-diversity while moderate con-
sumption of low-processed red meat was positively associated
with α-diversity(68). Together, these findings suggest that the
processing and preparation of animal protein, rather than its
intake alone, may be an important mediator of gut microbial
composition and diversity. Notably, higher intake of processed
meat, but not total animal protein, has been associated with
greater risk factors for cardiometabolic disease(69). These results
provide rationale for future study of the links between processed
meat consumption, gut microbiota and markers of health during
adolescence.

Skipping breakfast

In this study, the frequency of breakfast consumption was not
linked with microbial diversity in adolescents, contrasting with
prior findings that more frequent breakfast consumption was
associated with greater gut microbial diversity in adults(70).
However, this study found that adolescents who frequently
skipped breakfast had lower abundances of the aforementioned
SCFA-producers Anaerostipes and Fusicatenibacter as well as
Bifidobacterium. Members of the genus Bifidobacterium are
among the first microbes to colonise the gastrointestinal tract and
are believed to exert positive health benefits(71). Bifidobacteria
produce lactate and acetate which other microbial taxa convert
to butyrate and propionate. These microbial derived SCFA are
believed to impact neural networks in the developing adolescent
brain that are critical for normal cognitive, emotional and
social functioning and development(72). Interestingly, skipping
breakfast was also associated with an increased abundance of
the genus Akkermansia. Akkermansia has been reported as
enriched in healthy individuals and is inversely associated with
multiple diseases states including obesity, the metabolic
syndrome and inflammatory bowel disease(73). Further research
is needed to understand how skipping breakfast may positively
or negatively affect the gut microbiota.

Socio-demographics and microbial composition
(β-diversity)

An important strength of this study was the inclusion of
participants of different races and ethnicities, SES and geographic
locales. Previous investigations of diet associations with the gut
microbiota during childhood have been conducted in samples
with a relatively low degree of ethnic and socio-economic
heterogeneity(74–76). In this study, race and ethnicity, SES and
geographic locale were each independently associated with
adolescent gut microbial composition or β-diversity, while BMI
was not. None of the diet variables examined in this study was
independently associated with β-diversity. These findings are
similar to a study, based on theAmericanGut Project,which found
that posteriori eating patterns were more strongly associated with
β-diversity than the intake of individual diet components(77).

Long–term eating patterns may arise from interactions among
SES, cultural practices and the local food environment within

Fig. 2. Processed meat consumption is negatively correlated with two metrics
of microbial α-diversity, (a) Shannon Diversity (n 133, β = –0·19, SE= 0·08,
P= 0·03) and (b) Inverse Simpson Evenness (n 133, β = –0·23, SE= 2·05,
P= 0·01). The REAP-S asked how often processed meat (e.g. bologna, salami,
hotdogs, sausage) was consumed instead of low-processed meats (e.g. fish,
poultry, red meat) in an average week and was scored on a 3-point scale
(1 = rarely/never, 2= sometimes, 3= usually/often). Partial residual plots are
shown for general linearised models adjusting for the effects of sex (female/
male), race and ethnicity (non-Hispanic White, Black, Hispanic, other minority),
standardised BMI (zBMI), socio-economic status (SES) and geographic locale
(rural, suburb, city). Error bars depict the 95% CI of the predicted estimates.
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which adolescents reside and attend school(78). Food environ-
ment dimensions include availability, or the adequacy of the
supply of healthy food, accessibility, or the location of the food
supply and ease of getting to that location, and accommodation,
how well local food sources accept and adapt to local residents’
needs(79). Both city and rural food environments can present
barriers to access large supermarkets that typically have greater
diversity of fresh foods(80). Barriers to healthy eating in these
areas include travel distance and transportation logistics, as well
as the cost of healthy food items(81,82). In this cohort, adolescents
from less affluent families consumed more processed meat and
more sodas/sugary drinks. In terms of geography, adolescents in
rural and city locales consumedmore processedmeat compared
with adolescents in the suburbs. Further research is needed to
understand how the upstream effects of SES, culture and the
local food environment influence dietary intakes of adolescents
with downstream effects on the gut microbiota composition.

Study limitations

This study focused on dietary habits during adolescence and did
not capture information about early life events, such as duration

of breast-feeding and gestational age, which are known to have
lasting effects on the developing gut microbiota through
childhood and early adolescence(11,75,76). Though the age range
of adolescents included in this study was narrow, pubertal status
may have contributed to the inter-individual variability in
microbial composition and future studies are needed to examine
this in greater detail. A large number of study participants were
categorised as overweight or obese, and although the diet–
microbiota associations reported here may be reflective of
patterns in the Deep South region of the USA, they may not be
reflective of adolescent cohorts with lower proportions of
obesity.

This study emphasised biological replicates and could not
assess the degree of technical variation in the microbiome data
through the use of technical replicates(37). It is also possible that
differences in sample transportation time to the University of
Alabama at Birmingham campus are responsible for some
variation in sequencing data. The use of 16s rRNA gene
sequencing in this study provided a limited window of
information andmicrobial function was inferred from taxonomy.
Future studies would benefit from metagenomic sequencing to
directly assess microbial function.

Fig. 3. Associations between socio-demographic variables (n 136 participants) and (b) dietary variables (n 132–135 participants) and the abundance of bacterial taxa at
the genus level using Microbiome Multivariable Associations with Linear Models (MaAsLin2, package on R). MaAsLin2 multi-adjusted for sex (male= reference), race
and ethnicity (non-Hispanic White= reference group), standardised BMI (zBMI), socio-economic status (SES) and geographic locale (rural = reference group). Genera
are displayed on the left y-axis and are colour-coded by the taxonomic family and phylum they belong to. The MaAsLin2 coefficient (effect size) is shown only for
significant statistical associations after Benjamini–Hochberg false discovery rate correction (q = 0·15). The corrected significance is denoted as ‘****’ for q< 0·01, ‘***’ for
q< 0·05, ‘**’ for q< 0·10 and ‘*’ for q< 0·15.
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Additionally, there were benefits and limitations associated
with using the REAP-S self-administered dietary questionnaire in
this study(49). The REAP-S provided sufficient information on
multiple important food groups and could be easily completed
within the school setting, thus supporting feasibility. However,
it did not capture the intake of all nutrients and dietary
behaviours that may be related to gut microbiota composition.
Future studies should utilise 24-h diet recalls to derive detailed
information on macro and micro-nutrients, as well as timing of
food intake. Longitudinal studies, utilising multiple diet recalls
and gut microbiota assessments over time, will provide
additional insights into how dietary intakes affect the developing
adolescent gut microbiome.

Conclusion

Adolescence is a period when individuals gain more autonomy
over their dietary intake and food choices, setting the stage for
future health(17). A main finding from this study is that greater
intake of processed foods was associated with a decreased
abundance of key SCFA-producing microbial taxa, and the
consumption of processed meats, in particular, was associated
with a significantly lower microbial diversity. These results
provide new insight into diet–microbiota associations during
adolescence, a time of transformative growth when dietary
intake affects the maturation of multiple physiological systems.
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