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Abstract

For any branched double covering of compact Riemann surfaces, we consider the associated character varieties that
are unitary in the global sense, which we call GL,;, > < o>-character varieties. We restrict the monodromies around
the branch points to generic semi-simple conjugacy classes contained in GL,, o and compute the E-polynomials of
these character varieties using the character table of GL,,(g)> < o~ >. The result is expressed as the inner product
of certain symmetric functions associated to the wreath product (Z/2Z)N > Gy . We are then led to a conjectural
formula for the mixed Hodge polynomial, which involves (modified) Macdonald polynomials and wreath Macdonald

polynomials.
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1. Introduction
1.1. Mixed Hodge polynomial

The E-polynomial of a complex algebraic variety encodes a part of the dimensional information of its
mixed Hodge structure. Mirror partners are expected to have the same E-polynomial, with the caveat
that one must suitably modify its definition to include the contribution of singularities. Therefore, it is
an important invariant in the study of mirror symmetry. See [HT03].

According to Deligne ([Del71], [Del74]), to any possibly singular and not necessarily projective
complex algebraic variety X, we can associate a mixed Hodge structure on each of its rational cohomology
groups H’ (X, Q) in a functorial manner. The mixed Hodge structure consists of the following data:
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2 C. Shu

(1) a weight filtration W, on H/ (X, Q):
{0} =W_  cWyc-- c Wy =H(X,Q);
(2) aHodge filtration F* on H/ (X, C):
H/(X,C)=F°> F!'5... 5 F" = {0}.

On each complexified graded space (W;/W;_;) ®gC, the Hodge filtration induces a pure Hodge structure
of weight i. Similarly, one can also define a mixed Hodge structure on each compactly supported
cohomology group H. (X, Q).

The generating series of the dimensions of the graded spaces of the mixed Hodge structure on the
compactly supported cohomology groups is called the mixed Hodge polynomial. More concretely, for
any nonnegative integers p, g and j, put

2 (X) = dime Grly” Gr):, HX (X, C),
where Ger' = W;/W;_; and Gr’i7 ) Ger' =F; Ger' [Fj4 Ger‘ for any i and j. Then the mixed Hodge
polynomial of X is defined by

H.(X;x,y,t) := Z hf'q’j(X)xpyqtj,
P-q.J

and the E-polynomial of X is defined by
E(X;x,y) =H:.(X;x,y,-1).

According to a theorem of Katz [HRV08], in many cases, the E-polynomial of X can be computed
by counting points over finite fields. This means the following. Suppose that there is aring R ¢ C and a
scheme X over R such that the base change of X to C is isomorphic to X. Then for any homomorphism
¢ : R — F, to a finite field, we consider the base change of X via ¢, which is a variety X over F,.
Suppose that there is a polynomial Px (t) € Z[t] such that |X4(F,;)| = Px(g), which is independent
of ¢. Then we have

E(X;x,y) = Px(xy).

It happens that character varieties satisfy these assumptions, and the first application of this theorem of
Katz is [HRVO0S].

1.2. The conjecture of Hausel-Letellier-Rodriguez-Villegas

Let X be a Riemann surface of genus g with k > 0 punctures. Let n € Z.o and let C = (Cj)1<j<k be a
tuple of semi-simple conjugacy classes of GL,,. In [HLRV 11], the authors studied the character variety

k g k
Me = {(A,»,Bi),(x,),- eGLE x| | ¢ 1] 14 B ] | %) = 1}//GL,,,
- i=1 j=1

Jj=1 i

where the bracket denotes the commutator and the quotient is with respect to conjugation. Their work
led to a conjectural formula for the mixed Hodge polynomial H.(Mc¢;x, y,t). We recall their conjec-
tural formula below, which involves Macdonald polynomials. In this article, we will call Macdonald
polynomials what are usually called modified Macdonald polynomials in the literature, since only this
version of Macdonald polynomial appears.
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Denote by P the set of all partitions, including the empty one. For any A € P, denote by H,(z; z, w)
the Macdonald polynomial. It lives in the ring Sym[z] of symmetric functions over the field Q(z, w) of
rational functions in z and w. This ring is equipped with an inner product (—, —), called the Hall inner
product. It can be deformed into another inner product (—, —), .. Denote by

Na(z,w) = (Ha(z; z,w), HA(Z; 2, W) )z w

the self-pairing of a Macdonald polynomial for the deformed inner product. We will also need a defor-
mation of it: Ny(u, z, w), with Ny (1, z, w) = N(z,w). It is defined by an explicit formula (See §8.1.)

The core of the conjecture of Hausel-Letellier-Rodriguez-Villegas is a mysterious generating series,
the shape of which suggests a topological field theory behind. For any g > 0 and k > 0, define

Na(zw, 22, w28 1 - 2 2
QuLRV gk (2, W) = ,12 TN D) DH/I(Zj;Z W), (1.2.1)
epP Jj=1

where {z1, ..., z;} are independent variables. We may omit g and k from the notation if their values are

clear from the context. For each 1 < j < k, let u; be the partition of n that encodes the multiplicities of

the eigenvalues of C;. Write g = (u1, ..., tx). Define a rational function H, (z, w) by taking the Hall
inner product

k
H (2.w) = (22 = 1)(1 = w))(Log Quzry (zow). | [y - (122)

j=1
where hy,; is the complete symmetric function and Log is the plethystic Log operator as defined in
[HRVO8].

Let d,, be the dimension of M, which only depends on u, g and .

Conjecture 1.1 [HLRV11]. Suppose that C is generic in the sense of [HLRV11, Definition 2.1.1]. Then
the following statements are true.

(i) The rational function H,,(z,w) is a polynomial. It has degree d,, in each variable and H,,(-z, w)
has nonnegative integer coefficients.
(ii) The mixed Hodge polynomial H.(Mc;x, y,t) is a polynomial in q := xy and t.
(iii) The mixed Hodge polynomial is given by

Ho(Meiqu1) = (y@) ™ H, (1. %»

In particular, it only depends on p, and not on the generic eigenvalues of C.

1.3. Around the mixed Hodge polynomial

The case where k = 1 and C| is central was studied in [HRVO08]. Since the character variety M can
be defined over a subring of C that is of finite type over Z, it admits base changes to finite fields. As
mentioned above, a theorem of Katz reduces the computation of the E-polynomial to counting points
over finite fields. The computation is implemented using the character table of GL,(g). The general
case of arbitrary k > 0 was studied in [HLRV 11]. The resulting E-polynomials led to the conjecture
that we have just recalled.

In [HRVO08], a symmetry in the conjectural mixed Hodge polynomial was observed, which is called
the curious Poincaré duality. Hausel and Rodriguez-Villegas further conjectured that this symmetry can
be upgraded to a symmetry in the mixed Hodge structure, which they call the curious Hard Lefschetz.

Then a remarkable observation was made by de Cataldo, Hausel and Migliorini, that the curious Hard
Lefschetz for character varieties resembles the relative Hard Lefschetz for Hitchin fibrations. This led to
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the P=W conjecture [d{CHM 2], claiming that the perverse filtration on the cohomology of Dolbeault
moduli space coincides with the weight filtration on the cohomology of character variety under the
non-abelian Hodge correspondence. This conjecture has recently been settled by Maulik-Shen [MS22]
and Hausel-Mellit-Minets-Schiffmann [HMMS22] independently.

The assertion in part (i) of Conjecture 1.1 concerning the polynomial property of H,(z, w) has
been proved by Mellit in [Mell8]. Part (ii) of Conjecture 1.1 has been proved by Mellit in [Mel19].
The specialisation of part (iii) to Poincaré polynomials has been proved by Mellit and Schiffmann by
counting Higgs bundles over finite fields. See [Mel20b], [Mel20a] and [Sch16].

The goal of this article is to study the mixed Hodge polynomial of a new family of character varieties.

1.4. GL, <o >-character Varieties

We study character varieties that are unitary in the global sense. This is what we call GL,, < < o>-
character varieties. We will avoid calling them unitary character varieties since in the community of
character variety, they often refer to character varieties with structure group U, (R).

Let o be an order 2 exterior automorphism of GL,. We will denote by GL,, < o > the semi-direct
product GL, = < o >. Let p’ : ¥’ — ¥’ be a double covering of compact Riemann surfaces that is
branched at 2k-points, with k > 0. Let p : 3 — ¥ be the restriction of p’ to its unbranched part, so that
the punctures of % are exactly the branch points in X’. Denote by g the genus of . Let C = (C;)1<j <2k
be a tuple of semi-simple conjugacy classes contained in GL,, 0. Our GL,, < o->-character variety is
defined by

2k g 2k
Che(2) := {(Ai, Bo(Xp); e GLEx [ [ ¢ 1] [1anBA] | %, = 1}//GLn :

j=1 i=1 Jj=1

This is the moduli space of the homomorphisms p that fit into the following commutative diagram:

m(2) —) GL,<0o>

N A

Gal($/3)

where Gal(£/X) = Z/2Z is the group of covering transformations, ¢ is the quotient by r; (%), and ¢»
is the quotient by the identity component. Of course, the monodromy of p at the punctures must lie in
the given conjugacy classes.

The character variety Ch¢ (X), via the non-abelian Hodge theory,' corresponds to the moduli space of
(parabolic) unitary Higgs bundles — that is, torsors under the unitary group scheme over X equipped with
a Higgs field. Torsors under the unitary group scheme can alternatively be described as vector bundles
& on the the covering space < equipped with an isomorphism £ = t*£V, where £ is the dual vector
bundle and 7 is the nontrivial covering transformation. Recent interests in this kind of moduli spaces
grew out its connection to representation theory (e.g., the work of Laumon and Ngd [LNOS] on the
fundamental lemma, where they work with étale coverings of curves). We insist on branched coverings.
As we will see, the most interesting phenomenon (i.e., insertion of wreath Macdonald polynomial)
arises from the branch points.

This character variety also appears as a special case of the twisted character varieties studied by
Boalch and Yamakawa [BY 15].

INon-abelian Hodge correspondence should hold in the generality of Boalch-Yamakawa’s twisted wild character varieties
[BY 15]. However, it seems that this has not been written down in the literature.
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1.5. Wreath Macdonald polynomials

In [Hai03], Haiman conjectured the existence of a family of symmetric functions that are called wreath
Macdonald polynomials. Their symmetry is the wreath product (Z/rZ)" < S,,, with r > 0, generalising
the symmetric group &, for Macdonald polynomials. The existence and Schur-positivity of these
symmetric functions were proved by Bezrukavnikov and Finkelberg in [BF14]. Let x = (x(¥,x(1)) be
two independent sets of infinitely many variables and write

Sym[x?, x1V] = Sym[x?] ® Sym[x"],

with coefficients in the ring Q(z, w) of rational functions. In this article, r = 2, and the wreath Macdonald
polynomials live in Sym[x(?, x()]. Below, we explain some essence of wreath Macdonald polynomials
and introduce some notations.

A 2-core is a partition of the form (d,d — 1,...,1,0) for some d € Z5(. A 2-partition is simply
an element of P> = P x P. Any partition determines a 2-core, and a 2-partition which is called its
2-quotient, and these data determine the original partition. For any @ = («©,a(V) € P2, its size is
defined to be |@ @] + |aV]. If 2. and Ay are the 2-core and 2-quotient of A, respectively, then we have
|| = |Ac| +2|44]. Fixing a 2-core of size m and an integer n > m, we have a bijection

{Partitions of size n with the given 2-core} <= {2-Partitions of size (n — m)/2}.

This bijection induces from the set of partitions an order on the set of 2-partitions. Wreath Macdonald
polynomials are uniquely determined by two triangularity conditions and one normalisation condition.
The order used in the triangularity conditions is the one induced from partitions. Different 2-cores may
induce different orders on P2, and so define different wreath Macdonald polynomials.

In this article, only the 2-cores (0) and (1) appear. For any @ € P2, we will denote by {a} (resp.
{a}) the partition which has @ as its 2-quotient, and has (0) (resp. (1)) as its 2-core. With a fixed
2-core, we will denote by H, (x; z, w) the wreath Macdonald polynomial associated to @ € P?. We will
denote by

N(I(Z? W) = <ﬁﬂr(X; W), [:IU(X; 25 W))z,w

the self-pairing of wreath Macdonald polynomials for the deformed inner product. We will also need a
deformed version Ny (u, z, w), with N (1,2, w) = Ng(z, w). (See §8.2.2.)

1.6. From character varieties to wreath Macdonald polynomials

Let g be a prime power. Macdonald polynomials appear in the conjectural formula for the mixed Hodge
polynomials of GL,,-character varieties. The first step towards the mixed Hodge polynomial is to compute
the E-polynomial by counting points over finite fields. In counting points, the representation theory
of GL,(g) provides the necessary combinatorial context in which the connection to the Macdonald
polynomials can be observed. Each unipotent character of GL,,(g) is a linear combination of Deligne-
Lusztig characters, and the coefficients are given by an irreducible character of the symmetric group
S,,, which is the Weyl group of GL,,. These Weyl group characters parametrise unipotent characters
of GL,,(g). The computation of a Deligne-Lusztig character is reduced to the Green functions, and the
Green functions are the bridge to symmetric functions. In our problem, we use the irreducible characters
of GL,(¢) < o >, which will be described in terms of Deligne-Lusztig characters of nonconnected
groups. The bridge to symmetric functions is again provided by Green functions, using Shoji’s results.
In [ShoO1], Shoji gives a description of Green functions, or rather, Kostka polynomials, associated to
symplectic groups and orthogonal groups, in terms of symmetric functions in Sym[x(?, x(V].

Regard GL,, as an algebraic group over F,, equipped with the Frobenius endomorphism F that sends
each entry of a matrix to its g-th power. Then the finite group GL,(¢) consists of the fixed points of F.
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Let 77 be the maximal torus consisting of diagonal matrices and let W = &, be the Weyl group of GL,,
defined by 7;. The automorphism o induces an automorphism of W. (See §3 for the precise definition
of 0.) Denote by W the fixed points of o. In fact, we have

W = Wy = (Z/2Z)N <Gy

with N = [n/2]. For each w € W7, we have the generalised Deligne-Lusztig character Ry, 1, as
defined in [DM94], which is a function on GL,,(g)o invariant under conjugation by GL,,(g).

The clue that eventually leads to wreath Macdonald polynomials is the following theorem of Digne
and Michel, which was a conjecture of Malle in [Mal93].

Theorem 1.2 [DM94, Théoreme 5.2]. Let A be a partition of n and denote by m the size of the 2-core
of A. Suppose that m < 1. Then, the extension® to GL,(q)o of the unipotent character of GL, (q)
corresponding to A is given by

=W > e(w)Rr, o1

wewo

where ¢ is the irreducible character of W7 corresponding to the 2-quotient of A.

This theorem was then extended to quadratic-unipotent characters by Waldspurger in [Wal06]. In
fact, Waldspurger’s theorem imposes no restriction on the 2-cores. It says if the 2-core is larger than (1),
then the above expression would be a linear combination of inductions of cuspidal functions on Levi
subgroups that are not tori.®> Then a theorem in [DM15] shows that they must vanish on semi-simple
conjugacy classes. Therefore, only the partitions with 2-core (0) or (1) have nontrivial contributions to
the point counting of character varieties.

The full character table of GL,(g) < o > has been completely determined in [Shu22], using the
main theorem of [Wal06]. Unlike GL,,(g), the irreducible characters of GL, (g) < o > may not be a
linear combination of Deligne-Lusztig characters. Because of this, the determination of the irreducible
characters is much more difficult than GL,,(¢) and uses character sheaves on nonconnected groups
developed by Lusztig. The results of [Shu22] will eventually allow us to compute the E-polynomial of
GL,, < o->-character varieties.

1.7. The generating series

The main discovery of this article is the following infinite series that are built out of Macdonald
polynomials, wreath Macdonald polynomials and their self-pairings. They are expected to dominate the
mixed Hodge polynomials of GL,, < o->-character varieties.

For e € {0, 1}, define

Ny, (zw, 22, wh)gth=t 2k
RPN NEREIN A (xj: 2 0),
anPZ No (22, w?)Ng (2w, 22, wh)k-! H J
N (zw, 72 w2)28+k 1 (O)
Q. W) = H X o, w
(Z ) (;3 N(z(Z ,W2) l_[ ( Z )

Beware that in Q,, the wreath Macdonald polynomials and the (deformed) self-pairings are subordinate

to the 2-core (e). In Q,, the symmetric functions involved are Macdonald polynomials in the variable
x4 x( = x(O 1 x(1),

Remark 1.3. The series p and Q; have their origin in the quadratic-unipotent characters of GL,,(g).

2That is, a character of GL,, (¢) < o~ > that restricts to the given character.
3Here we really mean ‘Levi’ and ‘tori’ in the twisted component GL,, 0.
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Remark 1.4. Note that
Q.(z,w) = Qurrv, 3,21 (2, W),

where § = 2g + k — 1 is the genus of .

Remark 1.5. If there are further &’ unbranched punctures, then each summand of the above series
should be multiplied by

k’ k’ k'
HH{H}O(ZJ;ZZ,WZ), l_[H{a'}l(zj;ZZ’WZ)’ l_[Ha(Zj;Zz,Wz)z,
J=1 J=1 J=1

respectively, where each z; is an independent family of variables. In this article, we will not introduce
unbranched punctures.

1.8. The conjectural mixed Hodge polynomial

The infinite series that we have defined only depends on g and k, and not on the conjugacy classes. Now
we introduce the symmetric functions associated to the conjugacy classes.

At the end of §3, we will define the set ‘is of certain combinatorial data, called fypes, encoding
the multiplicities of the ‘eigenvalues’ of semi-simple conjugacy classes in GL, 0. Given a tuple of
semi-simple conjugacy classes C = (C;)i1<j<2k contained in GL, o, let B; be the type of C; and let
h B (x;) be the symmetric function associated to the dual ,Bj. (see §6.4), which is essentially the complete
symmetric function. Write B = (B;)1 <j<2«. Let Che be the GL,, < o->-character variety associated to
C. Denote by d the dimension of Ch¢, which only depends on B, g and n.

The summand in Q. corresponding to the empty partition is equal to 1; therefore, we can apply the
formal expansion

1 j—x - Z(_l)mxm

m>=0

to 1 + x = Q... Define the rational functions in z and w:

Qi (2, w)Q(z,w) .
Hg(z,w) := <—, hﬂ*_(Xj) , if n is odd, (1.8.1)
Q*(Z, W) H J
Qo(zw)? 5 L
Hg(z,w) = <—, hg+(x;) ), if n is even. (1.8.2)
Q. (z,w) g i

Remark 1.6. A peculiar feature of these expressions is the absence of plethystic exponential or logarithm,
which is by far ubiquitous in counting Higgs bundles and quiver representations.

Conjecture 1.7. Let C = (Cj)i<j<ok be a strongly generic tuple of semi-simple conjugacy classes
contained in GL,, o which satisfies (CCL).# Then

(i) The rational function Hg(z, w) is a polynomial. It has degree d in each variable, and each monomial
in it has even degree. Moreover, Hg(—z, w) has nonnegative integer coefficients.
(ii) The mixed Hodge polynomial H.(Ch¢;x,y,t) is a polynomial in q := xy and .

4These notions will be defined in §4.
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(iii) The mixed Hodge polynomial is given by the following formula:

He(Che:q.1) = (1) H (12, %y

In particular, it only depends on B and not on the generic eigenvalues of C.

Part (i) is a sufficient condition for the formula in part (iii) to be a polynomial in ¢ and ¢ with non
negative integer coefficients. Part (ii) says that the mixed Hodge structure is Hodge-Tate.

Remark 1.8. In this article, we only need wreath Macdonald polynomials associated to the wreath
product W, which is the Weyl group of the centraliser of o. Since wreath products (Z/rZ)" = S,
with r > 2 are not the Weyl groups of any algebraic groups, their corresponding wreath Macdonald
polynomials play no role in any character varieties. It is interesting to see if there are some imaginary
mixed Hodge polynomials dominated by more general wreath Macdonald polynomials. Then the purely
combinatorial part (i) of the conjecture may have a generalisation.

Remark 1.9. We may also consider a cyclic Galois covering £’ — X’ of degree r > 2 and take for o
an order r exterior automorphism of GL,,. The ramification index at a branch point determines which
connected component of GL,, < o >the local monodromy around that point lies in. The representation
theory on a connected component GL,, o is controlled by &,, or W, according to the parity of i, or
rather, whether ¢/ is inner or exterior. The combinatorial consequence of such a dichotomy of Weyl
groups is the different symmetric functions inserted at this point - the usual Macdonald polynomial or
the wreath Macdonald polynomial. We expect that essentially no new phenomenon arises when r > 2.
We do not study cyclic coverings of higher degrees because the character table of GL,,(¢) <o >is only
written down in the case r = 2.

Part (iii) of the above conjecture, combined with some fundamental symmetries in Macdonald
polynomials and wreath Macdonald polynomials, implies the following.

Conjecture 1.10 (Curious Poincaré Duality). We have
1 _
H,(Chc; ?’I) = (qt)"*H.(Chc: q.1).

This is the starting point of the Curious Hard Lefschetz conjecture and the P=W conjecture.

1.9. Main theorem and evidences of the conjecture
Our main theorem gives a formula for the E-polynomial, which is a main evidence of Conjecture 1.7.

Theorem 1.11. The t = —1 specialisation of part (iii) of Conjecture 1.7 holds:

H,(Che: q.~1) = (V@) “Hy(Va. %»

Then the following theorem follows from this formula.

Theorem 1.12. The t = —1 specialisation of Conjecture 1.10 holds:
E(Chc:q) = ¢'E(Cheig™).

Other than the E-polynomial, we also have the following evidences. When n = 1, the character variety
is simply the torus (C*)2(8**=1) "and we can confirm our conjecture in this case. When n = 2, we do
not know how to compute the mixed Hodge polynomial. However, we find a simple relation between
GL, < o>-character varieties and GL,-character varieties, for any g and k. We then prove that under
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this relation, the conjecture of Hausel-Letellier-Rodriguez-Villegas and our conjecture predict the same
mixed Hodge polynomial.

When n > 2, we are unable to say anything about the mixed Hodge polynomial, but we can focus
on part (i) of Conjecture 1.7, which is purely combinatorial and nontrivial. To be precise, we have
computed Hg (z, w) in the following situations:>

on=3

g=Lk=1,C=(C1, ()
Cj regular, C, arbitrary
g§=0k=2,C=(C1,C,C3,Cy4)

C) regular, C; arbitrary, C3 = C4 ~ o (i.e., conjugacy class of o)
on=4

g=1Lk=1,C=(C|,C)
Cj regular, C, arbitrary;
Cy ~ diag(a,1,1,a Vo), Cy ~ diag(b, b,b~!, b o
g = O,k = Z,C = (C], Cz, C3, C4)
C regular, C; arbitrary, C3 = C4 ~ 0
C ~diag(a, 1,1,a™ o), Cy ~ diag(b, b, b, b o, C3=C4 ~ o

g=Lk=1,C=(C, ()

Cj regular, C, arbitrary;

Ci ~diag(a, 1,1,1,a7 ")), C; ~ diag(b, b, 1,07, b7 o
g=0,k=2,C=(C,C,C3,Cy)

Cj regular, C, arbitrary, C3 = C4 ~ 0

C, ~diag(a,1,1,1,a™Yo), Cy ~ diag(b, b, 1,67, b Yo, C3=C4 ~ o

and part (i) of Conjecture 1.7 is always true.

Organisation of the article

In Sections 2, 3 and 4, we recall and prove some results concerning character varieties and the represen-
tation theory of GL,,(¢) < o >that will be used later on. These sections contain three main ingredients
in computing the E-polynomial:

(1) Formula (2.7.1.1) that reduces the point-counting problem to the evaluation of irreducible characters

X-
(2) Formula (3.4.7.1) that expresses ¥ as a linear combination of Deligne-Lusztig characters
RG 6

Ty wo WILW:
(3) Formula (3.3.2.1) that reduces the computation of RTG f"waéw] w to the Green function

Cg(so)° v

Ch’]TWh (so)°
Section 5 contains some technical lemmas. We prove that with strongly generic conjugacy classes, only
a small subset of the characters of GL,,(¢) <o > can have nontrivial contributions to the E-polynomial.

(u) and the linear character 6, .

5The author uses MATLAB.
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This section also contains a computation of linear characters 6,,, v using Mébius inversion function.
In Section 6, we recall the essence of symmetric functions associated to wreath products, notably
the works of Shoji, and prepare some lemmas. In particular, we relate the Green function in formula
(3.3.2.1) to symmetric functions. In Section 7, we compute the E-polynomial, combining results from all
previous sections. We also make some sample computations by directly using the irreducible characters
of GL,(gq) < o >and GL3(q) < o >. From these computations, we extract a conjecture on the numbers
of connected components of GL,, < o->-character varieties. In Section 8, some basic aspects of (wreath)
Macdonald polynomials are recalled. Then we prove that the specialisation of the conjectural formula
indeed agrees with our computation of the E-polynomial, concluding the proof of Theorem 1.11.
Appendix A gives the explicit expressions of wreath Macdonald polynomials of degree 1 and degree 2
in terms of Schur functions. These formulae will be used in Appendix B and Appendix C. The reader
will also observe some key features of wreath Macdonald polynomials. In Appendix B, we verify our
conjecture in the cases n = 1 and n = 2, admitting the conjecture of Hausel-Letellier-Rodriguez-Villegas.
To prove that our claims about Hg(z, w) in §1.9 are not bluffing, we give two sample computations in
Appendix C.

2. Preliminaries
2.1. General notations and terminology

The 2-element group will be denoted by y,. If G is a finite group, we will denote by Irr(G) the set of
irreducible complex characters of G. If k is a given algebraically closed field of characteristic different
from 2, we will denote by i a chosen square root of —1. In most parts of the article, n will denote the
rank of our ambient group GL,,, and N will denote [n/2].

Given an abstract group G and an automorphism o of G, we will denote by G the subgroup of
the fixed points of o. If G is abelian, then [G, o] := {go(g™") | g € G} is also a subgroup of G. A
o -conjugacy class of G is an orbit in G under the action g : x — gxo(g)~!, forany g, x e G.If X ¢ G
is a subset, then we say that X is o--stable if o(X) = X.

If X ¢ Gisasubset and H C G is a subgroup, we will denote by Cg (X) the centraliser of X
in H. If H, X and Y are subsets of G, we will denote by Ny (X) the normaliser of X in H and by
Ny (X,Y) = Ny (X) N Ng(Y) the subset of H that simultaneously normalises X and Y. The centre of a
group G will be denoted by Zg.

If Gp c G is asubgroup and G| C G is a subset that is normalised by G, then by a Gy-conjugacy
class in G1, we mean a subset of the form {gxg~! | g € G} for some x € G;. Similarly, we can talk
about a Go-conjugate of an element or a subset of G. When G is an algebraic group, the above notions
make sense in the obvious way. If G is an algebraic group, we will denote by G° its identity component.
The subgroup G as above is typically G° or a finite subgroup of G.

2.2. Partitions

2.2.1.
For any n € Z-(, we denote by S,, the group of permutations of the set

I(n) :={1,2,...,n}.

Each permutation 7 € &, can be decomposed into a product of cycles cy, - - - ¢y, where the disjoint
subsets I, C I(n) form a partition of I(n) and ¢;, is a circular permutation on /.. Foreach 1 < r < [, put
7 = |cy.|, the size of I, and then the conjugacy class of 7 is determined by the partition (7y, ..., 7).
Let n € Zsq. A partition of n will often be written as a nonincreasing sequence of nonnegative
integers A = (41 > Ay > --+) such that n = }; A, and O only has the empty partition (0,0, ...). The
length of A will be denoted by /(1), and n is called the size of A. For each partition A, we define the integer
n(d) := Y,;(i — 1)4;. The dual of a partition A will be denoted by A*. The set of partitions of n will be
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denoted by P (n). Write P = Lipez,,P(n). The irreducible characters and the conjugacy classes of S,
are both parametrised by P (n). For any A € P(n), we will denote by x* the corresponding irreducible
character, and by Xl’} the value of this character on the conjugacy class corresponding to u € P(n).

Write P2 = P x P. The elements of P2 will be called 2-partitions. For any A = (1@ A1) e P2 its
size is defined by |A] := |19 + |4V, and its length is defined by /(1) := [(1?) +1(A(V). The dual of
a 2-partition A = (19, 1) is defined by A* := (1(V*, 1(0*)_ The set of 2-partitions of size n will be
denoted by P?(n).

2.2.2.
Given a partition A = (11, Ay, .. .) of size n, we take r > [(1), and we put

or=0r-1,r-2,...,1,0).

Let 2y > - > 2y;) and 2y} +1 > -+ > 2y;I + 1) be the even parts and the odd parts of A + &,
where the sum is taken term by term. Denote by A’ the partition that has as its parts the numbers
2s+1,0 <s <[, —1,t =0,1. We have [(1") = I(1). The 2-core of A is the partition defined by
(4 = l(/l) + k)1 <k<i(a)- It is independent of r and necessarlly of the form (d,d - 1,...,2,1,0), for
some d € Zs(. Denote by 1(?) the partition defined by /l = yx —lo+ k and denote by /1(1) the partition
defined by /l,(cl) =y, —li+k. Then (A9, 1), is a 2-partition that depends on the parity of 7, which we

call the 2-quotient of A. Changing the parity of r will permute (%) and (). We make the convention
that7 =1 mod 2 if the 2-core is (0) and r =0 mod 2 if the 2-core is (1).

Remark 2.2.1. In [Hai03], the 2-quotient is defined in terms of the residues of the contents of the boxes.
The two definitions of 2-quotient agree when the 2-core is (0), but not when the 2-core is (1). In fact,
Haiman’s definition is equivalent to setting r = 1 mod 2 in all cases. For example, let 2 = (3). Then
our definition gives the 2-quotient ((1), @), while Haiman’s definition gives (@, (1)). Our convention is
coherent with Theorem 1.2, where the trivial character of W corresponds to the trivial character of W.

The above constructions give a bijection

2.2.2.1)

with 2-core (d,d — 1,

Partitions of n
1,0) 2

1 d(d+1
— {Z—partitions of E(n - w)}

We call this bijection the quotient-core decomposition of partitions.

2.3. Wreath products

2.3.1.

Given a finite group I' and a positive integer m, the symmetric group S, acts on the direct product
'™ of m copies of I' by permuting the factors. This defines a semi-direct product I'"* = S,,,, called a
wreath product. We will denote by 2B,,, the wreath product defined by I' = Z/27Z. It is the Weyl group
of Sp,,, and SOy,,,+1. More general wreath products (Z/rZ)™ = &, for r > 2 cannot be realised as the
Weyl groups of any algebraic groups. We will always identify Z/27 with p, and write its elements in
the multiplicative form.

2.3.2.
Denote by wq the permutation (1, —-1)(2,-2) - - - (m, —m) of the set

Im)={1,...,m,-m,...,—1}.
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We can identify 3, as the subgroup of the group of permutations on I(m) consisting of elements
commuting with wg. Then each element 7 € S,,, € I, is identified with the permutation

i (i), —i (=) =-71(),

and for any i € {1,...,m}, the element (ey,...,e,) € (Z/2Z)" C B, with e; = —1 and e; = 1 if
J # 1, is identified with the permutation (i, —i).

2.3.3.

Letw = ((e1,....em), T) € (Z/2Z)™ % S,,. Then 7 can be written as T = ¢y, - - - ¢y, as in §2.2.1. For
each 1 <r <[, puté, = [[;g ex. Forany 1 < r < [, we will call ((e;),es,,c1,) a positive (resp.
negative) cycle in w if &, = 1 (resp. €, = —1), so that w is a product of signed cycles. The size of a

signed cycle in w is defined as the size of the corresponding cycle in 7. Define the permutations

70 = l_[%, (0 = l_[ cr, (2.3.3.1)

&=1 &=—1

so that 7 = 7(D 7 Also denote by 7(9 and (! the associated partitions by abuse of notation. We
then have a 2-partition (7(?, (1)), which is sometimes called a signed partition of . This 2-partition
determines the conjugacy class of w. The conjugacy classes and irreducible characters of 2, are both
parametrised by P?(m). For any 1 € P?(m), we will denote by y* the corresponding irreducible
character, and by /\{I’} the value of this character on the conjugacy class corresponding to g € P?(m).

Regarded as a permutation on the set I(m), an element w such that 7 = 7@ = (1,2,...,m) is
typically of the form
l 2 m -m . e 2 _1
NI "/ "/ (2.3.3.2)
and an element w such that 7 = 7(1) = (1,2,...,m) is typically of the form

/\f\f\f\
\J\J\J\\/

2.4. Springer correspondence and symbols

2.4.1.
Let G be a connected reductive group and let W be the Weyl group of G defined by a maximal torus.
Denote by ./ the set consisting of pairs (C, ¢), where C C G is a unipotent conjugacy class and ¢ is an

irreducible character of Cg(u)/Cq(u)° for some u € C. The Springer correspondence is an injection
([Sho87, §4])

(2.3.3.3)

Irr(W)— . (2.4.1.1)

There is an equivalence relation on .4 that identifies (Cy, ¢) and (C», ¢») whenever C; = Cy, in which
case we say (C1, ¢1) and (Cy, ¢) are similar. Such an equivalence class is called a similarity class.
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Symbols are certain combinatorial data that are in bijection with the image of (2.4.1.1). If G = Sp,,,
or SOy,,41, then Irr(W) is in bijection with P%(m). Therefore, the symbols are also in bijection with
P2(m). Similarity classes in 7%(m) or in the set of symbols are induced from /. If @ is a 2-partition,
we will denote by A(a) the corresponding symbol. In this article, we do not need the notion of symbols
in an essential way. We use them only to match the notations in [ShoO1].

2.4.2.

For any symbol A, let a(A) be the integer defined by [ShoO1, (1.2.2)]. This is the analogue of n(1) for
partitions. Its value is constant on the similarity classes of symbols. If we denote by u an element of the
unipotent conjugacy class corresponding to A, then

a(A) = dim B,, (2.4.2.1)

where B3, is the Springer fiber over u. For any 2-partition @, we define a(a@) := a(A(a@)). We will fix once
and for all a total order < on the set of symbols in such a way that if C; (resp. C») is the unipotent class
corresponding to A (resp. Aj), then Ay < A} if C; C C, and each similarity class forms an interval.
We will write A ~ A if A; and A, are similar. Note that a(A|) < a(A,) whenever A, < A;. The
set of 2-partitions acquires a total order via the bijection with symbols, so that a(@) < a() whenever
B < a. In particular, the element @ := (&, (1™)) corresponding to the the identity of the finite classical
group is minimal, and it is alone in its similarity class.

2.5. Nonconnected algebraic groups

2.5.1.

Let G be a not necessarily connected linear algebraic group over an algebraically closed field k. We say
that G is reductive if G° is reductive. Let B C G° be a Borel subgroup and let 7 ¢ B be a maximal
torus. Then T := N (T, B) has nonempty intersection with every connected component of G, since the
conjugation by any element of G sends T and B to some other maximal torus and Borel subgroup, which
are conjugate to T and B by an element of G°. An element of G is called quasi-semi-simple if it lies in T
for some T C B. It is known that semi-simple elements are always quasi-semi-simple ([Ste68, Theorem
7.5]). We will always assume that chark 4 |G/G°|. Under this assumption, all unipotent elements of G
are contained in G° and all quasi-semi-simple elements are semi-simple ([DM94, Remarque 2.7]).

2.5.2.

Let G' be a connected component of G and let o € G' be a semi-simple element. Let T c G° be a
maximal torus that is normalised by 0. Denote by W = Wg.(T) the Weyl group of G° defined by 7.
Then o induces an action on W. Denote by W the subgroup of o-fixed points. The subtori (777)° and
[T, o] are preserved by the action of W< on T.

Proposition 2.5.1 ([DM 18][Proposition 1.16]). Every semi-simple G°-conjugacy class in G' has a
representative in (T7)°o. Two elements to- and t'o with t, t' € (T?)°, represent the same class if and
only if t and t’, when passing to the quotient (T?)°[(T7)° N [T, o], belong to the same W -orbit.

A semi-simple element o is quasi-central in G' if there is no element g € G° such that
dim Cge (0)° < dim Cg-(go)°.

Theorem 2.5.2 [DM94, Théoréme 1.15]. A semi-simple element o € G' is quasi-central if and only
if for every o-stable maximal torus T contained in a o-stable Borel subgroup of G°, every o-stable
element of Ngo(T) /T has a representative in Cgo(0)°.

2.5.3.

A closed subgroup of G is a parabolic subgroup if G /P is proper. According to [Spr98, Lemma 6.2.4],
a subgroup P C G is parabolic if and only if P° is parabolic in G°. For example, if P is a parabolic
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subgroup of G°, then P and N (P) are both parabolic subgroups of G. It is obvious that the intersection
of N¢ (P) with any connected component of G is isomorphic to P if it is nonempty. We want to determine
which connected components of G have nonempty intersection with Ng (P).

There is a well-defined action of G/G° on the set of G°-conjugacy classes of parabolic subgroups
of G°, induced by the conjugation action of G. Let G! c G be a connected component and P ¢ G° a
parabolic subgroup. Then Ng (P) meets G! if and only if the G°-conjugacy class of P is G'-stable. Let
L C P be a Levi factor. If NG (P) meets a connected component G! of G, then Ng (L, P) also meets
G', since any two Levi factors of P are conjugate under P.

Fix a semi-simple element o € G!. Then by [DM94, Proposition 1.6] and the above discussions,
Ng (P) meets G if and only if there exists a G°-conjugate of P that is o-stable, and Ng (L, P) meets G
if and only if there exists a G°-conjugate of the pair (L, P) that is o--stable. The following propositions
describe the set of o--stable parabolic subgroups and the set of o--stable Levi factors of o--stable parabolic
subgroups.

Proposition 2.5.3 [DM94, Proposition 1.11 (ii)]. Let s € G be semi-simple. Let L be an s-stable Levi
factor of an s-stable parabolic subgroup P C G°. Then (P%)° C (G*)° is a parabolic subgroup and
(L*)° c (P%)° is a Levi factor.

Proposition 2.5.4 [DM94, Corollaire 1.25]. Let o € G be quasi-central.

(1) The map P w— (P?)° defines a bijection between the o-stable parabolic subgroups of G° and the
parabolic subgroups of (G9)°.

(2) Then map L — (L7)° defines a bijection between the o-stable Levi factors of o -stable parabolic
subgroups of G° and the Levi subgroups of (G7)°. The inverse is given by L' — Cg-(Z3,) for
L' c (G9)"°.

2.54.
The following proposition will be used via its corollaries.

Proposition 2.5.5. Let s € G be semi-simple and let L be an s-stable Levi factor of an s-stable parabolic
subgroup of G°. Suppose that L = Cge (ZE’LS)O). Then N(Gsy-((L*)°) is contained in Ng-(L). Moreover,
each connected component of Ng- (L) contains exactly one connected component of N(gGsye ((L*)°).
Proof. The inclusion N(gs)-((L*)°) € Ng-(L) follows from the assumption on L and s. To prove the
second part, it suffices to prove that N(gs). ((L*)°) N L = (L*)°. This is achieved by considering the
conjugation action of & € N(gs)-((L*)°) N L on ZZ’ syer

We have (Z;)° = ZELS)O. The inclusion (Z7)° C ZE’LS)O is obvious. Inclusion in the other direction
follows again from the assumption on L and s. Since & lies in L, the conjugation action of £ on (Z])°
must be trivial.

It is well known that if M is a Levi subgroup of a connected reductive group H, then M = Cy (Z3,).
By Proposition 2.5.3, (L*)° is a Levi subgroup of (G*)°. We conclude that & must lie in (L7)°. O

With the notion of isolated elements, the following two corollaries could be integrated into one
uniform result. But we prefer not to introduce more notions.

Corollary 2.5.6. Let o € G be quasi-central and let L be a o-stable Levi factor of a o-stable parabolic
subgroup of G°. Write

WiGe)-((L7)°) := NGy ((L7)°)/(L7)°,  Wge(L) := Ng=(L)/L.
Then there is a natural injective map
W(Go-)o((L(r)o) — WGO(L)O—.

Proof. By [DM94, Proposition 1.23], L and o satisfy the assumption on L and s in Proposition 2.5.5.
The image is automatically contained in the o-fixed part. O
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Corollary 2.5.7. Let 0 € G be quasi-central. Let T C G° be a o-stable maximal torus and let s € T.
Write

WiGse)-((T*7)°) := N(Gsey- (T*7)°) (T*7)°,  Wge(T) := Ng=(T)/T.
Then there is a natural injective map
W(Gso)-((T*7)°) = Wg-(T)7.

Proof. We have T*? = T?. Thus, by Proposition 2.5.4, T and so satisfy the assumption on L and s in
Proposition 2.5.5. It is easy to see that the image is contained in the o-fixed part. m

Remark 2.5.8. The special case where L = T is a maximal torus implies that the condition in Theorem
2.5.2 is equivalent to W(Go)o ((T7)°) = Wg-(T)7.

2.6. Algebraic groups defined over a finite field

Let g be a power of a prime number. In this section, k denotes an algebraic closure of F,.

2.6.1.

An algebraic group G over k is defined over F, if there is an algebraic group G¢ over F, such that
Go ®r, k = G. Given Gy, the geometric Frobenius endomorphism on G is denoted by F. The set of
fixed points of F, denoted by G¥', is a finite group, which we will sometimes write as G(g). If X ¢ G
is a subvariety, then we say that X is F-stable if F(X) = X.

2.6.2.

Let G be a connected reductive group defined over F,,. Let T C G be an F-stable maximal torus. Then
F-acts naturally on W (T'), and so we can talk about the F-conjugacy classes in Wg (T) as defined in
§2.1. The G* -conjugacy classes of F-stable maximal tori are in bijection with the F-conjugacy classes
of W (T). This bijection is described as follows. Given w € W (T), let w € G be a representative of w.
By Lang-Steinberg theorem, there exists g € G such that g~! F(g) = . Then gTg™! is again an F-stable
maximal torus, and its GF -conjugacy class only depends on the F-conjugacy class of w. Conversely,
if gTg™! is an F-stable maximal torus for some g € G, then g~! F(g) normalises T and so defines an
element of W (T). The two constructions are inverse to each other.

Fix an F-stable maximal torus T and a Borel subgroup B containing 7. Let A = A(T, B) be the set
of simple roots defined by T and B. The parabolic subgroups containing B, called standard parabolic
subgroups, are parametrised by the set of the subsets of A. Forany I C A, denote by P; the corresponding
standard parabolic subgroup. Its unique Levi factor containing 7 is called a standard Levi subgroup,
denoted by L;. Every Levi subgroup of G is conjugate to a standard Levi subgroup. Fix I C A.
The G -conjugacy classes of the G-conjugates of L; are in bijection with the F-conjugacy classes of
Ng(Lyp)/L;. The construction of this correspondence resembles the case of maximal tori.

2.6.3.
Suppose that G is a reductive group defined over F,, and that G/G® is a cyclic group. Let o € G be an
F-stable quasi-central element such that G/G° is generated by the component of o .

Proposition 2.6.1 [DM94, Proposition 1.40]. The G -conjugacy classes of the F-stable subgroups
L = Ng(L, P) defined by some F-stable Levi factor L of some parabolic subgroup P C G°, satisfying
LN G°c # 0, are in bijection with the ((G?)°)F -conjugacy classes of the F-stable Levi subgroups
of (G9)° in the following manner. Each L has a G¥ -conjugate L, containing o, and the bijection
associates the ((G7)°)F -class of ((L)7)° to the G¥ -class of L.
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We give a more concrete description of this correspondence. Fix an F-stable and o-stable maximal
torus 7" and a o-stable Borel subgroup B € G° that contains 7. Let / be a subset of the set of simple
roots defined by (7', B). Let L; be the standard Levi subgroup with respect to (7', B). Suppose that / is
o-stable and so (L{)° is a standard Levi subgroup of (G ”)° with respect to ((T7)°, (B”)°). Then the
((G?)°)F -conjugacy classes of the (G “)°-conjugates of (L7)° are in bijection with the F-conjugacy
classes in WGy ((L{)°). Forany w € W(Ge)- ((L{)°), the procedure of §2.6.2 gives an F-stable Levi
factor L;,W of some parabolic subgroup P},W C (G7)°, whichis (G“)°-conjugate to (L{)° and whose
((G?)°)F -conjugacy class corresponds to the F-conjugacy class of w. By Proposition 2.5.4, the pair
(L}, Py, ) determines an F-stable and o--stable Levi factor Ly, of a o-stable parabolic subgroup

I.w>

P . Infact,if w, g € (G7)° are as in §2.6.2, then L; ,, = gL,g_l. Put
Liw :=NG(Liw,Prw)=LiwULp o

It is F-stable and meets the connected component G°c. By Proposition 2.6.1, such groups for varying
I and w exploit all G¥-conjugacy classes of F-stable subgroups of the form L that meet G°c. This
implies, in particular, that the GF-conjugacy classes of the F-stable subgroups Ng(T’, B’), defined
by an F-stable maximal torus 7" contained in a Borel subgroup B’ c G°, are parametrised by the
F-conjugacy classes of Wgo(T) 7 (see Remark 2.5.8).

Define another Frobenius F,, := adw o F on G. Then there is a commutative diagram

adg
Ly —— L;,,

le lF (2.63.1)

Ly —— L.
adg

We will simply say that (Ly, F,,) is isomorphic to (Ly ., F) via ad g.

2.7. Frobenius formula

2.7.1.

Let H be a finite group and let Hy < H be a normal subgroup of index 2. Let o be an element of
H \ Hy. Then o defines an involution on Irr(Hy) by composing a character with the conjugation by
o. This involution does not depend on the choice of o in H \ Hy. Denote by Irr(Hy)“ the subset of
o-fixed elements. By Clifford theory, each element y € Irr(Hp)“ admits an extension to H (i.e., some
xu € Irr(H) such that (yg)|H, = x). Moreover, there are precisely two such extensions, and they
differ by —1 on H \ Hy. For every y € Irr(Hy)“, we choose a preferred extension, denoted by y. If the
restriction of yg € Irr(H) to Hy is not irreducible (or rather, y g is not an extension of any y € Irr(Hp)),
then yy must vanish on H \ Hy.

Proposition 2.7.1. Let C = (C;)i<j <2k be an arbitrary 2k-tuple of Hy-conjugacy classes contained in
H \ Hy. Then we have the following counting formula:

2k
#{((Ai,Bi)lsng, (Xj<j<2x) € H(Z)g X 1_[ Cj ’
j=1

8 2k
[Tia51] % - 1}

i=1
(2.7.1.1)

|Hol \2572 25 |CiLR ()
= |Hy| - i)
Xelr;,“,o)a (X(l)) D x(1)

Note that the value of the counting formula is independent of the choices of y due to the product of
2k terms. The proof is given below.
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2.7.2.
Let us prepare some notations of finite groups.

Denote by C(H) the vector space of complex valued class functions on H. Put A = Irr(H). Denote
by C(H) the vector space of linear combinations Y. ven yx of irreducible characters, which is the same
as C(H) but will be equipped with a different product operation.

The convolution product = in C(H) is defined by

(fix LI = D AWLE,  fis fr € CH). (2.7.2.1)

yz=x
The dot product - in C(H) is defined by
Fi-F(x) = ()R, F.FeCH), (2.7.2.2)

(i.e., the coefficient of y in the product is the product of the coefficients of y).
The Fourier transform F : C(H) — C(H) is defined by

F(Hx) = Z AU )()1‘)( ), feC(H). (2.7.2.3)
heH

We also have the transform F : C(H) — C(H) defined by

F(F)(h) = >, FOx(Dx(h). (2.7.24)
yeH
We have
FoF =|H| ey, FoF=|H| -ldypg,- (2.7.2.5)

They are compatible with the product operations
F(f) - F(f) =F(fixfo), FF)=F(F)=|H| -F(F - F). (2.7.2.6)

From the equality F o F = |H| - Id¢ () and the definition of the transforms, we deduce that

FO) = o H| 2, X (P F(H ) (2.7.27)

xeH

for any class function f.

2.7.3.
We define the function n¢ : H — C by

8
ns(x) = #{(Al,Bl, <o Ag,Bg) € Hf)g ’ l_[[Ai,B,-] = x}. (2.7.3.1)
i=1

We find that né € C(H) (identically zero on H \ Hy) and that n¥ = n! ... x nl. Denote by 1, the
characteristic function of the class C;. Then

i=1

2k g 2%
#{((Ai,Bi)lsisg’ (Xjh<j<on) € H(z)g X HC,' | H[Ai,Bi] l_[X = 1} 2732
i1 3o 7.3.

= (ng * 1C] d ek 1C2k)(1)‘
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By (2.7.2.6) and (2.7.2.7), we have
(ng * 1C1 *oeeex 1C2k)(1)

2.7.3.3
- Y WPF® )(x))g]_['c'X(C). 273
|H| xelr(H) (1)

It is known ([HLRV 11, Lemma 3.1.3]) that

[Hol |2

Fohoo = (5

) (2.7.3.4)

Therefore,

i D xr(XFM) (xu ))gnw
|H| xH €lrr(H) i YH (1)
(2.7.3.5)
= |Ho| Z |H0| 2g- 2ﬁ|C|X(C)
- )((1) x(1)

/\/EIFF(H())O—

where we have used the fact that yy vanishes on H \ Hj if it is not an extension of any element of
Irr(Hp). This completes the proof of Proposition 2.7.1.

3. The group GL,,(¢) <o >

In the rest of the article, we will write G = GL,,. We will denote by T the maximal torus of diagonal
matrices and by B the Borel subgroup of upper triangular matrices. The Weyl group of G defined by T
will be denoted by W = W (T). We understand that standard Levi subgroups are defined with respect
to T and B. Recall that N = [n/2].

3.1. The group GL,, <o >over k

In this subsection, we work over an algebraically closed field k.

3.1.1.
Denote by J,, the matrix

1
(Jn)ij =Sinr1—j =| .-
1
If nis even, put #9 = diag(ay, ..., a,) witha; = 1 ifi < N and a; = —1 otherwise. Put J;, = toJ,,. Write
J; if niseven
= , .= J, if nis even. 3.1.1.1
Fn {J,, if n is odd Iu = Jn ¢ )

Define o € AutG as sending g to %,g~' 7!, where g™' is the transpose-inverse of g, and define
o’ € AutG by replacing 7, with 7, in the definition of 0. They are exterior involutions of G. Their

https://doi.org/10.1017/fms.2023.119 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.119

Forum of Mathematics, Sigma 19

fixed points in G are described as follows:

(G7)° = Spyy

, , ifn=2N+1, then (G?)° = SO . 3.1.1.2
(G™)° = SOy n (G7) AN+ ( )

if n = 2N, then {

IR

We say that an automorphism is of symplectic type or orthogonal type according to the type of its
centraliser.

3.1.2.
An involution 7 of G defines a semi-direct product G= < 7 > When 7 is even, there are two PGL,,-
conjugacy classes of exterior involutions in Aut G, represented by o and o/, respectively ([LS 12, Lemma
2.9]). We will write ‘G = G <o >and °G = Gx< ¢’ >, in order to indicate that the type of the defining
automorphism is symplectic or orthogonal. These two semi-direct products are not isomorphic over any
field of characteristic different from 2 (This follows from [Shu23, Theorem 1.12]). It is convenient to
regard o also as an element of °G, identified with too’, since o and too” induce the same automorphism
of G. Note, however, that in °G, we have o2 = —1. Therefore, we write G < o > instead of Gx < o’ >.
We will write G = G <o >if n is odd or if there is no need to distinguish °G and °G.

Since o normalises T and B, it is semi-simple as an element of G. Moreover, according to [DM94,
Proposition 1.22], o is a quasi-central element of G. It is easy to see that the action of o on G commutes
with F, and so F can be extended to G in such a way that o is an F-stable element.

3.1.3.
Now suppose char Ik # 2. For the moment, we do not distinguish °G and °G. We apply Proposition 2.5.1
to the connected component G! = Go.

The subtorus (7°7)° consists of the matrices

diag(ai, as,...,an,ay,...,a;',a;’),if n = 2N, (3.1.3.1)

diag(ai,az,...,an, l,ay,...,a;' a;"),if n =2N +1, (3.1.3.2)
with a; € k* for all i, and the commutator [T, o] consists of the matrices

diag(by, bas...,bN,bN,..., b2, by), ifn =2N, (3.13.3)

diag(bl, bz, ce ,bN, bN+1,bN, ey bz,b]), ifn=2N+ 1, (3.1.3.4)
with b; € k™ for all i. So the elements of [T, o] N (T7)° are the matrices

diag(ey,ez,...,enN €N, ... €2,€1),if n =2N, (3.1.3.5)

diag(ei,es,...,en,l,en,...,e2,e1),if n =2N +1, (3.1.3.6)

with e; = +1 for all i.
The parametrisation of semi-simple conjugacy classes in Go is then given as follows. Denote by lk
the set of (p, X p,)-orbits in k* for the action

(-, :a—at, (1,-1):a+ —a. (3.1.3.7)

Then the semi-simple conjugacy classes in Go are parametrised by the Sy -orbits in k™, or rather, the
N-tuples (4, ...,dn), d; € &k, up to permutation, whether n = 2N or n = 2N + 1. We thus regard
the elements of Ik as the eigenvalues of a semi-simple element. For example, we may say that o has
eigenvalues (1,...,1). Beware that the eigenvalues depend on the choice of o= in Proposition 2.5.1.
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For example, if n is even and if we had used o’ in Proposition 2.5.1, then o would have eigenvalues
(i,...,1). In the rest of the article, we will always use oo € G! when we specify a semi-simple element
in terms of elements of k.

Lemma 3.1.1. If C ¢ Go is a G-conjugacy class, we write C> = {g* | g € C}, which is a well-defined

conjugacy class in G. Then,

() C is semi-simple if and only if C? is semi-simple;

(ii) The map C > C? defines an injection from the set of semi-simple G-conjugacy classes in Go to
the set of o-stable semi-simple conjugacy classes in G.

Proof. Part (i) is true for characteristic reason. Part (ii) follows from the above parametrisation. O

3.14.

Let P c G be a parabolic subgroup and let L ¢ P be a Levi factor. We will be interested in those L C P
such that N (L, P) meets the connected component Go. According to §2.5.3, this is to consider the
o-stable Levi factors of o-stable parabolic subgroups. If P is a o-stable standard parabolic subgroup
with respect to B, then its unique Levi factor containing T is of the form

ﬂ..
"

m (3.1.4.1)

where L; = GL,,, for some integers n;, 1 <i < s. Therefore, up to the conjugation by G, we only need
to consider these Levi subgroups. Note that for these groups, N5(L,P) = L U Lo.

3.2. The group GL,, <o >over F,

In the the rest of this section, we will fix an odd prime power g, Ik will denote an algebraic closure of F,
and G = GL,, over k is equipped with the Frobenius endomorphism F that sends each entry of a matrix
to its g-th power. Taking the fixed points of F in G < o >, we get a finite group G (g) < o >. Note that F
acts trivially on Ng(L)/L if L is a Levi subgroup containing T’; in particular, it acts trivially on W.

3.2.1.

By the theorem of Lang-Steinberg, a G-conjugacy class in Go- contains an element of G ¢ if and only
if it is F-stable. Let C ¢ Go be a semi-simple conjugacy class with a representative to € (T7)°c.
According to the parametrisation of semi-simple conjugacy classes, C is F-stable if and only if there
existw € W7 and s € [T, 0] N (T9)° such that F(r) = wtw™'s (see §3.1.3). We will, however, only
be concerned with those semi-simple conjugacy classes that have representatives in (77 )°F ¢; that is,
w =1 and s = 1 in the above equation. Now let C be such a class with representative to- € (T?)°F o If
we represent C by the N-tuple (dy,...,dN), d4; € ]f{, then a; € IF:; foralll <i < N.

Lemma 3.2.1 [Shu22, Lemma 6.2.1]. Denote by N, (resp. N_) the multiplicity of 1 (resp. 1) in
(@i, ...,an). Then the centraliser of to in G is isomorphic to
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sz,\,+ X Oon_ X I—[ GL,, ifn is even and,
i

O2n,+1 X Spyy. X l—[ GL,, if nis odd,

for some integers n;.

In general, CF is not a single G* -conjugacy class. By [DM20, Proposition 4.2.14], the number of
G -conjugacy classes contained in C* is equal to the number of connected components of Cg (o). If
n is odd, then Cg (t0-) always has two connected components. The G* -class of to- has a representative
of the form

1

diag(ai, as,...,an,l,ay,...,a;"  a;')o, (3.2.1.1)

with every a; € Fy, while the other G¥ -class in CF' is represented by
diag(ai, as,...,an,b,ay,...,a5"a;")o, (3.2.1.2)
with b € F; \ (F;)2.

3.2.2.

Let I be a subset of A(7, B) and let L; be the corresponding standard Levi subgroup. There are positive
integers {n; | i € I';} indexed by a finite set I'7, such that L; = [];cr, GL,,. Then Z, = G;’ (.e.,
direct product of copies of Gy, indexed by I'r). For any r € Z.o, put 'y, = {i € I'; | n; = r} and put
N, = |I'1 |- Then the G-conjugacy class of L; is uniquely determined by the sequence (N, ), ez.,, and
Wa(Lp) = [1, ©n,-

Suppose that I is o-stable, so that the associated o-stable standard Levi subgroup L; is of the form
(3.1.4.1). Now the action of o on Zy, induces an involution on I';. There is at most one element of
I'; fixed by o, and we denote it by O so that it corresponds to the direct factor GL,,, in (3.1.4.1). In
case no element of I'7 is fixed by o, we define no = 0. For any r € Z., put N, = N, /2 if ngp # r and
N/ = (N, —-1)/2if ng =r. Then Wg(L;)7 =[], Wn:.

The action of an element of Wg(L;)? on L; (up to an inner automorphism of L;) can be easily
visualised. Let r € Z5( and let 7 be a signed cycle of size d in Wy, . Then it acts on a subgroup of L;
that is isomorphic to (GL, x GL,)¢. Depending on whether 7 is a positive cycle or a negative cycle (see
§2.3.3), its action can be schematically described as

GL, e—\

o,

, and

GL,
©.0)
S

respectively. If 7 = ng, then 7 simply ignores the component GL,;,.
For eachw € W (Ljp)7, there exists w € (G 7)° that represents w. For example, it is easy to see that
in (3.2.2.1), one can find explicit matrices in GL,, 4 fixed by o representing the corresponding cycles

(3.2.2.1)
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in W, . This implies that the inclusion
WiGe)-((L7)°) = We(L1)”

is, in fact, an isomorphism. Now the groups L; ,, defined for w € W(go)e((L})°) in §2.6.3 make sense
if we regard w as an element of W (L;)“ . The discussions in §2.6.3 give the following:

Proposition 3.2.2. The GF -conjugacy classes of the F-stable G-conjugates of L; < o >are in bijection
with the conjugacy classes of Wg(Lp)“.

3.3. Deligne-Lusztig inductions

3.3.1.

Let H be a connected reductive group defined over F, equipped with a geometric Frobenius endomor-
phism F. Let L c H be an F-stable Levi subgroup. The Deligne-Lusztig induction Rf ([DM20, §9.1])
is a Q,-linear map from the set of L -invariant functions on L to the set of H” -invariant functions on
HF (invariant for the conjugation actions).

Let Ty be an F-stable maximal torus of H. Denote by Wy the Weyl group of H defined by 7y . By
§2.6.2, to each w € Wy, we can associate an F-stable maximal torus 7;, C H in such a way that Ty is
associated to 1 € Wg. For any w € Wy, we denote by 1 the trivial character of T . Then the Green
function is an HY -invariant function on the subset HY ¢ HY of unipotent elements, defined by

07, (u) =Ry Upr. (3.3.1.1)

Such a function only depends on the H* -conjugacy class of T, or rather, the F-conjugacy class of w.

Let 7 be an automorphism of finite order of H that commutes with F and let L C H be an F-
stable and 7-stable Levi factor of a 7-stable parabolic subgroup P ¢ H. Then Ngy<r-(L,P) = L <T>.
The generalised Deligne-Lusztig induction Rf: ([DM94, §2]) is a Qg-linear map from the set of LF-
invariant functions on L 7 to the set of H -invariant functions on HF 7.

3.3.2.

By §2.6.3 and Remark 2.5.8, to each w € WY, we can associate an F-stable and o -stable maximal
torus 7, contained in a o-stable Borel subgroup of G, in such a way that T is associated to 1 € W . If
B,, c G is some o-stable Borel subgroup containing 7,,, then T, = N&(Tw,Byw) =T, U T, 0 and
the G* -conjugacy class of T, is determined by the conjugacy class of w € W7. Let § € Irr(T5)“
and denote by @ € Irr(TE < o >) an extension of 6. By abuse of notation, we may also denote by 4 its
restriction on T'5 o-. Computation of Deligne-Lusztig inductions is reduced to Green functions according
to the character formula below.

Proposition 3.3.1. [DM94, Proposition 2.6]. Let so € GF o be semi-simple and let u € Cg(so)°F.

Then
Go 7 |(Tv€—)op| Cg(so)° 1 -1
RT % 0(uso) = —= = P (Yg)o(u)H(hsa'h ), (3.3.2.1)
" T |- 1C6 (50" | orplaher, oy T
where QCG(SU)O (u) is the Green function associated to the connected reductive group Cg(so)°

Ch_lTwh(SO')"
and its F-stable maximal torus Cp-17, j,(50)°.
Remark 3.3.2. The extra factor |(T.J)°F| compared with [DM94, Proposition 2.6] is due to different

Ci(so)°
o (so‘)"(u)'

normalisations of the Green functions Q - ]
-

Twh
An invariant function on GF & is called uniform if it is a linear combination of R? 70 for various w
w
and 6.
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Proposition 3.3.3. [DM 15, Proposition 6.4]. The characteristic function of a semi-simple conjugacy
class in G¥ o is uniform.

3.3.3.
Fix semi-simple element so- € GF o and write L’ := Cg(so)°. Let T € W . Write

A, ={heG|hsoh™ ' eT.o}, AF =A,nGF.

If AL is nonempty, we may assume that so- € T, 0, since the problem we will consider is not affected
by conjugation by G'. So, in particular, AL contains the unit 1. For any # € AL, Cpi1,p(s0)° is an
F-stable maximal torus of L’ by Proposition 2.5.3. In particular, T, := Cr, (so)° is an F-stable maximal
torus of L’. The L’F-conjugacy classes of the F-stable maximal tori of L’ are parametrised by the
F-conjugacy classes of W’ := W/(T;). Then the map i +— Cj-17_;,(s07)° induces a map from Af to
the set of F-conjugacy classes of W’. Denote by B, the image of this map so that we have a surjection
Af — B..Letv € W’ represent an F-conjugacy class of W’ and denote by Af’,, the inverse image in
AL of this F-conjugacy class.

We will fix g such that T, = g-Tg;'. Write = g7' F(g) and soo = g7'sogr and L)) = Cg (s500)°.
Let W denote the Weyl group of L{ defined by Cr (soo)°. Then the F-conjugacy classes of W’ are in
natural bijection with the 7-conjugacy classes of Wj. We will therefore regard B as a set of 7-conjugacy
classes of W. By Corollary 2.5.7, W[ is naturally a subgroup of W.

3.34.
We will need the following results.

Lemma 3.3.4. There is a natural isomorphism:
Ng(To)|T = W°.

Proof. Since ToTo =T, we have NG (To) € Ng(T). Itis easy to see that EToé~! = To is equivalent
to é0(£)~! € T for any £ € Ng(T). O

Lemma 3.3.5. We have
{x € G | xspox~' €To} = Ng(To)Ly.
Proof. Since xsoovc‘l lies in 7o, it normalises 7" and besides,
Cr (xsoox™1)° = Cr(s90)° =T := Cr (0)°.

By Proposition 2.5.3, T’ is a maximal torus of L’. Now so normalises x~!Tx and so C,-17, (so0)° is
also a maximal torus of L’. There exists [ € L’ such that C,-17, (s00")° = I[T’I"". Note that

C 17, (500)° = x 1O (xsgox™)°x = x1T7x.

We deduce that x/ normalises 77 and thus normalises 7' by Proposition 2.5.4. Write & = x/. From the
relation xsoox~! € To, we see that o(¢) € £T. By the proof of Lemma 3.3.4, we have £ € Ng(To).
Therefore, x € Ng(To)L’. Conversely, it is easy to see that every element x € Ng(To )L’ satisfies
xsoovc‘l eTo. O

Proposition 3.3.6. [Shu22, Proposition 10.2.13 (ii)]. We have
|AE = 1TE 1L @) 7303,

where 3. is the cardinality of the centraliser of T in W and 3, is the cardinality of the stabiliser of an
element of the T-conjugacy class v under the t-twisted action.
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3.4. Irreducible characters of GL,,(q) <o >

34.1.

Let H = []; GL,, for some positive integers n; and suppose that H is defined over [F, equipped with a
Frobenius F. Fix an F-stable maximal torus 7y C H and denote by Wy the Weyl group of H defined by
Ty.By §2.6.2,to each w € Wy, we can associate an F-stable maximal torus 7, of H in such a way that
Ty is associated to 1 € W. The HF -conjugacy class of T,, is determined by the F-conjugacy class of
w € Wy . The natural action of F on Wy induces an action on Irr(Wy ). Denote by Irr(Wg )T the set of F-
stable irreducible characters of Wy . Let ¢ € Irr(Wg)¥ . Then it can be extended to @ € Irr(Wy << F >).
Such an extension is not unique. We choose such an extension and put

RHEY = |Wy|™! Z G(WF)RI 1,

weWy

where 1 is the trivial character of T'L .

Theorem 3.4.1. [LS77, Theorem 2.2]. For any ¢ € Irt(Wy)¥ and some choice of @, the virtual
character Rgl is an irreducible character ofHF, and Rgl * Rg,l ifo#+¢.

Let 6 € Hom(H",Q}) (i.e., a linear character of H"'). Then 6 ® R 1 is also an irreducible character
of HY . Denote by 67,, the restriction of 6 to T% for any w € Wy . Then

6@ RI1=RHG = |Wy|™! Z GWF)RY or, .

weWy

3.4.2.
Let M c G be an F-stable Levi subgroup of G. Fix an F-stable maximal torus Tpy € M and let
T,, w € Wys be defined as in the previous paragraph. Denote by Irrreg(MF ) the set of regular
linear characters of M (see [LS77, §3.1 (a), (b)]). Concretely, if we choose an isomorphism M F o
[1: GL,, (¢%) for some positive intergers n;, d; and write a linear character 6 € Irr(M*') as (6;); for
some 6; € Hom(GL,, (¢%), Q}), then 6 is regular if and only if 6; # 6; whenever i # j and H?V # 6;
forany 1 < r < d; and any i.

For any connected reductive group H defined over F,, define ey := (=1)"k# where rky is the Fy-
rank of H. For any ¢ € Irr(Wy,)F and & € Hom(MF, Q;) choose an extension ¢ € Irr(Wyy< < F >)
and put

RSO = egent | Wy |™! Z G(WF)RS or, .

weWy
Note that RG 6 = e ep RS (Rl 6) (IDM20, Proposition 9.1.8]).

Theorem 3.4.2. [LS77, Theorem 3.2]. If @ lies in Irt,cq (M), then for some choice of @, the virtual
character Rg@ is an irreducible character of G¥. Moreover, all irreducible characters of G are of

the form RgH for a triple (M, ¢, 0) as above. The characters associated to the triples (M, ¢,0) and
(M’, ¢, 0") are distinct if and only if one of the following conditions is satisfied:

- (M,0) and (M’,0") are not G¥ -conjuguate;
- (M,0)=(M",0")and ¢ # ¢'.

3.4.3.
Letng € Z~o, and let n,, n_ € Zx be such that n, + n_ = ng. Let F be the Frobenius of GL,,, that sends
each entry of a matrix to its g-th power. Let Mog C GL,, be a standard Levi subgroup isomorphic to
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GL,, xGL,_; that is,

(34.3.1)

With respect to the isomorphism M(i) = GL,, (¢9) X GL,,_(q), we define a linear character 6 € Irr(Mé%)
to be (1 o det,n o det), where 1 is the trivial character of F and 7 is the order 2 irreducible character
of F,. Now Wiy, is isomorphic to &, X &, and so Irr(Way,,) is in bijection with P(n.) X P(n-).
By Theorem 3.4.2, each (yy, u—) € P(ny) X P(n-) defines an irreducible character of GL,(g), called
a quadratic-unipotent character. By [Shu22, Lemma 5.2.1], this character is o-stable (Here, o is the

automorphism of GL,,, defined in the same way as it is defined for GL,,).

3.4.4.

Let M c G be a Levi subgroup of the form Ly ,, as defined in §2.6.3, which is an F-stable and o--stable
Levi factor of some o-stable parabolic subgroup P C G. It can be written as My x My with My = GL,,
and M; = [];(GL,, XxGL,,) following the notations of §3.1.4. The actions of F' and o respect the
isomorphism M = My X M, and we will also denote by F and o their restrictions to My or M.

Let Ty C M be an F-stable and o -stable maximal torus. Then we can write T, = Ty X T} with
To € My and Ty ¢ M,. Denote by Wy (resp. W) the Weyl group of My (resp. M) defined by Ty (resp.
T1). Then o induces an action on W; and so an action on Irr(W;). Let ¢ € Irr(W;)F N Trr(W;)“ and
denote by ¢ an extension of ¢ to Wix < F >, Let 6 be a linear character of M f that is o--stable. Then
X1 = RZI‘@ as defined in §3.4.1 is a o-stable irreducible character of Mf . Let yo be a quadratic-
unipotent character of Mé: . Itis induced from a Levi subgroup M of My as in §3.4.3.

Theorem 3.4.3. [Shu22, Proposition 5.2.2, Proposition 5.2.3]. Suppose that 1Rn R0 is a regular linear
character ofMéVO X MlF Then EGEMR](\;/[ (x1 B x0) is a o-stable irreducible character of GF . Moreover,
every o -stable irreducible character of G*' is of this form.

Let (u4, u—) be the 2-partition defining the quadratic-unipotent character yq. Let m, and m_ be the
nonnegative integers such that (my,my —1,...,1,0) and (m_,m_ —1,...,1,0) are the 2-cores of
and p_, respectively. Write

m=my(my+1)/2+m_(m_+1)/2.

Proposition 3.4.4. [Shu22, Corollary 11.1.2]. With the notations in the above theorem, the o -stable
irreducible character €€y Rf,[ (x1 B xo) extends to a uniform function on G¥ o if and only if m < 1.
Moreover, the extensions of these characters (up to a sign) form a basis of the vector space of all uniform
functions on GF o

3.4.5.

In the rest of this section, we will restrict ourselves to the special case where M = L is a o -stable
standard Levi subgroup. Then we have eg = €y, MOF = GL,,(q), Mf = [1;(GL,, (¢) x GL,(g)),
Wi = [[;(&y;, X Sy,), and W = []; G,,. The action of F on W is trivial. A o-stable linear character
of MIF is of the form (6;,6;"');, where 6; is a linear character of GL,, (g) for each i. Then 1®n ® 6 is a
regular linear character of M(’)B XM lF if and only if 8 is regular in the following sense.

Definition 3.4.5. We say that a o-stable linear character 6 of M 1F is regular if 9; # Gji.] whenever i # j

and Giz # 1 for all i. The set of o-stable regular linear characters of M f is denoted by Irrg, (M f ).
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We will give a decomposition formula expressing the extension of RAG/[ (x1 ® x0) to GF o as alinear
combination of generalised Deligne-Lusztig characters when m < 1. Therefore, we assume m < 1 in
what follows.

3.4.6.
The set Irr(W;)“ is in bijection with []; P(n;), which is then in bijection with Irr(W). We define a
bijection

Irr(W{) = Trr(Wy) <

3.4.6.1
o {9} G40

as the composition of these two natural bijections.
Write Ny = (ne — me(mx + 1)/2)/2 and so ng = m + 2N, + 2N_. There exists a unique pair
(h1, hy) € N X Z such that

my = sup{hl + hz, —/’l] - /’12 - 1}, (3462)
m_ = sup{h1 - /’lz, /’l2 - ]’l] - 1}.
Note that exchanging u, and u_ changes (hy, hy) into (hy, —hy). More explicitly, if n is even, then
m=my =m_ =0, and so h; = hy =0, and if n is odd, then m = 1, in which case h; is always equal to
0 while hy = 1 if my =1 and hy = —1 if m_ = 1. Therefore, h; is redundant, and we will write € = h;.
Fix some integers ry > [(p,) and r— > [(p-) satisfying the following:
Assumption.

o ryand r_ are odd if € = 0;
o ry is even if and only if n, is odd, 7_ is even if and only if n_ is odd, if € = +1.

(See [Shu22, Remark 9.4.8].) Note that the parity of € only depends on that of n. Let (a4, 8+),, and
(a-, B-),_ be the 2-quotients of u, and u_, respectively (see §2.2.2). The 2-partition (a4, 8+)r, (resp.
(a-, B-);_) determines an irreducible character of Wy, (resp. Wy _), denoted by ¢, (resp. ¢_). Then
with the fixed r, and r_, the 2-partitions (u,, ) are in bijection with the data (h1, hy, ¢4, @), or rather
(€, ¢+, ¢-), via the quotient-core decomposition.

3.4.7.

To simplify, we will write 2, = Wy, and W_ = Wy _. Recall that W, is the Weyl group of M. Since
WO‘" = Wy, +~_, we will regard W, x W_ as a subgroup of W(;T in a natural way. Write T = Ty X 11,
with Ty € My and Ty € M. To each w = (w,, w_) € W, X W_ is associated an F-stable and o -stable
maximal torus Ty C My, in such a way that Ty is associated to 1 € M, X W_. There is an isomorphism
Ty = Ty, X Tyy— X GL,,, where T, is isomorphic to (k*)?™+ equipped with the Frobenius twisted by
w.. Toeach wy € Wl" is associated an F-stable and o -stable maximal torus 7,,, of M, in such a way
that 77 is associated to 1 € Wl‘" .ThenT,, w := T, X Ty is an F-stable and o -stable maximal torus of M.
Given 0 € Irryl, (M [) and €, we can define a o-stable linear character 6.,  of T}f, |, for any wy € W
and w € B, X W_ in the following manner. The component of 6,,, w on val is simply the restriction
of 6 to Tf, . The component of 6,  on T}%, is the trivial character 1. The component of 6,,, v on T}/
is the order 2 character n of I, composed with the product of norm maps. If € = 1, then we require
that the component on GL,,,(g) is 1, and if € = —1, then we require that the same component is r7. Now
0\, ,w extends to val w <0 > and we denote by 0,y,.w the extension which gives 1 at o-.

Remark 3.4.6. We can indeed require that éwl,w takes value 1 at 0. To define an extension 67wl,w is to
define the action of o on the given 1-dimensional representation p corresponding to 6,,, w. Denote by
/(o) this action of ¢-. In order for it to be well defined, it must satisfy 5(o)? = p(o?). Itis easy to check
that this condition also suffices. Now if 7 is odd or if G = °G, then o> = 1, and so we can obviously put
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p(0) = 1.1f G = °G and 0% = —1, we check that p(—1) = 1, and so the same definition of 5(o) works
in this case as well.

Theorem 3.4.7 [Shu22, Theorem 11.1.1]. Let y be the o -stable irreducible character Rf,l (x1® xo) and
let ¢ be an extension of x to G¥. Suppose that y1 is defined by 6 € Irrr(gg(Mf) and {¢} € Irr(W)7,
and that y is defined by a 2-partition which determines the data N, N_ and (€, ¢, ¢_). Then for some
choice of the extension @, the following equality holds up to a sign,

Floro = 1B x WX W™ 3" o (w)o-(w) w1 FYRET Oy - (3.4.7.1)

(Wy,w_,wi)
eﬂBerQB,le”

Remark 3.4.8. Since the action of F on W is trivial, the extension ¢ can, in fact, be chosen to be the
trivial one (i.e., g(wi F) = p(wy)).

3.5. Types

We introduce some combinatorial data called types that are used to describe o-stable irreducible
characters of G(g).

3.5.1.
Types are data of the form

w=w,o_(w)i<i<l

where w, and w_ are 2-partitions, and (w;) is an unordered sequence of nontrivial partitions, the length
of which could be 0. We will often write w. = (w;)1<i<; and © = W w_w, for brevity. Such data can
equally be written as w,w_(m ) ep, where m, is the multiplicity of A in the sequence w.. Two types
wiw_(m,) and w,w’ (m)) are regarded as the same if and only if W, = W}, w_ = W’ and m, = m/, for
all 1 € P. The size of a type is |w| := |w| + |w-| + 3; |w;|. The set of types of size a will be denoted
by T(a), and we will write T = Ugez,,T(a). For any w € T, we will write A(w) = Alw)A(w-)w.
(recall that A(—) means the symbol corresponding to a given 2-partition). Denote by ¥ the set of
ordered types (i.e., the data w,w_(w;) with (w;) being an ordered sequence). There is an obvious map
from ¥ to ; therefore, anything that can be defined for elements of T is naturally defined for elements
of T. Given a = a.a_(a)i<i<i, B = B.B_(Bi)i<i<i, € %, we write @ = B, if [| = [, = [ and for
each 1 <i <[, we have |a;| = |Bi|, and moreover, |a.| = |$,]| and |@_| = |B_|. A type w (ordered or
unordered) can be augmented by € € {—1, 0, 1} and the resulting data written as ew. Define |ew| := |w|.

We will denote by T° the set of unordered sequences A,4_(4;); <; <1, defined in a way similar to types
except that A, and A_ are partitions. We may also write such a sequence as A,4_A,, with A, = (1;). The
ordered version T° of these data can be defined in an obvious way. Define || := |A,| + |[A_| + 3; | A;].

The subset {w € T | w; = w- = @} will be denoted by T ... We may also regard it as a subset of ‘T°,
so that T, = T N T°. Thus, for any a € I, the size || is automatically defined, and we will denote by
[(@) its length. For any @ = (m ) ep € T, define

N(@) = ]—[mﬂ!, (3.5.1.1)
A

and
K(@) = (=)@ (). (3.5.1.2)

If @ is a 2-partition, then we define {a}, to be the partition with 2-core (1) and 2-quotient @ and
define {a} to be the partition with trivial 2-core and 2-quotient @. For any @ = (m ) ep € T, define
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@? := (2m)) ep € .. Define a natural map

{(}:{-1,0,1} xT — T°

3.5.1.3
ew+— A A_A, = {ew} ( )

as follows. The partition A, has w. as the 2-quotient and has trivial 2-core except when € = +1 and
Ay = {w,}1, or when € = —1 and A_ = {w_},. We require that A, = w?>.
We define a natural map

[]1:T— P? (3.5.1.4)

as follows. Let w = w,w_w, € T. Regarding P? as signed partitions, it sends each part of w; to a
positively signed part with the same size and keeps the sign and size of each part of w; and w-. The
union of these signed parts is the image of [ ] and is denoted by [w].

Denote by T the subset of T consisting of elements of the form

w = (2, (1)™)(2, (1" ) ((1™));

where m, = |w|, m_ = |w_| and m; = |w;|. Equivalently, the elements of Ty can be written as a
sequence of integers: w = mym_(m;); and w, = (m;);. We define its dual type by

" = ((my), 2)((m-), 2)((m;));.
Define the surjective map
§: ¥ — I, (3.5.1.5)

by S(w) = |w,||w_|(Jw;])i. If @ € Ty, then we will denote by T(w) the inverse image of w under~§.
Two ordered types @ and B satisfy @ =~ B if and only if they lie in the same T (w) for some w € ;.
The unordered version of S and T can be similarly defined.

3.5.2.
The relevance of types is as follows. The group W, x W_ X W in Theorem 3.4.7 is isomorphic to
Wy, X Wx_ X [1)<;<; Sy, for some integers n; and I. The irreducible characters and the conjugacy
classes of this group are both parametrised by T (w), where w = N,N_(n;);. Therefore, the characters
(¢4, ¢, @) and the conjugacy class of (w1, w) as in Theorem 3.4.7 can be represented by an ordered type.
In view of Lemma 3.2.1, if t € (T?)° (and N_ = 0 if n is even), then the Cg (t0)°F -conjugacy classes
of the F-stable maximal tori of Cg (f0)° are also paremetrised by T (w). A semi-simple conjugacy class
C c Go is determined by an N-tuple of elements of kk; thus, we define the type of C to be the element
of T encoding the multiplicities of ‘eigenvalues’, with m. being the multiplicity of 1 and m_ that of i.
Let y € Irr(GL,,(¢))“ . Then there exists some Levi subgroup M such that y = egep RJC\;/I (x1 ® xo0)
as in Theorem 3.4.3. Denote by Irrg, C Irr(GL,(gq))“ the subset of characters such that M can be chosen
to be a standard Levi subgroup. Define a map

7o Irrg, — T° (3.5.2.1)

as follows. We first fix a choice of M and a realisation of y as an induction: egeps Rz% (x1 ® xo). Let
(44, A-) be the 2-partition determined by the quadratic-unipotent part yo. The character y| of M f is
determined by some ¢; € Irr(W;), which can be represented by a sequence of partitions A, € ., since
W is a product of symmetric groups. Now 1,44, lies in T°. This is the desired 7, (). Note that ¢, in
fact, lies in Irr(W;)“, and so the multiplicity of any partition A in A, is an even number. Define a map

e Iy, — {-1,0,+1} x T. (3.5.2.2)
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Let (€, ¢+, ) be determined by xo as in §3.4.6 and let ¢ € Irr(W[”) be the inverse image of ¢; under
the bijection (3.4.6.1). Now (¢4, ¢, ¢) is an irreducible character of W, x W_ x W, and so gives
an element w € T. We then define n,(y) = ew. In §3.4.6, we have described a bijection between
the data (e, ¢4, ¢_) and P?(ng), and a bijection { } : Irr(W[) = Irr(W;)“. The map (3.5.1.3) should
be thought of as sending (e, ¢4, ¢—, ) to the character of the Weyl group of Mgy X M, that underlies
Rf/l (x1 ® x0). Now we have a commutative diagram

{-1,0,+1} x I
T
Irrso; {} (3.5.2.3)
N
2:0
Define
Irr{ = '), %, =71 (ew). (3.5.2.4)

Its elements are called o--stable characters of type 4 and type ew, respectively. Note that Irr{" is empty
unless each partition in A, has even multiplicity.

By definition, all o-stable characters of the same type can be obtained from a common M as
in Theorem 3.4.3, but with different 6 € Irr, (M lF ). Observe that the quadratic-unipotent part of a
character is completely determined by its type. Therefore, we have a surjective map

e, (M) — Irr?,, . (3.5.2.5)

The cardinality of the fibre of this map is equal to 2!(“*) N (w,.). If we write 6 = (6;)1<i<;, with [ = [(w.),
then the factor 2 comes from the permutation 8; < 9;1, and the factor m,! of N(w.) comes from the
permutation of those 6; corresponding to the same A.

We also have an explanation of the map [ ] (3.5.1.4). Recall (§3.4.7) that the group W, x W_ x W7
is naturally a subgroup of Wi X W7, which is contained in W7. It is easy to see that [ ] is just the
map between conjugacy classes induced by the inclusion W, X W_ x W7 — W. Alternatively, by
Lemma 3.2.1, the Weyl group W’ of the centraliser of a semi-simple element C (#07)° is isomorphic
to Wy, X Wy_ X [11<;i<; Sy, for some integers n; and [ (assuming N_ = 0 if n is even). Corollary 2.5.7
gives an injective map W’ — W . Again, the map induced between conjugacy classes is just [ ].

Finally, the set B, that we introduced in §3.3.3 to compute the Deligne-Lusztig characters has an
alternative description in terms of types.

Lemma 3.5.1. Let so € T¥ o be a semi-simple element. Let W' be the Weyl group of Cg (so)° defined
by (T7)°. Suppose that there is an isomorphism W' = Wy, X Wy X [11<;<; Sn, so that its conjugacy
classes are parametrised by T(B), with B = NyN_(n;)1<i<i € Zs (and N_ = 0 ifn is even). Let t € W&
and represent its conjugacy class by a 2-partition T. Then

B:={veI(B|v]=1}

Proof. This is simply unwinding the definitions. O

4. GL, <o >-Character varieties

In this section, we work over an algebraically closed field k with char k # 2.
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4.1. Definition of GL,, < o>-character varieties

4.1.1.

Let p’ : 3/ — ¥’ be a branched double covering of compact Riemann surfaces and let R C X’ be the
ramification locus. Put ¥ = X’ \ R and £ = ¥’ \ p’~!(R) and denote by p : £ — X the restriction of
p’. Fix a base point x € X and let ¥ € p~!(x) be the base point of ¥. We will write 7 (Z) = 71 (Z,x)
and 7 () = m; (£, %). The representation variety Rep(X) is defined as the space of homomorphisms p
that make the following diagram commute:

m1(X) s G<o>

N A

Gal(2/%) = p,

where g is the quotient by 71 (X) and g5 is the quotient by the identity component G. The character
variety Ch(Z) is defined as the categorical quotient of Rep(X) for the conjugation action of G on
G <o >. This is the G < o>-character variety.

4.1.2.

Denote by g the genus of X’. By Riemann-Hurwitz formula, there is an even number of branch points.
Let 2k = |R| be the cardinality and write R = {x;}1<j<ox. We may choose the generators «;, §;,
1 <i<g,andvy;, 1< j <2k, of mi(X) that satisfy the relation

1

8 2k
[, il [ [y =1 4.1.2.1)
=1 =1

J

The generators a;, 8;, 1 < i < g, are the images of some elements of 7{(Z), while vi-1 < J <2k,
being small loops around the x;’s, lie in 71(X) \ 71(2). Let C = (Cj)i<j<ok be a tuple of semi-
simple G-conjugacy classes contained in the connected component Go. We define the subvariety
Rep-(X) c Rep(X) as consisting of p € Rep(X) such that p(y;) € C; for all j. Then we define
Ch¢(X) := Rep(X)//G. The representation variety has the following presentation:

2k
Repe(2) = {(Ar, B)i(X;); € G x| | ¢; |
Jj=1

8 2k
[ tan B[ ]x =1 4.122)
g LI

i=1

4.1.3.
There is a bijection between the semi-simple conjugacy classes in °G \ G and those in °G \ G, sending
the class of 7o to that of to, with the o in °G interpreted in the appropriate sense. If C is a tuple of
semi-simple conjugacy classes in °G \ G, then we define a tuple C* of conjugacy classes in °G \ G by
applying this bijection componentwise.

It is not difficult to see that the “G-character variety Che is isomorphic to the ‘G-character variety
Chg-. Therefore, if n is even, we may, and will, only work with *G-character varieties.

4.2. Generic conjugacy classes

4.2.1.
Let C = (Cj); be a 2k-tuple of semi-simple conjugacy classes contained in Go~. According to §3.1.3,
each class C; has a representative ¢ ;0 € (T'7)°c. The following definition is a special case of [Shu23,
Definition 3.3], as is explained in [Shu23, §4.4].

Each ¢, is given by an N-tuple (a;j 1,...,a; n) witheach a;, € k*. Write A = {1,..., N}. Forgmy
J> any subset A C A and any |A|-tuple of signs € = (ey)yea, € € {£1}, write [A,e]; =[], ea aji’,.
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We say that C is generic if forany 1 < N’ < N, any 2k-tuple (A1, ..., Ay) of subsets of A such that

|Aj| = - = |Ag| = N’, and any 2k-tuple of N’-tuples (e', ..., e**) of signs, we have
[Ar,e']y - [Ag, ey # 1. (4.2.1.1)
We say that C is strongly generic if for any N’, (A1, ..., As), and (e', ..., e*) as above, we have
[Ar, '] [Aok, €] # 1. (4.2.1.2)
4.2.2.

Generic conjugacy classes in the finite group G (g) < o >can be defined in the same way, but only for
some particular conjugacy classes.

Let C = (Cj); be a 2k-tuple of semi-simple G(qg)-conjugacy classes contained in G(g)o . Assume
that foreach 1 < j < 2k, the G-conjugacy class containing C; has a representative ¢ jo € (T7)°F o; that
is, 7; is determined by an N-tuple (a; 1, ...,a; n) with each a; , € F . Note that we do not require C;
itself to have a representative of this form. As is explained in §3.2.1, this is a very restrictive condition
on the conjugacy classes. Generic condition can be defined only for these conjugacy classes.

With the same notations as in the previous paragraph, we say that C is generic (resp. strongly generic)
ifforany 1 < N’ < N, (Aq,...,Ax), and (e',...,e*), we have

[Ar,e']i - [Aok, € ]ok # 1 (resp. + 1). (4.2.2.1)

Lemmad4.2.1. Let (Cj)1<j <2k be ageneric tuple of semi-simple conjugacy classes contained in Go, with
each C; given by an N-tuple (a1, ...,a;n)asin §3.1.3. Let N', N” € {1,...,N}. Let (Aq, ..., Axy)
and (A1, ..., A},) be two 2k-tuples of subsets of A such that |A(| = --- = [Ay| = N, [A]| = =
|AJ | = N"andforany 1 < j < 2k, A; OA} =0. Let (e, ...,e*) (resp. (', ..., e**)) be a 2k-tuple
of N’-tuples (resp. N”'-tuples) of signs. Then

+1
[Ar,e']r - [Aok, e oy # ([A',e/l]l e [Aék,e'zk]zk) ~
Proof. Suppose
1 2%k ;o o2k \€
[A,e ] [Aok, e ok = ([Al,e I [Ag. e ]2k) ,

with € = +1. For'eachj, ppt Aj =A;U A}. For each j, define a (N’ + N"’)-tuple of signs & by é{; = e{,
ify € Aj,and &), = —ee; if y € A’ Then

(A, &' ] [Ag, 8 ox = 1,
which is a contradiction. O
4.2.3.

Here we introduce another constraint on the tuple C = (C;); <; <2« of semi-simple conjugacy classes.

(CCL). We say that a semi-simple conjugacy class C C Go satisfies (CCL) if it has no ‘eigenvalue’
equal to +i. We say that C satisfies (CCL) if C; satisfies (CCL) for all .

In view of Lemma 3.2.1, that a semi-simple conjugacy class in Go satisfies (CCL) essentially
means that it has a representative to- € (T7)°c such that Cg (f07)° is a Levi subgroup of Cg(07)°. The
exceptional case is when the multiplicity of i among the ‘eigenvalues’ is equal to one, and n is even,
since SO, = Gy,,.

Our main results in §7 will assume the (CCL) property.
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4.3. The R-model

It is a general fact that Che is defined over a finite-type subring of C. But we want to be specific about
the base ring so that when passing to finite fields, the conjugacy classes remain generic.

4.3.1.
The conjugacy classes (C|); are represented by some N-tuples of complex numbers (cf. §3.1.3)
E/ = (1,..., l,i,...,i,a{,...,a{,...,aé,...,a{j),
satisfying
q) al ¢ {al, (al)™',-al,—(al)™"} for any j and any r # s;

(ii) (al)* # 1 foranyjand r;

(iii) [Aj,e'];---[A%,e*,]o, # 1, for any integers N’ with 1 < N’ < N, any 2k-tuple of subsets
(A, ..., Ap)of {1,...,N}, such that |[A|| = --- = |Ayx| = N’, and any 2k-tuple of N’-tuples of
signs (e!,...,e**) (cf §4.2.1).

Denote by Ry the subring of C generated by {(ai)il | all 7, j} and i if any E/ contains i. Let S € Rg be
the multiplicative subset generated by

(i) (al)? - (a})? and (a})? - (a])2 forany j and r # s;
(ii) (al)* -1 for anyjand r;
(iii) [Aj,e'];---[A%, e*]o, — 1, forany N, (Aq,...,Az) and (e', ..., e*) as above.

Define the ring of generic eigenvalues as R := S~'Ry. We will see below that the character variety is
defined over R. _ ) _ )

Let u/ = mim’ (m]) € T be the type of C;, so that/; = [(pl). Write n/. = 2m/ and write n, = 2m,
or n}. = 2m? + 1 according to the parity of n.

4.3.2.

Let Aj be the polynomial ring over R with n*(2g +2k) indeterminates. These indeterminates should be
thought of as the entries of some nxn matrices A1, By, ... Ag, Bg, X1, ... Xor. Let Ag be the localisation
of Aj at the determinants det A;, det B;, detX;, 1 <i < g, 1 < j < 2k. Let Iy C Ag be the ideal
generated by

(i) The entries of [A1,B1] - [Ag, Bg]X10 - - Xoro — 1d (note that X10Xo0 = X0 (X>) and o is
defined over Z);
(ii) Forall 1 < j < 2k, the entries of

1 ) )
(X;0(X;))* - 1d) ]_[(xjo-(xj) —(a])*1d)(X,;0(X;) - (al) 2 1d); (4.3.2.1)
r=1

(iii) For all 1 < j < 2k, the entries of the coefficients of the following polynomial in an auxiliary
variable #:

. L . j i : J
det(t1d —X,0(X;)) — (1 — 1)™ (1 + 1)™ ﬂ(r — (a))H)mr ﬂ(; — (a}) . (4.3.2.2)

Define A := Ay/+Iy. By Lemma 3.1.1, the relations (ii) and (iii) guarantee that the base change to C
recovers the complex representation variety with the correct conjugacy classes. Then Rep, := Spec A
is the R-model of Rep,. Let G act on A; and B;, 1 < i < g, by conjugation, and acton X;, 1 < j < 2k,
by the o-twisted conjugation. Then Ch¢ := Spec A% (R is the R-model of Che, since taking invariants
commutes with flat base change ([Ses77, §1.2 Lemma 2]).
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4.3.3.

Let ¢ : R — F, be any ring homomorphism and let ¢ : R — Pq be its composition with F, — Fq.
Regard G = GL,, as an algebraic group over Fq. For each 1 < j < 2k, denote by C}b the subvariety of G
over F,, defined by §4.3.2 (ii), (iii). Similarly, denote by C]‘.Z3 the subvariety of G over I_Fq. We may regard
C}E as a semi-simple conjugacy class contained in Go. We have Cf ®F, F, = Cf. Each class C}’S has
the same type as the original complex conjugacy class and has ‘eigenvalues’ (cf. §3.1.3) ¢(a{ ) (resp. 1,
resp. ¢(i)) of multiplicity ,u{ (resp ui, resp. /) in the corresponding conjugacy class. In particular, C]‘./;
has a representative in (77)°F o. Denote by Repgj and Repf the varieties over F, and ]Fq, respectively,
obtained by base change from Rep, — and similarly for Ch¢. The variety Repg is defined by the same
equation as (4.1.2.2), but over F,. Then Repg’(Fq) can be identified with Repfj3 (Fq)F :

2k 8 2k
Repf (Fy) = {(Ai B)(X) € G(@)* x| [ 7 F) | | |14 BA] [ X, = 11, (4.33.1)
j=1 i=1 j=1

where C]f) (Fy) = C}S (Fy)F is considered as contained in GL,, 0.

Notation 4.3.1. For each j, choose s; € C; and define

A©Q) =[] CalspiCals))”.
J

Different choices of the s;’s give isomorphic A(C). Its direct factors are either the trivial group or the
2-element group p,.

Notation 4.3.2. Recall §3.2.1 that C¢(]F ) is, in general not a single G (g)-conjugacy classes. Denote
by C; + the G(g)-conjugacy class contalned in C (F,) which has a representative in (T°)°F and by

C; _ the other class if C¢(]Fq)F is not a single G(q) -conjugacy class. For a given 2k-tuple c? = (C¢)
of semi-simple conjugacy classes in Go and any e = (e;) € A(C), we will denote by Ce = (Cj ;) the

2k-tuple of G(g)-conjugacy classes contained in C ¢ IfBisa tuple of conjugacy classes of the form
Ce, we define sgn€ =[] e;.

In the following Proposition, we fix the generic tuple of conjugacy classes and omit the subscript C.
By the definition of the base ring R, the tuple C? is also generic.

Proposition 4.3.3. We have the following formula:

|Ch?(F,)| = ——|Rep?(F,)|. (4.3.3.2)

IG( )l
Proof. By [Ses77, §11.4 Theorem 3], there is a natural bijection of sets

Ch? (F,)e=s(Rep?//G) (F,). (4.3.3.3)
Since C? is generic, each element of Rep"g(I_Fq) is an irreducible G < o >-representation according

to [Shu23, Proposition 3.8]. By [Shu23, Proposition 4.4], irreducible G < o>-representations have
finite abelian stabilisers; thus, every G(Pq)-orbit is closed. We then have a natural bijection of sets

(Rep?//G)(E,) = Rep®(F,)/G (E,). Therefore,

Ch?(F,) = Ch?(F,)" = (Rep?(F,)/G (F,)" (4.33.4)
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(i.e., the set of F-stable G-orbits). Since G is connected, each F-stable G(Fq)—orbit in Rep? (Fq) must
contain some F-stable point by the Lang-Steinberg theorem. We will prove that the number of F-stable
points in each such orbit is exactly |G (F,)|.

Let O be an F-stable G (F,)-orbit in Rep? (F4). Then OF splits into some G (Fy)-orbits according to
the stabliliser in G of some F-stable point, say x € OF . By [Shu23, Proposition 4.4] again, the stabiliser
is a finite abelian group H. The number of G(F,)-orbits in OF is equal to the number of F-conjugacy
classes in H.

Since H is abelian, each F-conjugacy class of it is of the form {hohF(h)™' | h € H} for some
ho € H. Again, because H is abelian, the map i +— hF(h)~! is a group homomorphism, with kernel
K ={h € H| F(h) = h}. Denote by I the image of this homomorphism. Then the F-conjugacy classes
in H are the cosets hyl; therefore, there are |H|/|I| = |K| of them.

That is, the number of G (FF,)-orbits in O is |K|. However, x has K as its stabiliser in G (F), so the
cardinality of the G (F,)-orbit containing x is |G (F,)|/|K|. If for some g € G(F,), g.x is an F-stable
point contained in another G