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Closure of the Cone of Sums of 2d-powers
in Certain Weighted `1-seminorm
Topologies
Mehdi Ghasemi, Murray Marshall, and Sven Wagner

Abstract. In a paper from 1976, Berg, Christensen, and Ressel prove that the closure of the cone of
sums of squares

∑
R[X]2 in the polynomial ring R[X] := R[X1, . . . ,Xn] in the topology induced

by the `1-norm is equal to Pos([−1, 1]n), the cone consisting of all polynomials that are non-negative
on the hypercube [−1, 1]n. The result is deduced as a corollary of a general result, established in the
same paper, which is valid for any commutative semigroup. In later work, Berg and Maserick and
Berg, Christensen, and Ressel establish an even more general result, for a commutative semigroup
with involution, for the closure of the cone of sums of squares of symmetric elements in the weighted
`1-seminorm topology associated with an absolute value. In this paper we give a new proof of these
results, which is based on Jacobi’s representation theorem from 2001. At the same time, we use Jacobi’s
representation theorem to extend these results from sums of squares to sums of 2d-powers, proving,
in particular, that for any integer d ≥ 1, the closure of the cone of sums of 2d-powers

∑
R[X]2d in

R[X] in the topology induced by the `1-norm is equal to Pos([−1, 1]n).

1 Introduction

We denote the polynomial ring R[X1, . . . ,Xn] by R[X] for short. It was shown by
Hilbert [12] that for n ≥ 2 there are polynomials in R[X] that are non-negative on
all of Rn but are not in the cone

∑
R[X]2 consisting of sums of squares. The first

explicit example was given by Motzkin [20]. Today, many examples are known, e.g.,
see [6]. In [2] Berg, Christensen, and Jensen prove that, in the finest locally convex
topology,

∑
R[X]2 is closed in R[X]; also see [22].

In marked contrast to this result, in [3] Berg, Christensen, and Ressel show that
the closure of

∑
R[X]2 in R[X] in the topology induced by the `1-norm is equal to

Pos([−1, 1]n), the set of all polynomials in R[X] that are non-negative on [−1, 1]n.
In [3] the aforementioned result is established in the general context of commutative
semigroups. In [4] and [5] the results in [3] are extended further to include commu-
tative semigroups with involution and topologies induced by absolute values.

Let d be a positive integer and let M ⊆ R[X] be a
∑

R[X]2d-module that is
archimedean. In [13] Jacobi proves that any f ∈ R[X] that is strictly positive on

KM := {x ∈ Rn | g(x) ≥ 0 for all g ∈ M}

belongs to M. Actually, Jacobi proves a more general version of this result that is valid
for any commutative ring A with 1; see Section 2. There is special interest in the case
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where d = 1, A = R[X] and M is finitely generated, because of the application to
polynomial optimization in this case; see [16]. Jacobi’s result in this case can be seen
as a consequence of Putinar’s criterion in [21].

In this paper we use Jacobi’s theorem to give a new proof of the result of Berg,
Christensen, and Ressel in [3] referred to above. At the same time we use Jacobi’s
theorem to extend this result, proving, for any integer d ≥ 1, that the closure of∑

R[X]2d in R[X] in the topology induced by the `1-norm is equal to Pos([−1, 1]n).
As in [3–5], extensions of this result to absolute values on commutative semigroups
with involution are also developed.

In Section 2 we provide necessary background. In Sections 3, 4, and 5 we explain
how Jacobi’s result can be exploited to prove the aforementioned results of Berg et
al., and also how it can be used to generalize these results, replacing 2 by 2d. Special
attention is paid to the polynomial case, i.e., the case where the semigroup in question
is (Nn,+); see Section 3. In Section A, we explain how the simple proof of Jacobi’s
result in the case d = 1 given in [19, Theorem 5.4.4] can be extended to the case
d > 1.

2 Background

Let A be a commutative ring with 1. For simplicity assume that Q ⊆ A. Denote by XA

the set of all (unitary) ring homomorphisms α : A→ R. For a ∈ A, define â : XA →
R by â (α) = α(a). Give XA the weakest topology making each â , a ∈ A continuous.
We have a ring homomorphism ̂ : A→ Cont(XA,R) defined by a 7→ â .1

Example 2.1 If A = R[X], XA is naturally identified with Rn via α ↔ x :=
(α(X1), . . . , α(Xn)), and â (α) = a(x), i.e., â is the polynomial function on Rn associ-
ated with the polynomial a. Here one uses the fact that the only ring homomorphism
from R to R is the identity map; see [19, Proposition 5.4.5].

We will be interested in the map a 7→ â |K from A to Cont(K,R), where K is a
subset of XA. We record the following result.

Theorem 2.2 Suppose A is an R-algebra and K is a compact subset of XA. Then

(i) the image of A in Cont(K,R) is dense in the topology induced by the sup norm
‖φ‖ := sup{|φ(α)| | α ∈ K};

(ii) if L : A → R is an R-linear map satisfying L(Pos(K)) ⊆ R≥0, then there exists a
unique positive Borel measure µ on K such that for all a ∈ A, L(a) =

∫
â dµ.

Here, Pos(K) := {a ∈ A | â ≥ 0 on K}.

Proof (i) This is immediate from the Stone–Weierstrass Approximation Theorem.
(ii) L vanishes on the kernel of ̂|K so L induces an R-linear map L ′ : A ′ → R,

where A ′ is the image of A under ̂|K. An application of the Hahn–Banach Theorem
shows that L ′ extends to a positive R-linear map L ′ ′ : Cont(K,R)→ R. The density
of A ′ in Cont(K,R) implies the extension L ′ ′ of L ′ is unique. The existence and
uniqueness of µ now follow using the Riesz Representation Theorem.

1 We will abuse the notation occasionally, denoting â (α) by a(α) and â by a.
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Remark 2.3 (i) Theorem 2.2(ii) is well known. It is implicit, for example, in the
proof of [15, Théorème 14]. In the special case A = R[X] it is a consequence of
Haviland’s Theorem; see [10, 11]. See [19, Theorem 3.2.2] for a general result that
includes Theorem 2.2(ii) and Haviland’s Theorem as special cases.

(ii) Observe that the converse of Theorem 2.2(ii) holds trivially. If L(a) =
∫

â dµ
for all a ∈ A, where µ is a positive Borel measure on K, then L(a) ≥ 0 for all
a ∈ Pos(K).

We recall some basic terminology. A preprime of A is a subset P of A satisfying

P + P ⊆ P, P · P ⊆ P, and Q≥0 ⊆ P.

P is said to be generating if P − P = A. If there exists a positive integer d such that
a2d ∈ P for all a ∈ A, then P is called a preordering, more precisely, a preordering of
exponent 2d.2 Denote by

∑
A2d the set of all finite sums of 2d-powers of elements of

A.
∑

A2d is the unique smallest preordering of A of exponent 2d. The polynomial
identity

n!X =

n−1∑
h=0

(−1)n−1−h

(
n− 1

h

)[
(X + h)n − hn

]
,

see [9, p. 325], applied with n = 2d, shows that any preordering is generating.
A subset M of A is called a P-module if

M + M ⊆ M, P ·M ⊆ M, and 1 ∈ M.

M is said to be Archimedean if for all a ∈ A there exists n ∈ N such that n + a ∈ M.
The non-negativity set of M in XA is the subset KM of XA defined by

KM := {α ∈ XA | α(M) ⊆ R≥0} = {α ∈ XA | â ≥ 0 at α for all a ∈ M}.

Remark 2.4 If M is Archimedean, then KM is compact. This is well known. For
each a ∈ A there exists na ∈ N such that na ± a ∈ M. The map α 7→ (α(a))a∈A

identifies KM with a closed subset of the compact space
∏

a∈A[−na, na].

Theorem 2.5 (Jacobi) Suppose M ⊆ A is an archimedean
∑

A2d-module of A for
some integer d ≥ 1. Then, for all a ∈ A,

â > 0 on KM =⇒ a ∈ M.

Proof See [13, Theorem 4].

See [1, Hauptsatz] and [15, Théorème 12] for early variants of Theorem 2.5. See
[7, Theorem 6.2] and [19, Theorem 5.4.4] for other proofs of Theorem 2.5 in the case
d = 1. See Section A for the extension of the proof in [19, Theorem 5.4.4] to the case
d > 1. See [18, Theorem 2.3] for an extension of Theorem 2.5.

2Preorderings of odd exponent are not interesting. If P is a preordering of odd exponent, then P =
P − P = A.
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Corollary 2.6 Suppose A is an R-algebra and M ⊆ A is an archimedean
∑

A2d-
module of A for some integer d ≥ 1. If L : A → R is an R-linear map satisfying
L(M) ⊆ R≥0, then there exists a unique positive Borel measure µ on KM such that for
all a ∈ A, L(a) =

∫
â dµ.

Proof Suppose a ∈ A, a ≥ 0 on KM , and ε ∈ R, ε > 0. Then a + ε > 0 on KM

so, by Jacobi’s theorem, a + ε ∈ M. Then L(a + ε) = L(a) + εL(1) ≥ 0. Since ε > 0
is arbitrary, this implies L(a) ≥ 0. This proves L(Pos(KM)) ⊆ R≥0, so the result
follows now, by Theorem 2.2(ii).

By a topological R-vector space we mean an R-vector space V equipped with a
topology such that the addition and scalar multiplication are continuous. There is
no requirement that the topology be Hausdorff. We are interested here in the case
where the topology is defined by a seminorm. Such a topology is in particular locally
convex. We record a version of the Hahn–Banach Separation Theorem.

Theorem 2.7 Suppose V is a topological R-vector space, A and B are non-empty dis-
joint convex subsets of V and A is open in V . Then there exists a continuous linear map
L : V → R and t ∈ R such that L(a) < t ≤ L(b) for all a ∈ A and for all b ∈ B. If B is
a cone, we can choose t = 0.

Proof See [14, Theorem 7.3.2] for the proof of the first assertion, [8, Theorem 2.4]
for the proof of the second assertion.

Corollary 2.8 Suppose V is a locally convex topological R-vector space and C is a cone
in V . The closure of C in V consists of all v ∈ V satisfying L(v) ≥ 0 for all continuous
linear maps L : V → R such that L ≥ 0 on C.

Proof This is immediate from Theorem 2.7.

3 Polynomial Case

Throughout, N := {0, 1, . . . }, n denotes a fixed positive integer, X denotes the
n-tuple of variables X1, . . . ,Xn, and Xs := Xs1

1 . . .X
sn
n , for s = (s1, . . . , sn) ∈ Nn.

For any function φ : Nn → R≥0, we define

Kφ := {x ∈ Rn | |xs| ≤ φ(s) for all s ∈ Nn}.

Fix an integer d ≥ 1. We denote by Mφ,2d the
∑

R[X]2d-module of R[X] generated
by the elements φ(s) ± Xs, s ∈ Nn. Mφ,2d is Archimedean. This is a consequence of
the fact that∑

s

| fs|φ(s) + f =
∑
fs>0

| fs|
(
φ(s) + Xs

)
+
∑
fs<0

| fs|
(
φ(s)− Xs

)
∈ Mφ,2d,

for any f =
∑

s fsX
s ∈ R[X]. Also, Kφ is the non-negativity set of Mφ,2d in Rn, so,

by Jacobi’s theorem, any f ∈ R[X] strictly positive on Kφ belongs to Mφ,2d.3

3If one insists on Kφ 6= ∅ (equivalently,−1 /∈ Mφ,2d), it is necessary to assume that φ(0) ≥ 1.
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Definition 3.1 A function φ : Nn → R≥0 is called an absolute value if

(i) φ(0) ≥ 1;
(ii) φ(s + t) ≤ φ(s)φ(t) for all s, t ∈ Nn.

Suppose now that φ is an absolute value. Denote by R[[X]] the ring of formal
power series in X1, . . . ,Xn with coefficients in R. For f =

∑
s fsX

s ∈ R[[X]] define
the φ-seminorm of f to be ‖ f ‖φ :=

∑
s | fs|φ(s) and denote by R[[X]]φ the subset of

R[[X]] consisting of all f ∈ R[[X]] having finite φ-seminorm. Using

‖ f + g‖φ ≤ ‖ f ‖φ + ‖g‖φ, ‖r f ‖φ = |r|‖ f ‖φ, and ‖ f g‖φ ≤ ‖ f ‖φ‖g‖φ

(these are easily verified), we see that R[[X]]φ is a subalgebra of the R-algebra R[[X]].
It is the closure of R[X] in the topology induced by the φ-seminorm.

Lemma 3.2 Suppose r ∈ R, s ∈ Nn, r > φ(s). Then (r ± Xs)1/2d ∈ R[[X]]φ.

Proof We may assume that s 6= 0. Denote by
∑∞

i=0 ait i the power series expansion of
f (t) = (r ± t)1/2d about t = 0, i.e., ai = ( f (i)(0))/i!. This has radius of convergence
r so it converges absolutely for |t| < r. In particular, it converges absolutely for
t = φ(s), i.e.,

∑∞
i=0 |ai |φ(s)i < ∞. Since φ(is) ≤ φ(s)i for i ≥ 1, this implies∑∞

i=0 |ai |φ(is) <∞, i.e., (r ± Xs)1/2d =
∑∞

i=0 aiX
is ∈ R[[X]]φ.

An important example of an absolute value, perhaps the most important one, is
the constant function 1. If φ = 1, then Kφ = [−1, 1]n and the φ-seminorm is the
standard `1-norm ‖ f ‖1 :=

∑
s | fs|.

Theorem 3.3 Suppose φ is an absolute value on Nn and f ∈ R[X], f > 0 on Kφ.
Then f ∈

∑
R[[X]]2d

φ .

Proof For each real δ > 0 consider the function φ + δ : Nn → R≥0 defined by

(φ + δ)(s) := φ(s) + δ.

Since
⋂
δ>0 Kφ+δ = Kφ, each Kφ+δ is compact and f > 0 on Kφ, there exists δ > 0

such that f > 0 on Kφ+δ . The
∑

R[X]2d-module Mφ+δ,2d of R[X] generated by the
elements φ(s) + δ ± Xs, s ∈ Nn is archimedean. By Jacobi’s theorem, f ∈ Mφ+δ,2d. By
Lemma 3.2, (φ(s) + δ ± Xs)1/2d ∈ R[[X]]φ for each s ∈ Nn.

Corollary 3.4 For any absolute value φ on Nn the closure of the cone
∑

R[X]2d in
R[X] in the topology induced by the φ-seminorm is Pos(Kφ).

Proof The inclusion (⊆) follows from continuity of the evaluation map f 7→ f (x),
for x ∈ Kφ, which follows in turn from the fact that | f (x) − g(x)| ≤ ‖ f − g‖φ, for
x ∈ Kφ. To prove (⊇), suppose f ∈ R[X], f ≥ 0 on Kφ and ε > 0. Then f + ε

2 > 0
on Kφ, so there exists f1, . . . , fm ∈ R[[X]]φ such that f + ε

2 = f 2d
1 + · · · + f 2d

m , by
Theorem 3.3. Take g = g2d

1 +· · ·+g2d
m , where gi ∈ R[X] is such that ‖ f 2d

i −g2d
i ‖φ ≤ ε

2m ,
i = 1, . . . ,m. Then g ∈

∑
R[X]2d, ‖ f − g‖φ ≤ ε.
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Corollary 3.5 Suppose L : R[X] → R is linear, L(p2d) ≥ 0 for all p ∈ R[X], and
there exists an absolute value φ and a constant C > 0 such that |L(Xs)| ≤ Cφ(s) for
all s ∈ Nn. Then there exists a unique positive Borel measure µ on the set Kφ such that
L( f ) =

∫
f dµ for all f ∈ R[X].

Proof The hypothesis implies that |L( f ) − L(g)| ≤ C‖ f − g‖φ, so L is continuous.
Fix f ∈ Pos(Kφ). Fix ε > 0. By Corollary 3.4, there exists g ∈

∑
R[X]2d such that

‖ f − g‖φ ≤ ε, so |L( f )− L(g)| ≤ Cε. Since L(g) ≥ 0, this implies that L( f ) ≥ −Cε.
Since ε > 0 is arbitrary, this implies L( f ) ≥ 0. The conclusion follows, by Theorem
2.2(ii).

Remark 3.6 (i) In the case d = 1 Corollary 3.5 is well known. It can be obtained
by applying [4, Theorem 4.2.5] to the semigroup (Nn,+) equipped with the identity
involution; see [17, Theorem 2.2]. At the same time, the proof given here is new, even
in the case d = 1.

(ii) The converse of Corollary 3.5 holds. If L( f ) =
∫

f dµ where µ is a positive
Borel measure on Kφ, then L(p2d) ≥ 0 for all p ∈ R[X] and |L(Xs)| ≤ Cφ(s), where
C := µ(Kφ). This is clear.

(iii) We have proved Corollary 3.5 from Corollary 3.4 using Theorem 2.2(ii). One
can also prove Corollary 3.4 from Corollary 3.5 using Corollary 2.8. In this way,
Corollary 3.4 and Corollary 3.5 can be seen to carry exactly the same information.

(iv) Corollary 3.4 extends [3, Theorem 9.1].
(v) In [17], Lasserre and Netzer use [4, Theorem 4.2.5] to prove that for φ equal to

the constant function 1 and for any f ∈ Pos(Kφ) and any real ε > 0, and any integer
k ≥ 1 sufficiently large (depending on ε and f ),

f + ε

(
1 +

n∑
i=1

X2k
i

)
∈
∑

R[X]2.

It is not clear how to extend this result with
∑

R[X]2 replaced by
∑

R[X]2d.
(vi) In [8, Theorem 4.6] and [8, Theorem 4.10] Ghasemi, Kuhlmann, and Samei

prove analogs of [3, Theorem 9.1] for the `p-norms

‖ f ‖p :=

(∑
s∈Nn

| fs|p
) 1/p

, 1 ≤ p <∞, ‖ f ‖∞ := sup{| fs| | s ∈ Nn}

and for certain weighted versions of the `p-norms. Replacing [3, Theorem 9.1] by
Corollary 3.4 in these proofs, one verifies that these results carry over word-for-word
with

∑
R[X]2 replaced by

∑
R[X]2d.

4 General Case

Our goal in this section is to extend Corollary 3.4 and Corollary 3.5 to arbitrary
commutative semigroups with involution; see Theorem 4.3 and Corollary 4.4.
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As in [4,5], we work with a commutative ∗-semigroup S = (S, ·, 1, ∗) with neutral
element 1 and involution ∗. The involution ∗ : S→ S satisfies

(st)∗ = s∗t∗, (s∗)∗ = s, and 1∗ = 1.

We denote by C[S] the semigroup ring of S with coefficients in C. Elements of C[S]
have the form f =

∑
s∈S fss (finite sum), fs ∈ C. C[S] has the structure of a C-algebra

with involution. Addition, scalar multiplication, and multiplication are defined by

f + g =
∑

( fs + gs)s, z f =
∑

(z fs)s, f g =
∑

s,t

fsgt st =
∑

u

(∑
st=u

fsgt

)
u.

The involution is defined by f ∗ =
∑

fss∗. An element f ∈ C[S] is said to be sym-
metric if f ∗ = f , i.e., if fs∗ = fs for all s ∈ S. We denote the R-algebra consisting of
all symmetric elements of C[S] by AS. Clearly

C[S] = AS ⊕ iAS.

As an R-vector space AS is generated by the elements s + s∗ and i(s− s∗), s ∈ S. If the
involution on S is the identity, i.e., s∗ = s for all s ∈ S, then AS = R[S], the semigroup
ring of S with coefficients in R.

A semicharacter of S is a function α : S→ C satisfying the following:

(a) α(1) = 1;
(b) α(st) = α(s)α(t) for all s, t ∈ S;
(c) α(s∗) = α(s) for all s ∈ S.

We denote by S ′ the set of all semicharacters of S. Semicharacters α of S correspond
bijectively to ∗-algebra homomorphisms α : C[S] → C via α( f ) :=

∑
s∈S fsα(s). In

turn, ∗-algebra homomorphisms α : C[S]→ C correspond bijectively to ring homo-
morphisms α : AS → R via α( f + gi) = α( f ) + α(g)i. In this way, S ′ and XAS are
naturally identified.

For any function φ : S→ R≥0 define

Kφ :=
{
α ∈ S ′ | |α(s)| ≤ φ(s) for all s ∈ S

}
.

Fix an integer d ≥ 1. Denote by Mφ,2d the
∑

A2d
S -module of AS generated by the

elements

φ(s)2 − ss∗, 2φ(s)± (s + s∗), and 2φ(s)± i(s− s∗), s ∈ S.

Lemma 4.1

(i) Mφ,2d is Archimedean.
(ii) The non-negativity set of Mφ,2d in S ′ is Kφ.

Proof (i) The elements s + s∗, i(s− s∗) generate AS as an R-vector space and 2φ(s)±
(s + s∗), 2φ(s)± i(s− s∗) ∈ Mφ,2d, so Mφ,2d is Archimedean.
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(ii) For α ∈ S ′,

|α(s)| ≤ φ(s)⇐⇒ α(s)α(s) ≤ φ(s)2 ⇐⇒ φ(s)2 − ss∗ ≥ 0 at α.

Also, using the inequality
√

a2 + b2 ≥ max{|a|, |b|},

|α(s)| ≤ φ(s) =⇒
∣∣∣ α(s) + α(s)

2

∣∣∣ ≤ φ(s)⇐⇒ 2φ(s)± (s + s∗) ≥ 0 at α,

and

|α(s)| ≤ φ(s) =⇒
∣∣∣ α(s)− α(s)

2i

∣∣∣ ≤ φ(s)⇐⇒ 2φ(s)± i(s− s∗) ≥ 0 at α.

A function φ : S→ R≥0 is called an absolute value if

(a) φ(1) ≥ 1;
(b) φ(st) ≤ φ(s)φ(t) for all s, t ∈ S;
(c) φ(s∗) = φ(s) for all s ∈ S.

Suppose that φ is an absolute value on S. For f =
∑

s fss ∈ C[S] define the φ-
seminorm of f to be ‖ f ‖φ :=

∑
s | fs|φ(s). One checks easily that

‖ f + g‖φ ≤ ‖ f ‖φ + ‖g‖φ, ‖z f ‖φ = |z|‖ f ‖φ,

‖ f g‖φ ≤ ‖ f ‖φ‖g‖φ, and ‖ f ∗‖φ = ‖ f ‖φ,

so the addition, scalar multiplication, multiplication, and conjugation in the semi-
group algebra C[S] are continuous in the topology induced by the φ-seminorm.

Lemma 4.2 Let r ∈ R, f ∈ AS, r > ‖ f ‖φ. Then, for each real ε > 0, there exists
g ∈ AS such that ‖(r + f )− g2d‖φ < ε.

Proof Consider the R-algebra homomorphism τ : R[X] → AS defined by X 7→ f
and consider the absolute value φ ′ on (N,+) defined by φ ′(i) = ‖ f i‖φ. Applying
Lemma 3.2 we see that (r + X)1/2d ∈ R[[X]]φ ′ . Combining this with the density of
R[X] in R[[X]]φ ′ and the continuity of the multiplication in the topology induced by
the φ ′-seminorm, there exists h ∈ R[X] such that ‖r+X−h2d‖φ ′ < ε. Take g = τ (h).
Since τ (r + X − h2d) = r + f − g2d and ‖τ (p)‖φ ≤ ‖p‖φ ′ , for all p ∈ R[X], this
completes the proof.

Theorem 4.3 Suppose φ is an absolute value on a commutative semigroup S with
involution and d is any positive integer. Then the closure of the cone

∑
A2d

S in AS in the
topology induced by the φ-seminorm is equal to Pos(Kφ).

Proof Since
∑

A2d
S ⊆ Pos(Kφ) and Pos(Kφ) is closed, one inclusion is clear. The

fact that Pos(Kφ) is closed comes from the fact that each α ∈ Kφ, viewed as a ring
homomorphism α : AS → R in the standard way, satisfies |α( f )| ≤ ‖ f ‖φ for all
f ∈ AS, so α is continuous for each α ∈ Kφ, and Pos(Kφ) =

⋂
α∈Kφ

α−1(R≥0).

https://doi.org/10.4153/CMB-2012-043-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2012-043-9


Closure of the Cone of Sums of 2d-powers 297

For the other inclusion, we must show if f ∈ Pos(Kφ) and ε > 0, there exists
g ∈

∑
A2d

S such that ‖ f − g‖φ ≤ ε. Note that f + ε
2 is strictly positive at each α ∈ Kφ

so, by Lemma 4.1 and Jacobi’s theorem,

f +
ε

2
=

k∑
i=0

gimi ,

where gi ∈
∑

A2d
S , i = 0, . . . , k, m0 = 1, and

mi ∈ {φ(s)2 − ss∗, 2φ(s)± (s + s∗), 2φ(s)± i(s− s∗) | s ∈ S}, i = 1, . . . , k.

Choose δ > 0 so that (
∑k

i=1 ‖gi‖φ)δ ≤ ε
2 . By Lemma 4.2 there exists hi ∈ AS

such that ‖ δ2 + mi − h2d
i ‖φ ≤ δ

2 , hence ‖mi − h2d
i ‖φ ≤ δ, i = 1, . . . , k. Take g =

g0 +
∑k

i=1 gih2d
i . Then g ∈

∑
A2d

S , and

‖ f − g‖φ =
∥∥∥ k∑

i=1

gimi −
k∑

i=1

gih
2d
i −

ε

2

∥∥∥ ≤ k∑
i=1

‖gi‖φ‖mi − h2d
i ‖φ +

ε

2
≤ ε.

Corollary 4.4 Let S be a commutative semigroup with involution and let d be a pos-
itive integer. Let L : C[S] → C be a ∗-linear mapping such that L(p2d) ≥ 0 for all
p ∈ AS and suppose there exists an absolute value φ on S and a constant C > 0 such
that |L(s)| ≤ Cφ(s) for all s ∈ S. Then there exists a unique positive borel measure µ on

Kφ such that L( f ) =
∫

f̂ dµ for each f ∈ C[S].

Here, f̂ : S ′ → C is defined by f̂ (α) := α( f ) for all α ∈ S ′; equivalently, if

f = g + ih, g, h ∈ AS, then f̂ := ĝ + iĥ .

Proof ∗-linear mappings L : C[S]→ C correspond bijectively to R-linear mappings
L : AS → R, the correspondence being given by L( f + gi) = L( f ) + L(g)i. The
hypothesis implies that |L( f ) − L(g)| ≤ C‖ f − g‖φ, so L is continuous. Fix f ∈
Pos(Kφ). Fix ε > 0. By Theorem 4.3, there exists g ∈

∑
A2d

S such that ‖ f − g‖φ ≤ ε,
so |L( f ) − L(g)| ≤ Cε. Since L(g) ≥ 0, this implies L( f ) ≥ −Cε. Since ε > 0 is
arbitrary, this implies that L( f ) ≥ 0. The conclusion follows, by Theorem 2.2(ii).

Remark 4.5 For p ∈ C[S], p = q + ir, q, r ∈ AS, pp∗ = (q + ir)(q− ir) = q2 + r2.
Thus, for L : C[S] → C ∗-linear, L(p2) ≥ 0 for all p ∈ AS ⇔ L(pp∗) ≥ 0 for all p ∈
C[S]⇔ L is positive (semi)definite, terminology as in [3–5]. Consequently, Corollary
4.4 generalizes and provides another proof of what is proved in [3, Corollary 2.5] and
[4, Theorem 4.2.5].

5 Berg–Maserick Result

In this section we relax the requirement that an absolute value satisfies φ(1) ≥ 1.
If φ(1) < 1, then, since φ(s) = φ(s1) ≤ φ(s)φ(1) for all s ∈ S, φ is identically
zero. Then ‖ · ‖φ is also identically zero, so the topology on C[S] is the trivial one
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and the closure of
∑

A2d
S in AS is AS. At the same time, Kφ = ∅ so Pos(Kφ) = AS.

Consequently, Theorem 4.3 and Corollary 4.4 continue to hold in this more general
situation.

We explain how the Berg–Maserick result [5, Theorem 2.1] can be deduced as a
consequence of Corollary 4.4. See Corollary 5.3.

A weak absolute value on S is a function φ : S→ R≥0 satisfying

φ(ss∗) ≤ φ(s)2 for all s ∈ S.

Replacing s by s∗, we see that φ(ss∗) ≤ φ(s∗)2, so

φ(ss∗) ≤ min{φ(s)2, φ(s∗)2} for all s ∈ S,

for any weak absolute value φ on S.
For any weak absolute value φ on S, define φ ′ : S→ R≥0 by

φ ′(s) = inf
{ k∏

i=1
min

{
φ(si), φ(s∗i )

}
| k ≥ 1, s1, . . . , sk ∈ S, s = s1 · · · sk

}
.

Lemma 5.1 Let φ be a weak absolute value on S. Then

(i) φ ′ is an absolute value (possibly φ ′ ≡ 0);
(ii) if L : C[S] → C is ∗-linear and positive semidefinite and there exists C > 0 such

that |L(s)| ≤ Cφ(s) for all s ∈ S, then |L(s)| ≤ Cφ ′(s) for all s ∈ S;
(iii) Kφ = Kφ ′ .

Proof (i) This is clear.
(ii) It suffices to show that

|L(s1 · · · sk)| ≤ C
k∏

i=1
min

{
φ(si), φ(s∗i )

}
for all s1, . . . , sk ∈ S.

Since |L(s)| ≤ Cφ(s) and |L(s)| = |L(s)| = |L(s∗)| ≤ Cφ(s∗), the result is clear when
k = 1. Suppose now that k ≥ 2. We make use of the Cauchy–Schwarz inequality for
the inner product

〈 f , g〉 := L( f g∗), f , g ∈ C[S].

This implies, in particular, that

|L(st∗)|2 ≤ L(ss∗)L(tt∗) for all s, t ∈ S.

Using this we obtain

|L(s1 · · · sk)|2 ≤ L(s1s∗1 )L(s2s∗2 · · · sks∗k ) ≤ Cφ(s1s∗1 )C
k∏

i=2
φ(sis

∗
i )

= C2
k∏

i=1
φ(sis

∗
i ) ≤ C2

k∏
i=1

min
{
φ(si)

2, φ(s∗i )2
}
.

(the second inequality by induction on k). The result follows by taking square roots.
(iii) Since φ ′(s) ≤ φ(s) for all s ∈ S, the inclusion Kφ ′ ⊆ Kφ is clear. For the other

inclusion, note that each α ∈ S ′ is positive semidefinite, so Kφ ⊆ Kφ ′ by (ii).
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Corollary 5.2 Suppose φ is a weak absolute value on S. Then the closure of
∑

A2
S in

AS in the topology induced by the φ-seminorm ‖ f ‖φ :=
∑
| fs|φ(s) is equal to Pos(Kφ).

Proof Denote the closure of
∑

A2
S in AS in the topology induced by the φ-seminorm

by
∑

A2
S

φ
. By Lemma 5.1(ii), an R-linear map L : AS → R non-negative on

∑
A2

S is
continuous in the topology induced by ‖ · ‖φ if and only if it is continuous in the

topology induced by ‖ · ‖φ ′ . It follows, using Corollary 2.8, that
∑

A2
S

φ
=
∑

A2
S

φ ′

.
By Lemma 5.1(3), Kφ = Kφ ′ so Pos(Kφ) = Pos(Kφ ′). The result now follows using
Lemma 5.1(i) and Theorem 4.3.

Corollary 5.3 Suppose L : C[S] → C is ∗-linear and positive semidefinite and there
exists a weak absolute value φ on S and a constant C > 0 such that |L(s)| ≤ Cφ(s)
for all s ∈ S. Then there exists a unique positive borel measure µ on Kφ such that

L( f ) =
∫

f̂ dµ for each f ∈ C[S].

Proof In view of Lemma 5.1, this is immediate from Corollary 4.4.

Since the argument in Lemma 5.1(ii) makes essential use of the Cauchy–Schwarz
inequality, it seems unlikely that Corollaries 5.2 and 5.3 extend to the case d > 1.

A Appendix

Let A be a commutative ring with 1. For simplicity assume that Q ⊆ A. In what
follows, P is assumed to be a preprime of A, and M ⊆ A is a P-module.

We explain how the simple proof of Jacobi’s theorem in the case d = 1 found in
[19, Theorem 5.4.4] can be extended to d > 1. We use the following lemma.

Lemma A.1 Suppose M is Archimedean, a ∈ A, t ∈ P, at − 1 ∈ M. Let n be a
positive integer that is even. Then for any sufficiently large k ∈ Q ,

kn(a + r)− 1− (k− t)n(a + r) ∈ M

for each non-negative r ∈ Q .

Proof Since

kn(a + r)− 1− (k− t)n(a + r) =− 1−
n∑

i=1

(
n

i

)
kn−i(−t)i(a + r)

=− 1 +

(
n

1

)
kn−1 −

n∑
i=2

(
n

i

)
kn−i(−t)ia

+

(
n

1

)
kn−1(at − 1) + rt

n∑
i=1

(
n

i

)
kn−i(−t)i−1

and at − 1 ∈ M, it suffices to show that

n∑
i=1

(
n

i

)
kn−i(−t)i−1 ∈ M(A.1)
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and

−1 +

(
n

1

)
kn−1 −

n∑
i=2

(
n

i

)
kn−i(−t)ia ∈ M(A.2)

for sufficiently large k. Since

n∑
i=1

(
n

i

)
kn−i(−t)i−1 = kn−2[

(
n

1

)
k−

(
n

2

)
t] + kn−4t2[

(
n

3

)
k−

(
n

4

)
t] + · · · ,

and M is Archimedean, so
(n

1

)
k−
(n

2

)
t,
(n

3

)
k−
(n

4

)
t, . . . belong to M for k sufficiently

large; (A.1) is clear, for k sufficiently large.
Regarding (A.2), write(

n

3

)
kn−3t3a =

(
n

3

)
kn−3t2(k + ta)−

(
n

3

)
kn−2t2,

−
(

n

4

)
kn−4t4a =

(
n

4

)
kn−4t2(k2 − t2a)−

(
n

4

)
kn−2t2, etc.,

choosing k so large that k + ta, k2− t2a, etc., belong to M. We are reduced to showing
that

(A.3) −1 +

(
n

1

)
kn−1 −

(
n

2

)
kn−2t2a−

(
n

3

)
kn−2t2 −

(
n

4

)
kn−2t2 − · · · ∈ M

for k sufficiently large. Dividing through by kn−2, using the fact that M is Archime-
dean and

(n
1

)
k − 1

kn−2 ≥
(n

1

)
k − 1 if k ≥ 1, we see that this is true, i.e., (A.3) does

indeed hold for k sufficiently large.

Proof of Theorem 2.5 We argue as in [19, Theorem 5.4.4]. Let P =
∑

A2d. Set
M1 := M − aP. Since M ⊆ M1, M1 is Archimedean. The assumption α(a) > 0
for all α ∈ KM implies that KM1 = ∅ and, as noted earlier, P is generating, so, by
[19, Corollary 5.4.1],−1 ∈ M1. Thus−1 = s− at , s ∈ M, t ∈ P, so at − 1 = s ∈ M.
Apply Lemma A.1 with n = 2d to conclude that

k2d(a + r)− 1− (k− t)2d(a + r) ∈ M

for each r ∈ Q≥0, for any k sufficiently large. Dividing by k2d, we see that

a + r ∈ M ⇒ a + r − 1

k2d
∈ M.

Iterating, we obtain eventually that a + r ∈ M for some negative r ∈ Q , so a =
(a + r) + (−r) ∈ M.
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Recall that a preprime P of A is torsion if for all a ∈ A there exists n ≥ 1 such that
an ∈ P, and P is weakly torsion if for all a ∈ A there exists rational r > 0 and n ≥ 1
such that (r + a)n ∈ P. Clearly, for any preprime P,

P is a preordering =⇒ P is torsion =⇒ P is weakly torsion.

It is proved in [18, Lemma 2.4] that any preprime that is weakly torsion is generating.
Moreover, one has the following extension of Jacobi’s result.

Theorem A.2 Suppose M ⊆ A is an Archimedean P-module, P a weakly torsion
preprime of A. Then, for any a ∈ A,

â > 0 on KM =⇒ a ∈ M.

Proof See [18, Theorem 2.3].

Unfortunately, it is not clear how Lemma A.1 can be applied to give a proof of
Theorem A.2.
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