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Positive Solutions for the Generalized
Nonlinear Logistic Equations

Leszek Gasiński and Nikolaos S. Papageorgiou

Abstract. We consider a nonlinear parametric elliptic equation driven by a nonhomogeneous diòer-
ential operatorwith a logistic reaction of the superdiòusive type. Using variational methods coupled
with suitable truncation and comparison techniques, we prove a bifurcation type result describing
the set of positive solutions as the parameter varies.

1 Introduction

Let Ω ∈ RN be a bounded domain with a C2-boundary ∂Ω. In this paper, we study
the following nonlinear parametric Dirichlet problem:

(Pλ)
⎧⎪⎪⎨⎪⎪⎩

−div a(∇u(z)) = λg(z, u(z)) − f ( z, u(z)) in Ω,
u∣∂Ω = 0, u > 0, λ > 0.

In this problem, a∶RN → RN is a continuous and strictlymonotonemap that satisûes
some other growth regularity conditions. _e precise assumptions on a( ⋅ ) are listed
in hypotheses H(a) below and are general enough to includemany diòerential opera-
tors of interest, such as the p-Laplacian. We stress that in problem (Pλ) the diòerential
operator is nonhomogeneous, and this is a source of diõculties in dealing with prob-
lem (Pλ). _e two functions g and f involved in the reaction are both Carathéodory
functions; that is, for all ζ ∈ R, the functions z ↦ f (z, ζ) and z ↦ g(z, ζ) are mea-
surable, and for almost all z ∈ Ω, the functions ζ ↦ f (z, ζ) and ζ ↦ g(z, ζ) are
continuous. _ey satisfy certain asymptotic conditions as ζ → +∞ and as ζ ↘ 0 that
incorporate in our framework the so-called superdiòusive reaction of the nonlinear
logistic equation, which has the form

(1.1) λζq−1 − ζ r−1 for ζ ⩾ 0,
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with 1 < p < q < r < p∗, where

p∗ =
⎧⎪⎪⎨⎪⎪⎩

Np
N−p if p < N ,
+∞ if p ⩾ N .

Our goal is to study the dependence on the parameter λ > 0 of the set of positive
solutions. _is question was investigated by Takeuchi [25, 26] and by Dong [6] for
Dirichlet p-Laplacian equations with the classical superdiòusive reaction (1.1). _ey
proved bifurcation type results describing the dependence of positive solutions on
the parameter λ > 0. _eir work was extended to more general reactions of the
form λζq−1 − f (z, ζ) for all ζ ⩾ 0 by Filippakis–O’Regan–Papageorgiou [8] (Dirich-
let problems) and Cardinali–Papageorgiou–Rubbioni [3] (Neumann problems). We
should alsomention the recentworks ofGasiński–Papageorgiou [13,15] andGasiński–
O’Regan–Papageorgiou [9]. In [13], Dirichlet p-Laplacian equations are studied with
a reaction of the form λ f (z, ζ) and positive solutions are produced. In [15], λg(z, ζ) =
λζq−1 with q < p, and the hypotheses on a and f are more restrictive. In [9], non-
linearDirichlet logistic equations are studied driven by a nonhomogeneous diòeren-
tial operator (as in (Pλ)) and a reaction that is either subdiòusive or equidiòusive.
_e emphasis is on the existence of nodal (sign changing) solutions. For some other
problems containing the nonhomogeneous diòerential operatorwe refer toGasiński–
Papageorgiou [12, 14, 16].

Here,we extend all the aforementionedworks on superdiòusive logistic equations.
First, our diòerential operator is in general nonhomogeneous and includes as a spe-
cial case the p-Laplacian. Second, our relation is considerably more general than all
the reactions used in the previous superdiòusive works. Furthermore, we produce
additional information concerning the positive solutions, since we generateminimal
positive solutions uλ and show that the map λ ↦ uλ is strictly increasing and le�-
continuous. For this, we use a strong comparison principle. In addition, in the next
section, for easy reference, we recall the main mathematical tools that we will use
in the sequel, state our hypotheses on the map a( ⋅ ), and we present some useful
consequences of these hypotheses. In Section 3, we prove the bifurcation type result
describing the set of positive solutions of problem (Pλ) as the parameter λ > 0 varies.

2 Mathematical Background – Hypotheses

Let X be a Banach space and let X∗ be its topological dual. By ⟨ ⋅ , ⋅ ⟩ we denote the
duality brackets for the pair (X∗ , X). Given ϕ ∈ C1(X), we say that ϕ satisûes the
Palais–Smale condition if the following is true:

Every sequence {xn}n⩾1 ⊆ X such that {ϕ(xn)} n⩾1 ⊆ R is bounded and with
ϕ′(xn)→ 0 in X∗ admits a strongly convergent subsequence.

_is compactness type condition on the functional ϕ leads to a deformation theorem
from which one can derive theminimax theory of the critical values of ϕ. Prominent
in this theory is the so-calledmountain pass theorem.
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_eorem 2.1 Suppose ϕ ∈ C1(X) satisûes the Palais–Smale condition, x0 , x1 ∈ X,
∥x1 − x0∥ > ρ > 0,

max{ϕ(x0), ϕ(x1)} < inf {ϕ(x) ∶ ∥x − x0∥ = ρ} = mρ ,

and c = inf γ∈Γ max0⩽t⩽1 ϕ(γ(t)), where

Γ = {γ ∈ C([0, 1];X) ∶ γ(0) = x0 , γ(1) = x1} .

_en c ⩾ mρ and c is a critical value of ϕ.

In the analysis of problem (Pλ), we will use the Sobolev space W 1,p
0 (Ω) and the

Banach space
C1
0(Ω) = {u ∈ C1(Ω) ∶ u∣∂Ω = 0} .

By ∥ ⋅ ∥ we denote the norm of the Sobolev spaceW 1,p
0 (Ω). By virtue of the Poincaré

inequality, we have
∥u∥ = ∥∇u∥p for u ∈W 1,p

0 (Ω).
_e space C1

0(Ω) is an ordered Banach space with positive cone

C+ = {u ∈ C1
0(Ω) ∶ u(z) ⩾ 0 for all z ∈ Ω} .

_is cone has a nonempty interior given by

intC+ = {u ∈ C+ ∶ u(z) > 0 for all z ∈ Ω,
∂u
∂n

(z) < 0 for all z ∈ ∂Ω} .

Here, n( ⋅ ) denotes the outward unit normal to ∂Ω.
Let ϑ ∈ C1(0,+∞) be a function that satisûes

0 < ĉ ⩽ tϑ′(t)
ϑ(t) ⩽ c0 for t > 0,(2.1)

c1 tp−1 ⩽ ϑ(t) ⩽ c2(1 + tp−1) for t > 0,(2.2)

for some ĉ, c0 , c1 , c2 > 0.
_e hypotheses on themap a( ⋅ ) are the following:

H(a): a(y) = a0(∣y∣)y for all y ∈ RN with a0(t) > 0 for all t > 0 and

(i) a0 ∈ C1(0,+∞) , limt→0+ ta0(t) = 0, limt→0+
ta′0(t)
a0(t) > −1

and the function (0,+∞) ∋ t ↦ ta0(t) is strictly increasing;
(ii) ∣∇a(y)∣ ⩽ c3 ϑ(∣y∣)

∣y∣ for all y ∈ RN ∖ {0} and some c3 > 0;

(iii) ϑ(∣y∣)
∣y∣ ∣ξ∣2 ⩽ (∇a(y)ξ, ξ)RN for all y ∈ RN ∖ {0}, all ξ ∈ RN .

Remark 2.2 _ese conditions on themap a( ⋅ ) weremotivated by the global non-
linear regularity theory of Lieberman [20, p. 320] and the nonlinearmaximumprinci-
ple of Pucci–Serrin [24, pp. 111, 120]. _ey areweaker than the ones used byGasiński–
O’Regan–Papageorgiou [9] to describe their nonlinear nonhomogeneous diòerential
operator. If

G0(t) = ∫
t

0
s a0(s) ds,

https://doi.org/10.4153/CMB-2015-064-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2015-064-8


76 L. Gasiński and N. S. Papageorgiou

thenG0 is strictly increasing and strictly convex. We setG(y) = G0(∣y∣) for all y ∈ RN .
Evidently, themap y ↦ G(y) is convex and diòerentiable, with

∇G(y) = G′
0(∣y∣)

y
∣y∣ = a0(∣y∣)y = a(y) for y ∈ RN ∖ {0}, ∇G(0) = 0.

So G is the primitive of a.
By virtue of the convexity of G and since G(0) = 0, we have

(2.3) G(y) ⩽ (a(y), y)RN for y ∈ RN .

_e next lemma summarizes themain properties of a( ⋅ ) and is a straightforward
consequence of hypotheses H(a).

Lemma 2.3 If hypotheses H(a) hold, then
(i) the map y ↦ a(y) is continuous, strictly monotone, hence also maximal mono-

tone;
(ii) there exists c4 > 0, such that ∣a(y)∣ ⩽ c4(1 + ∣y∣p−1) for all y ∈ RN ;
(iii) (a(y), y)RN ⩾ c1

p−1 ∣y∣
p for all y ∈ RN .

_is lemma together with (2.1), (2.2), and (2.3) leads to the following growth con-
ditions on the primitive G.

Corollary 2.4 If hypotheses H(a) hold, then
c1

p(p − 1) ∣y∣
p ⩽ G(y) ⩽ c5( 1 + ∣y∣p) for y ∈ RN ,

for some c5 > 0.

Example 2.5 _e following maps satisfy hypotheses H(a).
(i) a(y) = ∣y∣p−2 y, with 1 < p < +∞. _is map corresponds to the p-Laplace

diòerential operator

∆pu = div ( ∣∇u∣p−2∇u) for u ∈W 1,p
0 (Ω).

(ii) a(y) = ∣y∣p−2 y + ∣y∣q−2 y with 1 < q < p < +∞. _is map corresponds to the
(p, q)-Laplace diòerential operator, deûned by

∆pu + ∆qu for u ∈W 1,p
0 (Ω).

_ese operators arise in many physical applications (see Cherûls–Il′yasov [4]),
and equations driven by such operators were studied by Gasiński–Papageorgiou
[15], Mugnai–Papageorgiou [21], Papageorgiou–Rădulescu [22], and Papageorgiou–
Winkert [23].

(iii) a(y) = (1+ ∣y∣2)
p−2
2 y with 1 < p < +∞. _is map corresponds to the general-

ized p-mean curvature diòerential operator, deûned by

div ((1 + ∣∇u∣2)
p−2
2 ∇u) for u ∈W 1,p

0 (Ω).

(iv) a(y) = ∣y∣p−2 y( 1 + 1
1+∣y∣p ) with 1 < p < +∞.
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(v) a(y) =
⎧⎪⎪⎨⎪⎪⎩

2∣y∣τ−2 y if ∣y∣ ⩽ 1,
∣y∣p−2 y + ∣y∣q−2 y if 1 < ∣y∣,

with 1 < q < p, τ = p+q
2 .

We consider the nonlinear map A∶W 1,p
0 (Ω) →W−1,p′(Ω) = (W 1,p

0 (Ω))∗ (where
1
p +

1
p′ = 1), deûned by

⟨A(u), h⟩ = ∫
Ω
( a(∇u),∇h)RN dz for u, h ∈W 1,p

0 (Ω).

For every ζ ∈ R, we set ζ± = max{±ζ , 0}. _en for every u ∈ W 1,p
0 (Ω), we deûne

u±( ⋅ ) = u( ⋅ )±. We know that

u± ∈ W 1,p
0 (Ω), u = u+ − u− , ∣u∣ = u+ + u− .

We denote the Lebesgue measure on RN by ∣ ⋅ ∣N . Finally, if h∶Ω × R → R is a mea-
surable function (for example a Carathéodory function), then

Nh(u)( ⋅ ) = h( ⋅ , u( ⋅ )) for u ∈W 1,p
0 (Ω)

(the Nemytskii map corresponding to h).
Let f0∶Ω × R → R be a Carathéodory function such that ∣ f0(z, ζ)∣ ⩽ a0(z)(1 +

∣ζ ∣r−1) for almost all z ∈ Ω all ζ ∈ R, with a0 ∈ L∞(Ω)+ and 1 < r < p∗. We set

F0(z, ζ) = ∫
ζ

0
f0(z, s) ds

and consider the C1-functional ϕ0∶W 1,p
0 (Ω)→ R, deûned by

ϕ0(u) = ∫
Ω
G(∇u(z)) dz − ∫

Ω
F0( z, u(z)) dz for u ∈W 1,p

0 (Ω).

From Gasiński–Papageorgiou [12], we have the following result.

Proposition 2.6 If hypotheses H(a) hold and u0 ∈ W 1,p
0 (Ω) is a local C1

0(Ω)-mi-
nimizer of ϕ0, i.e., there exists ρ0 > 0 such that ϕ0(u0) ⩽ ϕ0(u0 + h) for all h ∈
C1
0(Ω), ∥h∥C 1

0(Ω) ⩽ ρ0, then u0 ∈ C1,α
0 (Ω) for some α ∈ (0, 1) and u0 is also a local

W 1,p
0 (Ω)-minimizer of ϕ0, i.e., there exists ρ1 > 0, such that ϕ0(u0) ⩽ ϕ0(u0 + h) for

all h ∈W 1,p
0 (Ω), ∥h∥ ⩽ ρ1.

Let ĥ, h ∈ L∞(Ω). We write ĥ ≺ h if for every compact set K ⊆ Ω, there exists
ε = ε(K) > 0 such that ĥ(z)+ε ⩽ h(z) for almost all z ∈ K. Clearly, if ĥ, h ∈ C(Ω) and
ĥ(z) < h(z) for all z ∈ Ω, then ĥ ≺ h. Using this notion, we can have a strong com-
parison principle that extends Arcoya–Ruiz [2, Proposition 2.6] and Cuesta-Takač
[5, _eorem 2.1]. For the proof we refer to Gasiński–Papageorgiou [15, Lemma 2.9,
p. 195].

Proposition 2.7 Suppose hypotheses H(a) hold, ξ ⩾ 0, ĥ, h ∈ L∞(Ω), ĥ ≺ h, and
u, v ∈W 1,p

0 (Ω) are solutions of the problems
⎧⎪⎪⎨⎪⎪⎩

−div a(∇u) + ξ∣u∣p−2u = ĥ in Ω, u∣∂Ω = 0,
−div a(∇v) + ξ∣v∣p−2v = h in Ω, v∣∂Ω = 0,
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and v ∈ intC+. _en v − u ∈ intC+.

3 Positive Solutions

_e hypotheses on the functions g and f are the following.

H(g): g∶Ω ×R → R is a Carathéodory function, such that g(z, 0) = 0 for
almost all z ∈ Ω and
(i) there exist a ∈ L∞(Ω)+ and r ∈ (p, p∗), such that

g(z, ζ) ⩽ a(z)(1 + ζ r−1) for almost all z ∈ Ω, all ζ ⩾ 0;

(ii) there exists q > p such that

0 < β̃ ⩽ lim inf
ζ→+∞

g(z, ζ)
ζq−1 ⩽ lim sup

ζ→+∞

g(z, ζ)
ζq−1 ⩽ β̂,

uniformly for almost all z ∈ Ω;
(iii) we have

lim
ζ→0+

g(z, ζ)
ζ p−1 = 0 uniformly for almost z ∈ Ω;

(iv) for every ρ > 0, we can ûnd ηρ > 0, such that g(z, ζ) ⩾ ηρ for
almost all z ∈ Ω and all ζ ⩾ ρ.

H( f ): f ∶Ω ×R → R is a Carathéodory function, such that f (z, 0) = 0 for
almost all z ∈ Ω, f (z, ζ) ⩾ 0 for all ζ ⩾ 0 and almost all z ∈ Ω, and
(i) there exist a0 ∈ L∞(Ω)+ and r0 ∈ (p, p∗), such that

f (z, ζ) ⩽ a0(z)(1 + ζ r0−1) for almost all z ∈ Ω, all ζ ⩾ 0;

(ii) if q > p is as in hypothesis H(g)(ii), then

lim
ζ→+∞

f (z, ζ)
ζq−1 = +∞ uniformly for almost z ∈ Ω;

(iii) we have

0 ⩽ lim inf
ζ→0+

f (z, ζ)
ζ p−1 ⩽ lim sup

ζ→0+

f (z, ζ)
ζ p−1 ⩽ β0 ,

uniformly for almost all z ∈ Ω.

H0: for every λ > 0 and every ρ > 0, there exists ξλρ > 0 such that for
almost all z ∈ Ω the function ζ ↦ λg(z, ζ) − f (z, ζ) + ξλρ ζ

p−1 is
nondecreasing on [0, ρ].

Remark 3.1 Since we are looking for positive solutions and all the above hypothe-
ses concern the positive semiaxis, wemay assume without any loss of generality that
g(z, ζ) = f (z, ζ) = 0 for almost all z ∈ Ω, all ζ ⩽ 0.

Example 3.2 _e following functions satisfy the above hypotheses:
(i) g(ζ) = ζq−1 and f (ζ) = ζ r−1 for all ζ ⩾ 0 with p < q < r < p∗. _is pair

corresponds to the classical superdiòusive reaction (see (1.1))).
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(ii) g(ζ) = ζq−1 for all ζ ⩾ 0 and f (ζ) =
⎧⎪⎪⎨⎪⎪⎩

ζq−1 if ζ ∈ [0, 1],
ζq−1 ln ζ if 1 < ζ ,

with p < q < p∗.

(iii) g(ζ) =
⎧⎪⎪⎨⎪⎪⎩

ζ τ−1 − ζη−1 if ζ ∈ [0, 1],
ζq−1 − ζ p−1 if 1 < ζ ,

with p < τ < η and p < q < p∗ and f (ζ) =

⎧⎪⎪⎨⎪⎪⎩

ζ p−1 if ζ ∈ [0, 1],
ζ r−1 if 1 < ζ ,

with p < r < p∗.

We introduce

L = { λ > 0 ∶ problem (Pλ) has a positive solution}

and let S(λ) be the set of positive solutions of (Pλ). Also,we set λ∗ = inf L (as always,
if L = ∅, then inf L = +∞).

Proposition 3.3 If hypotheses H(a), H(g), H( f ), and H0 hold, then for all λ > 0,
S(λ) ⊆ intC+ and λ∗ > 0.

Proof Clearly, we can assume that λ ∈ L. Let uλ ∈ S(λ). _en
⎧⎪⎪⎨⎪⎪⎩

−div a(∇uλ(z)) = λg(z, uλ(z)) − f ( z, uλ(z)) for a.a. z ∈ Ω,
uλ ∣∂Ω = 0,

(see [12]). From Ladyzhenskaya–Uraltseva [18, p. 288], we have uλ ∈ L∞(Ω). So, the
regularity result of Lieberman [20, p. 320], implies uλ ∈ C+ ∖ {0}. Let ρ = ∥uλ∥∞ and
let ξλρ > 0 be as postulated by hypothesis H0. We have

−div a(∇uλ(z)) + ξλρuλ(z)p−1 = λg(z, uλ(z)) − f ( z, uλ(z)) + ξλρuλ(z)p−1 ⩾ 0

for almost all z ∈ Ω, so

div a(∇uλ(z)) ⩽ ξλρuλ(z)p−1 for almost all z ∈ Ω.

Let γ(t) = ta0(t) for all t > 0. Hypothesis H(a)(ii) and (2.1)–(2.2) entail that

tγ′(t) = t2a′0(t) + ta0(t) ⩾ c1 tp−1 for all t ⩾ 0.

Integrating by parts, we obtain

∫
t

0
sγ′(s) ds = tγ(t) − ∫

t

0
γ(t) dt

= t2a0(t) −G0(t) ⩾
c1
p
tp for all t ⩾ 0.

(3.1)

Let
H(t) = t2a0(t) −G0(t) and H0(t) =

c1
p
tp for all t ⩾ 0.

Both are strictly increasing functions. Let τ > 0. We introduce the sets

C1(τ) = { t ∈ (0, 1) ∶ H(t) ⩾ τ} and C2(τ) = { t ∈ (0, 1) ∶ H0(t) ⩾ τ} .
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Evidently, C2(τ) ⊆ C1(τ) and so inf C1(τ) ⩽ inf C2(τ). _en from Leoni [19, p. 6],
we have H−1(τ) ⩽ H−1

0 (τ). It follows that for δ ∈ (0, 1) we have

(3.2) ∫
δ

0

1

H−1( ξλp
p τp)

dτ ⩾ ∫
δ

0

1

H−1
0 ( ξλp

p τp)
dτ = c6 ∫

δ

0

1
t
dt = +∞

for some c6 > 0. Becauseof (3.1) and (3.2),we can apply the strongmaximumprinciple
of Pucci-Serrin [24, p. 111] and infer that uλ(z) > 0 for all z ∈ Ω. _en, applying the
boundary point theorem of Pucci-Serrin [24, p. 120], we conclude that uλ ∈ intC+.
So, we have that S(λ) ⊆ intC+ for all λ > 0.

Hypotheses H(g)(i)–(iii) and H( f )(i)–(iii) imply that we can ûnd λ0 > 0 such
that

(3.3) λ0g(z, ζ) − f (z, ζ) ⩽
c1

p − 1
λ̂1(p)ζ p−1 for a.a. z ∈ Ω, all ζ ⩾ 0,

with λ̂1(p) > 0 being the principal eigenvalue of (−∆p ,W
1,p
0 (Ω)). Let λ ∈ (0, λ0)

and suppose that λ ∈ L. _en we can ûnd u ∈ S(λ) ⊆ intC+ such that

(3.4) A(u) = λNg(u) − N f (u).

We act on (3.4) with u ∈W 1,p
0 (Ω). _en

c1
p − 1

∥∇u∥p
p ⩽ ∫

Ω
(λg(z, u) − g(z, u))u dz < ∫

Ω
( λ0g(z, u) − f (z, u))u dz

⩽ c1
p − 1

λ̂1(p)∥u∥p
p

(see Lemma 2.3, hypothesis H(g)(iv), (3.3) and recall that λ < λ0), so

∥∇u∥p
p < λ̂1(p)∥u∥p

p ,

which contradicts the variational characterization of the principal eigenvalue λ̂1(p) >
0 (see e.g., Gasiński-Papageorgiou [11, p. 732]). _erefore, λ /∈ L and so we conclude
that 0 < λ0 ⩽ λ∗ = inf L.

Proposition 3.4 If hypotheses H(a), H(g), H( f ), and H0 hold and λ ∈ L, then
[λ,+∞) ⊆ L.

Proof Let µ > λ. Since λ ∈ L, we can ûnd uλ ∈ S(λ) ⊆ intC+ (see Proposition 3.3).
We have

−div a(∇uλ(z)) = λg( z, uλ(z)) − f (z, uλ(z))
⩽ µg( z, uλ(z)) − f ( z, uλ(z)) for almost all z ∈ Ω.

(3.5)

We consider the following truncation of the reaction of problem (Pµ):

(3.6) kµ(z, ζ) =
⎧⎪⎪⎨⎪⎪⎩

µg(z, uλ(z)) − f (z, uλ(z)) if ζ ⩽ uλ(z),
µg(z, ζ) − f (z, ζ) if uλ(z) < ζ .

_is is a Carathéodory function. We set

Kµ(z, ζ) = ∫
ζ

0
kµ(z, s) ds
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and consider the C1-functional ψµ ∶W 1,p
0 (Ω)→ R, deûned by

ψµ(u) = ∫
Ω
G(∇u(z)) dz − ∫

Ω
Kµ( z, u(z)) dz, u ∈W 1,p

0 (Ω).

From (3.6) and hypotheses H(g)(ii), H( f )(ii), we see that ψλ is coercive. Also, using
the Sobolev embedding theorem, we see that ψµ is sequentially weakly lower semi-
continuous. So, by theWeierstrass theorem, we can ûnd uµ ∈W 1,p

0 (Ω) such that

ψµ(uµ) = inf
u∈W 1,p

0 (Ω)
ψµ(u),

so ψ′µ(uµ) = 0, and thus

(3.7) A(uµ) = Nkµ(uµ).

On (3.7) we act with (uλ − uµ)+ ∈W 1,p
0 (Ω) and obtain

⟨A(uµ), (uλ − uµ)+⟩ = ∫
Ω
kµ(z, uµ)(uλ − uµ)+ dz

= ∫
Ω
( µg(z, uλ) − f (z, uλ))(uλ − uµ)+ dz

⩾ ⟨A(uλ), (uλ − uµ)+⟩
(see (3.6), (3.5)), so

∫{uλ>uµ}
( a(∇uλ) − a(∇uµ),∇uλ −∇uµ)RN ⩽ 0.

_us ∣{uλ > uµ}∣N = 0 (see Lemma 2.3), and hence uλ ⩽ uµ .
Using (3.6), equation (3.7) becomes

A(uµ) = µNg(uµ) − N f (uµ),
so uµ ∈ S(µ) ⊆ intC+, hence µ ∈ L, and thus [λ,+∞) ⊆ L.

As a consequence of Proposition 3.4, we have (λ∗ ,+∞) ⊆ L.

Proposition 3.5 If hypotheses H(a), H(g), H( f ), and H0 hold and µ > λ∗, then
problem (Pµ) has at least two positive solutions u0 , û ∈ intC+.

Proof Let λ ∈ (λ∗ , µ) and let uλ ∈ S(λ) ⊆ intC+ (see Proposition 3.3 and recall
that (λ∗ ,+∞) ⊆ L). From the proof of Proposition 3.4, we know that we can ûnd
u0 ∈ S(µ) ⊆ intC+, such that uλ ⩽ u0. Moreover, we know that u0 is aminimizer of
the functional ψµ (see the proof of Proposition 3.4). Let ρ = ∥u0∥∞ and let ξλ

ρ > 0 be
as postulated by hypothesis H0. We have

− div a(∇uλ(z)) + ξλρuλ(z)p−1

= λg(z, uλ(z)) − f ( z, uλ(z)) + ξλρuλ(z)p−1

⩽ λg( z, u0(z)) − f ( z, u0(z)) + ξλρu0(z)p−1

= µg(z, u0(z)) − f ( z, u0(z)) + ξλρu0(z)p−1 − (µ − λ)g( z, u0(z))
⩽ µg(z, u0(z)) − f ( z, u0(z)) + ξλρu0(z)p−1

= −div a(∇u0(z)) + ξλ
ρu0(z)p−1 for almost all z ∈ Ω

(3.8)
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(see hypothesis H0, H(g)(iv) and recall that uλ ⩽ u0, λ < µ and u0 ∈ S(µ)). Recall
that u0 ∈ intC+. So, for K ⊆ Ω compact, we have u0(z) ⩾ mK > 0 for all z ∈ K, so

g(z, u0(z)) ⩾ ηK > 0 for almost all z ∈ K

(see hypothesis H(g)(iv)). _is fact and (3.8) permit the use of Proposition 2.7, from
which we infer that

(3.9) u0 − uλ ∈ intC+ .

Let

Ĝ(z, ζ) = ∫
ζ

0
g(z, s) ds, F(z, ζ) = ∫

ζ

0
f (z, s) ds

and consider ϕµ ∶W 1,p
0 (Ω)→ R the energy functional for problem (Pµ) deûned by

ϕµ(u) = ∫
Ω
G(∇u(z)) dz−µ∫

Ω
Ĝ(z, u(z)) dz+∫

Ω
F(z, u(z)) dz, u ∈W 1,p

0 (Ω).

We have ϕµ ∈ C1(W 1,p
0 (Ω)). We deûne

[uλ) = {u ∈W 1,p
0 (Ω) ∶ uλ(z) ⩽ u(z) for almost all z ∈ Ω} .

From (3.6) we see that

(3.10) ϕµ ∣ [uλ) = ψµ ∣ [uλ) + ξ∗λ ,

with ξ∗λ ∈ R. Recall that u0 ∈ intC+ is aminimizer of ψµ . _en from (3.9) and (3.10),
it follows that u0 is a local C1

0(Ω)-minimizer of ϕµ and from Proposition 2.6, we get

(3.11) u0 is a local W 1,p
0 (Ω)-minimizer of ϕµ .

Hypotheses H(g)(iii) and H( f )(iii) imply that given ε > 0, we can ûnd δ = δ(ε) > 0
such that

(3.12) Ĝ(z, ζ) ⩽ ε
p
ζ p and F(z, ζ) ⩾ − ε

p
ζ p for almost all z ∈ Ω, all ζ ∈ [0, δ].

Let u ∈ C1
0(Ω)with ∥u∥C 1

0(Ω) ⩽ δ. _en using (3.12), Corollary 2.4, and the variational

characterization of λ̂1(p) > 0, we have

(3.13) ϕµ(u) ⩾
c1

p(p − 1)∥∇u∥p
p −

(µ + 1)ε
p

∥u∥p
p ⩾

1
p
( c1
p − 1

− (µ + 1)ε
λ̂1(p)

)∥∇u∥p
p .

Ifwe choose ε ∈ (0, c1 λ̂1(p)
(p−1)(µ+1)), then from (3.13) it follows that u = 0 is a local C1

0(Ω)-
minimizer of ϕµ , so

u = 0 is a local W 1,p
0 (Ω)-minimizer of ϕµ .

Without any loss of generality, we may assume that 0 = ϕµ(0) ⩽ ϕµ(u0) (the rea-
soning is similar if the opposite inequality holds). Also, we assume that the set Kϕµ

of critical points of ϕµ is ûnite (otherwise, we already have inûnitely many positive
solutions). _en because of (3.11), we can ûnd ρ ∈ (0, 1) small, such that

(3.14) 0 = ϕλ(0) ⩽ ϕλ(u0) < inf{ϕλ(u) ∶ ∥u − u0∥ = ρ} = mρ , ∥u0∥ ⩾ ρ

(see the proof of Aizicovici–Papageorgiou–Staicu [1, Proposition 29] or proof of Ga-
siński–Papageorgiou [10, _eorem 3.4]). From hypotheses H(g)(ii) and (H( f )(ii)),
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it follows that ϕµ is coercive. So, it satisûes the Palais–Smale condition. _is fact and
(3.14) permit the use of themountain pass theorem (see_eorem 2.1). So,we can ûnd
û ∈W 1,p

0 (Ω) such that

(3.15) û ∈ Kϕµ and mρ ⩽ ϕµ(û).
From (3.14) and (3.15) we see that û /∈ {0, u0} and û ∈ S(µ) ⊆ intC+.

In fact we can show that for every λ > λ∗, problem (Pλ) has a smallest positive
solution.

Proposition 3.6 If hypotheses H(a), H(g), H( f ), and H0 hold and λ > λ∗, then
problem (Pλ) admits a smallest positive solution uλ ∈ S(λ) ⊆ intC+, and the map
(λ∗ ,+∞) ∋ λ ↦ uλ ∈ C1

0(Ω) is strictly increasing (that is, if λ < µ, then uµ − uλ ∈
intC+).

Proof As in Filippakis–Kristaly–Papageorgiou [7], exploiting the monotonicity of
the map A, we have that the solution set S(λ) is downward directed (i.e., if u1 , u2 ∈
S(λ), then we can ûnd u ∈ S(λ) such that u ⩽ u1, u ⩽ u2). _en since we want to
produce theminimal element of S(λ), without any loss of generality, we can assume
that

(3.16) ∥u∥∞ ⩽ c7 for u ∈ S(λ)
for some c7 > 0. From Hu–Papageorgiou [17, p. 178], we know that we can ûnd a
sequence {un}n⩾1 ⊆ S(λ) such that

inf S(λ) = inf
n⩾1 un .

We have

(3.17) A(un) = λNg(un) − N f (un) for n ⩾ 1.

From (3.16), (3.17), and Lieberman [20, p. 320], we know that we can ûnd α ∈ (0, 1)
and c8 > 0 such that un ∈ C1,α

0 (Ω) and ∥un∥C 1,α
0 (Ω) ⩽ c8 for all n ⩾ 1. Exploiting

the compactness of the embedding C1,α
0 (Ω) ⊆ C1

0(Ω) and by passing to a suitable
subsequence if necessary, we can say that

(3.18) un Ð→ uλ in C1
0(Ω).

Suppose that uλ = 0. Using hypotheses H(g)(iii) and H( f )(iii), we see that given
ε > 0, we can ûnd δ = δ(ε) > 0 such that

(3.19) g(z, ζ) ⩽ εζ p−1 and f (z, ζ) ⩾ −εζ p−1

for almost all z ∈ Ω, all ζ ∈ [0, δ]. From (3.18) and sincewe have assumed that uλ = 0,
we can ûnd n0 ∈ N such that

(3.20) un(z) ∈ [0, δ] for n ⩾ n0 , z ∈ Ω.

On (3.17) we act with un and using Lemma 2.3 and (3.19), (3.20), we obtain
c1

p − 1
∥∇u∥p

p ⩽ (λ + 1)ε∥un∥p
p for all n ⩾ n0 .

https://doi.org/10.4153/CMB-2015-064-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2015-064-8


84 L. Gasiński and N. S. Papageorgiou

Choosing ε ∈ (0, c1
p−1

λ̂1(p)
λ+1 ), we obtain

∥∇un∥p
p < λ̂1(p)∥un∥p

p for all n ⩾ n0 ,

which contradicts the variational characterization of λ̂1(p) (see Gasiński–Papageor-
giou [11, p. 732]). _is proves that uλ ≠ 0.

If in (3.17) we pass to the limit as n → +∞ and use (3.18), then

A(uλ) = λNg(uλ) − N f (uλ),
so uλ ∈ S(λ) ⊆ intC+ and uλ = inf S(λ). Moreover, if λ < µ, then as in the proof
of Proposition 3.5, using hypothesis H0 and Proposition 2.7 (the strong comparison
principle), we obtain

uµ − uλ ∈ intC+ ,
so themap λ ↦ uλ is strictly increasing.

Proposition 3.7 If hypotheses H(a), H(g), H( f ), and H0 hold, then λ∗ ∈ L and so
L = [λ∗ ,+∞).

Proof Let λn ∈ (λ∗ ,+∞) be such that λn ↘ λ∗. Let un = uλn ∈ intC+ for n ⩾ 1
be the corresponding minimal positive solution of problem (Pλn) for n ⩾ 1. From
Proposition 3.6 we know that the sequence {un} ⊆ intC+ is strictly decreasing. So,
we have

(3.21) ∥un∥∞ ⩽ ∥u1∥∞ for n ⩾ 1.

We have

(3.22) A(un) = λnNg(un) − N f (un) for n ⩾ 1.

From (3.21) and the regularity result of Lieberman [20, p. 320], we know that there
exists α ∈ (0, 1) and c0 > 0 such that

un ∈ C1,α
0 (Ω) and ∥un∥C 1,α

0 (Ω) ⩽ c9 for n ⩾ 1.

So, we can assume that

(3.23) un Ð→ u∗ in C1
0(Ω).

As in theproofofProposition 3.6, using (3.23) andhypothesisH(g)(iii) andH( f )(iii),
we can show that u∗ ≠ 0. _erefore, by passing to the limit as n → +∞ in (3.22) and
using (3.23), we obtain that u∗ ∈ S(λ∗) ⊆ intC+, hence λ∗ ∈ L.

Reasoning as in the proof of Proposition 3.6, we can produce a minimal solution
for problem (Pλ∗).

Proposition 3.8 If hypotheses H(a), H(g), H( f ), and H0 hold, then problem (Pλ∗)
admits a smallest positive solution uλ∗ ∈ S(λ∗) ⊆ intC+. _e map [λ∗ ,+∞) ∋ λ ↦
uλ ∈ C1

0(Ω) is strictly increasing.

Proposition 3.9 If hypotheses H(a), H(g), H( f ), and H0 hold, then the map
(λ∗ ,+∞) ∋ λ ↦ uλ ∈ C1

0(Ω) is le� continuous.
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Proof Let {λn}n⩾1 ⊆ (λ∗ ,+∞) be a sequence such that λn ↗ λ and n → +∞. Let
un = uλn ∈ S(λn) ⊆ intC+ for all n ⩾ 1 (see Proposition 3.6). We have

∥un∥∞ ⩽ ∥uλ∥∞ for n ⩾ 1.

So, as before (see e.g., the proof of Proposition 3.7), we have

(3.24) un ↗ ũ in C1
0(Ω) and ũ ∈ S(λ) ⊆ intC+ .

Suppose that ũ ≠ uλ . _en we can ûnd z0 ∈ Ω such that uλ(z0) < ũ(z0), so for some
n0 ⩾ 1, we have uλ(z0) < un(z0) for n ⩾ n0 (see (3.24)), which contradicts the
strictmonotonicity of λ ↦ uλ (see Proposition 3.6). _erefore, ũ = uλ and sowe have
proved the le�-continuity of themap λ ↦ uλ .

So, we can state the following bifurcation type result, summarizing the situation
for the positive solutions of problem (Pλ) as the parameter λ > 0 varies.

_eorem 3.10 If hypotheses H(a), H(g), H( f ), and H0 hold, then there exists λ∗ >
0, such that
(i) for all λ > λ∗ problem (Pλ) has at least two positive solutions u0 , û ∈ intC+;
(ii) for λ = λ∗ problem (Pλ) has at least one positive solution u∗ ∈ intC+;
(iii) for λ ∈ (0, λ∗) problem (Pλ) has no positive solution.
Moreover, for every λ ⩾ λ∗ problem (Pλ) has a smallest positive solution uλ ∈ intC+;
if µ > λ ⩾ λ∗, then uµ − uλ ∈ intC+ and the map (λ∗ ,+∞) ∋ λ ↦ uλ ∈ C1

0(Ω) is le�
continuous.
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