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Abstract

Gestational diabetes mellitus (GDM) is a frequent complication of pregnancy. The specific mechanisms underlying GDM have not yet been
fully elucidated. Contemporary research indicates a potential association between liver enzyme irregularities and an increased risk ofmetabolic
disorders, including diabetes. The alanine aminotransferase (ALT) level is recognized as a sensitive marker of liver injury. An increase in ALT
levels is hypothesized to be linked to the pathogenesis of insulin resistance and diabetes. Nonetheless, the definitive causal link between
ALT levels and GDM still needs to be determined. This investigation utilized two-sample Mendelian randomization (MR) to examine the
genetic causation between alanine aminotransferase (ALT) and GDM.We acquired alanine aminotransferase (ALT)-related GWAS summary
data from the UK Biobank, Million Veteran Program, Rotterdam Study, and Lifeline Study. Gestational diabetes data were obtained from the
FinnGen Consortium. We employed various MR analysis techniques, including inverse-variance weighted (IVW), MR Egger, weighted
median, simple, and weighted weighting. In addition to MR-Egger intercepts, Cochrane’s Q test was also used to assess heterogeneity in the
MR data, and the MR-PRESSO test was used to assess horizontal pleiotropy. To assess the association’s sensitivity, a leave-one-out approach
was employed. The IVW results confirmed the independent risk factor for GDM development, as indicated by the ALT level (p = .011).
As shown by leave-one-out analysis, horizontal pleiotrophy did not significantly skew the causative link (p > .05). Our dual-sample MR
analysis provides substantiated evidence of a genetic causal relationship between alanine aminotransferase (ALT) levels and gestational
diabetes.
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Gestational diabetes mellitus (GDM) manifests as diabetes during
pregnancy in women with previously normal glucose metabolism
(McIntyre et al., 2019). As a significant public health concern,
GDM incidence varies globally, estimated at approximately 14.0%
worldwide (Wang et al., 2022) and 14.8% in China (Gao et al.,
2019), as reported by the International Diabetes Federation (IDF).
GDM jeopardizes maternal health and adversely impacts fetal
development. It predisposes mothers to perinatal complications
such as gestational hypertension and preeclampsia, along with
adverse pregnancy outcomes such as macrosomia, cesarean
delivery and preterm birth. Moreover, this condition heightens
the risk of future type 2 diabetes and cardiovascular diseases for
mothers. Additionally, fetuses face increased risks of neonatal
complications, including hyperglycemia, hyperbilirubinemia, and
respiratory distress syndrome, and in the long term, childhood
obesity, metabolic syndrome, and cardiovascular diseases
(Kondracki et al., 2022; Lee et al., 2018; Lenoir-Wijnkoop et al.,
2015; McIntyre et al., 2019).

The alanine aminotransferase (ALT) level, a critical liver
damage biomarker, is positively correlated with diabetes risk when
it is persistently elevated, as demonstrated by prior research. Some
articles also suggests that a substantial correlation between the two
variables is lacking. Nonetheless, the epidemiological association
between ALT and GDM has been subject to scrutiny (Hua et al.,
2021). Traditional risk factor identification for GDM, primarily
based on observational studies, is often limited by confounding
factors. Mendelian randomization (MR) analysis, a novel
methodological approach, overcomes these limitations by con-
trolling for confounders, thereby elucidating the causal relation-
ships between variables. This study employed two-sample
Mendelian randomization, leveraging large-scale genomewide
association study (GWAS) data and utilizing genetic markers as
instrumental variables. This approach aims to delineate the causal
relationship between ALT levels and GDM incidence, laying the
groundwork for enhanced prediction and intervention strategies in
GDM management.

Materials and Methods

Study Design and Data Sources

This study implemented two-sample MR to examine the causal
link between ALT exposure and GDM outcomes. This method,
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utilizing distinct and independent GWAS datasets, surpasses
single-sample MR in efficacy and power. ALT levels were the
exposure variable, while gestational diabetes status was the
outcome of interest. Instrumental variables (IVs) for the analysis
were single nucleotide polymorphisms (SNPs), chosen based on
three fundamental two-sample MR assumptions: (1) a strong
association of all selected IVs with ALT exposure (p< 5×10^-8);
(2) the independence of all selected IVs from confounders affecting
ALT as well as GDM; (3) influence of all selected IVs on gestational
diabetes exclusively via ALT, without alternative pathways.

There were 437,438 discovery samples and 315,572 replication
samples in the ALT GWAS from the UK Biobank, Million Veteran
Program, Rotterdam Study and Lifeline Study (Pazoki et al., 2021).
All participants, of European descent, provided informed consent.
The GWAS summary data for gestational diabetes were sourced
from a Finnish database that included 6033 gestational diabetes
patients and 110,330 controls, all of European descent.

Selecting Instrument Variables

MR analysis required strict adherence to three principles: relevance,
independence and exclusion restriction. Consequently, all IVs
selected for further analysis underwent stringent screening. SNPs
strongly associated with ALT exposure (p< 5× 10^-8) were chosen.
To ensure significance and mitigate weak IV bias, F values less than
10were excluded. The F value was calculated as F= R^2× (N-2)/(1-
R^2), where R^2 is the variance inALT explained by each IV. R2= 2
× EAF × (1-EAF) × β^2, where beta indicates the allelic effect and
EAF the effect allele frequency. To eliminate biases from high
linkage disequilibrium among SNPs, a clumping process (r2 < .001,
physical distance= 10,000 kb) was used to ensure IV independence.
Additionally, palindromic SNPs with intermediate allele frequencies
were excluded to align effect alleles between the ALT and gestational
diabetes datasets.

Statistical Analysis

The genetic association between ALT levels and gestational
diabetes incidence was investigated using five methods: MR-Egger
regression, the weighted median, the inverse-variance weighted
(IVW) method, the simple mode, and the weighted mode. IVW,
assuming the validity of all analyzed SNPs, was anticipated to
provide the most accurate estimates and thus was the primary
method in this study (Chen et al., 2024). The results were
statistically significant when the p value of IVW was less than
.05 and IVW and MR-Egger were in the same direction. Several
tests, including the Cochrane Q test and funnel plot symmetry
assessment, were used to validate the results. The MR-Egger
intercept test and MR-PRESSO global test were used to detect
multicollinearity, withMR-PRESSO also identifying and excluding
outliers to provide adjusted estimates. A leave-one-out sensitivity
analysis was used to assess the impact of individual SNPs on the
overall association. Statistical analyses were conducted with
R software (version 4.3.2) using the TwoSampleMR package;
p < .05 indicated statistical significance.

Results

Selection of Instrumental Variables

Screening identified 252 SNPs strongly linked to ALT (p< 5 ×
10^-8; F value > 10) and independently related to ALT (r2 < .001,
physical distance≤ 10,000 kb), initially serving as potential
instrumental variables, with the lowest F value being 27.35.

Postharmonization analysis of the ALT and gestational
diabetes datasets was performed. For subsequent MR analysis,
238 SNPs were retained, including nine palindromic SNPs,
namely, rs12609548, rs133015, rs13395911, rs1778793,
rs4711750, rs4782568, rs7041363, rs7672435, and rs9788910.
Consequently, 229 SNPs were finalized as instrumental variables.

Mendelian Randomization Analysis

Genetic links between ALT levels and gestational diabetes
incidence were explored using the random-effects IVW method.
A significant difference in the odds ratio (OR) was detected
between people with gestational diabetes and those without
gestational diabetes (p = .011, 95% CI= 2.868 [1.275-6.451])
(Table 1; Figure 1). The weighted median method corroborated a
genetic causal relationship between ALT levels and gestational
diabetes incidence (Figure 2). Table 1 details the five method-
ologies employed in our MR analysis, along with their respective
outcomes.

The heterogeneity tests revealed significant variability in the
impacts of genetic instrumental variables. The MR Egger method
yielded a heterogeneity Q statistic of 302.6416 (degrees of freedom
[df]= 227, p = .00058), highlighting notable heterogeneity among
the genetic tools. The Q statistic of the IVWmethod was 304.5560
(df= 228, p = .00052), which further confirmed the heterogeneity.
Additionally, funnel plots exhibited SNP symmetry (Figure 3).

Egger intercept and MR-PRESSO analyses indicated no
pleiotropy (p = .23205), with no outliers identified in the
MR-PRESSO during the analysis. The leave-one-out test con-
firmed that the MR analysis results were unaffected by individual
SNPs, confirming the stability and robustness of the findings
(Figure 4).

Discussion

This study leveraged large-scale GWAS data to examine the
causal relationship between ALT levels and GDM incidence.
We identified a notable association between SNPs affecting ALT
levels and those affecting GDM prevalence, suggesting that
prenatal interventions targeting liver disease affecting ALT can
reduce the prevalence of GDM.

Increasing evidence supports a correlation between ALT levels
and GDM risk. A study of 94 GDM patients reported by An et al.
(2022) revealed a negative correlation between early pregnancy
AST/ALT levels and GDM risk. Conversely, a prospective study
involving 1128 patients indicated a positive association between

Table 1. The MR results obtained by five methods.

Exposure Outcome Method SNP (n) OR OR 95%CI
p

value

ALT GDM MREgger 229 1.340 0.303, 5.917 .700

ALT GDM Weighted
median

229 2.957 0.826, 10.581 .096

ALT GDM IVW 229 2.868 1.275, 6.451 .011

ALT GDM Simple
mode

229 0.100 0.004, 2.322 .152

ALT GDM Weighted
mode

229 1.848 0.364, 9.386 .459

Note: MR, Mendelian randomization; ALT, alanine aminotransferase; GDM, gestational
diabetes mellitus; IVW, inverse-variance weighted.
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early pregnancy ALT/AST levels and GDM (Song et al., 2022),
identifying them as independent risk factors. Research by Erdoğan
et al. (2014) also suggested that the ALT concentration is a
predictive marker for GDM. Nevertheless, some studies have
reported no significant correlation between ALT levels and GDM
risk (Kong et al., 2018; Zhao et al., 2020).

There is no evidence that ALT causes GDM based on
observational studies. The cooccurrence of ALT with conditions
such as intrahepatic cholestasis during pregnancy and elevated
AST complicates its relationship with GDM. Genome-wide
association studies are instrumental in dissecting complex diseases
and identifying key genetic contributors beyond single-gene
analyses. Our research, using extensive data, provides genetic

insight into the causal relationship between ALT levels and GDM
under both intricate and interrelated conditions.

The relationship between ALT and GDM is likely complex. Liver
stress, metabolic imbalances, insulin resistance, and inflammation
related to ALT have implications for GDM (Peracchi & Polverini,
2022). Insulin resistance, which is crucial in GDM development,
may impair liver function and elevate ALT levels (Sakurai et al.,
2021). GDM has been associated with metabolic disorders and
chronic inflammation (Bakhshimoghaddam et al., 2023), potentially
exacerbating liver stress and ALT levels (Huang et al., 2019).
Moreover, the interplay between inflammation and insulin
resistance could intensify GDM progression (Zheng et al., 2016).
Fatty liver disease, a GDM risk factor, can increase ALT levels and

Figure 1. Forest plot of the effect of alanine aminotransferase (ALT) on gestational diabetes mellitus (GDM).

Figure 2. The scatter plot shows the causal effect of alanine aminotransferase (ALT) on gestational diabetes mellitus (GDM).
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contribute to GDM development (Ajmera et al., 2016; Chen et al.,
2021). Hormonal changes during pregnancy may also impact
insulin sensitivity and metabolism, affecting alanine aminotransfer-
ase (ALT) levels.

A strength of our study is that it is the first GWAS exploring the
causal relationship between ALT and GDM. The two-sample MR
method addresses observational study limitations such as reverse
causation, confounding factors, and biases. Rigorous selection of
instrumental variables ensured accurate results. Various tests for
sensitivity, horizontal pleiotropy, and heterogeneity reinforced the
stability and reliability of the ALT-GDM association.

However, there are limitations. The participants were exclu-
sively of European descent, leaving the generalizability of our
findings to other populations uncertain. Pleiotropy was adjusted
using MR intercepts and MR-PRESSO global tests, and residual

confounding factors could bias the results. Finally, reliance on
genome-wide association meta-analyses limits stratified analyses
by country, ethnicity, or age group, potentially restricting the
applicability of the observed ALT effects to specific populations.

Conclusion

This study has established a link between ALT and GDM,
enhancing our comprehension of their inherent connection and
laying the groundwork for future targeted interventions. Further
investigation is essential to ascertain the generalizability of these
associations and their implications for clinical practice.
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Figure 4. Funnel plot of the effect of alanine aminotransferase (ALT) on gestational diabetes mellitus (GDM).
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