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It is well known that the Poiseuille mass flow rate along microchannels shows a stationary
point as the fluid density decreases, referred to as the Knudsen minimum. Surprisingly, if
the flow characteristic length is comparable to the molecular size, the Knudsen minimum
disappears, as reported for the first time by Wu et al. (J. Fluid Mech., vol. 794, 2016,
pp. 252-266). However, there is still no fundamental understanding why the mass flow rate
monotonically increases throughout the entire range of flow regimes. Although diffusion
is believed to dominate the fluid transport at the nanoscale, here we show that the Fick’s
first law fails in capturing this behaviour, and so diffusion alone is insufficient to explain
this confined flow phenomenon. Rather, we show that the Knudsen minimum disappears
in tight confinements because the decay of the mass flow rate due to the decreasing density
effects is overcome by the enhancing contribution to the flow provided by the fluid velocity
slip at the wall.
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1. Introduction

Fluids confined within geometries of molecular dimensions are commonly encountered
in geological and biological systems (Bocquet & Charlaix 2010), as well as in many
engineering applications, e.g. membrane science (Mistry et al. 2021), that have been
constantly growing in recent years — fostered by the technological progress in the
fabrication of nanofluidic devices (Kavokine, Netz & Bocquet 2021). In these flows, three
significant length scales can be identified: the diameter of fluid constituent particles o, the
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flow characteristic length d, which is related to the channel size, and the molecular mean
free path (MFP) A, which represents the average distance travelled by particles between
two consecutive collisions. The interplay of phenomena occurring at these scales leads
to complex fluid behaviour. Indeed, the continuum approach based on the Navier—Stokes
equations breaks down with increasing rarefaction (4 ~ d), since the local thermodynamic
equilibrium condition is not fulfilled. Likewise, the standard kinetic theory description
is no longer accurate at the nanoscale where dense (1 ~ ¢) and confinement (d ~ o)
effects come into play, implying that the Boltzmann equation must be replaced by more
complicated kinetic models, such as the Enskog equation (Kremer 2010).

Despite the availability of computational procedures to describe the flow of confined
fluids, the fundamental understanding of many phenomena occurring under tight
confinement is still lacking. A notable example is that, for simple fluids, the Poiseuille
mass flow rate (MFR) is found to monotonically increase in channels of molecular
dimensions when the fluid density decreases, by using numerical solutions of the Enskog
equation (Wu et al. 2016) and event-driven molecular dynamics (EDMD) simulations
(Sheng et al. 2020). This behaviour is in sharp contrast with the long-standing recognition
of flow mechanics in microchannels, which instead exhibits a non-monotonic variation
of the MFR and the formation of a stationary point referred to as the ‘Knudsen
minimum’ (Pollard & Present 1948; Cercignani & Sernagiotto 1966; Tatsios, Stefanov
& Valougeorgis 2015), as long as the channel is sufficiently long and does not contain any
bends (Ho ef al. 2020).

A possible explanation of the Knudsen minimum disappearance is that the transport in
dense fluids changes from convection to molecular diffusion under tight confinements.
Here, molecular diffusion is referred to as the diffusive mechanism which is driven
by the interactions between fluid particles in the continuum limit (1 < d), and it is
distinguished from the Knudsen diffusion that takes place in the free molecular limit
(4> d), where particles only collide ballistically with the wall (Xiao & Wei 1992).
The dominance of diffusive transport at the nanoscale is known to take place for long
alkanes in porous media, where the hydrodynamic description breaks down, although
doubt remains for single-site gas molecules (Falk et al. 2015). Despite the fact that there is
no unequivocal evidence that this behaviour also occurs for non-tortuous channels, some
hints supporting the diffusive nature of Poiseuille flow transport in tight geometries are
provided by the analysis of velocity profiles. These are no longer parabolic as expected
for force/pressure-driven flows, but show a plug-like behaviour instead, suggesting the
predominance of diffusive mechanisms (Firouzi & Wilcox 2013). However, a conclusive
proof regarding a crossover from convection to molecular diffusion in these systems, that
is triggered by the fluid confinement, has still not been given.

The aim of this work is to perform a detailed investigation of the Knudsen minimum
disappearance in straight nanochannels, and elucidate the underpinning physical reasons.
There are two main findings. First, despite the molecular-like confinements, we show that
diffusion does not dominate transport, and so the convective flow contribution cannot
be neglected outside the free molecular regime. Second, we show that the monotonic
increase of MFR can be attributed to the larger relative importance of the velocity slip
at the wall, compared with the other physical mechanisms that are normal contenders
at the microscale. The rest of the paper is organised as follows. In §2 we outline the
simulation approach used to numerically study the transport process. In § 3.1 we show
that the Knudsen minimum vanishing in straight nanochannels cannot be attributed to
diffusive processes, whereas in § 3.2 we prove that the contribution of the fluid slippage at
the confining solid surface provides a satisfactory explanation of this recently discovered
feature. A summary of the main results and conclusions follow in § 4.
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2. Methodology

We consider force-driven Poiseuille flows inside a long tubular geometry with nominal
diameter d, where the fluid is modelled using a system composed of hard-sphere particles
with molecular diameter o. The wall is assumed to be a structureless cylindrical surface
and the fluid—wall interactions are described by the Maxwell scattering kernel with full
tangential momentum accommodation coefficient, where impinging particles are diffusely
reflected after being thermalised with the wall. The exact time evolution of the monatomic
hard-sphere system is simulated using EDMD. In these simulations, the state of the system
jumps from one time to another, corresponding to the upcoming collision, through three
basic steps: (a) evaluating the time of the earliest collision event, () moving ballistically
all particles for that time interval, and (c¢) updating the velocity of the particles that have
collided with another particle or the wall, according to elastic hard-sphere dynamics or the
Maxwell scattering kernel, respectively. Note that the time step is not constant throughout
the simulation run, like in regular molecular dynamics simulations, as it depends on the
spatial coordinates and velocities of all molecules in the system. More information on the
simulation set-up can be found in Corral-Casas et al. (2021).

Three dimensionless groups can be identified to systematically describe the different
transport processes that may take place in this system, namely the reduced density, the
confinement ratio and the Knudsen number. The reduced density n = nmo /6, where n
is the number density, represents the number of fluid particles in the theoretical volume
occupied by one hard sphere. This first dimensionless group defines the degree of fluid
rarefaction, allowing us to differentiate between dense (large 1 values) and rarefied (low
n values) gas flows. The confinement ratio R = d/o provides information about the
degree of fluid inhomogeneity that arises because of the presence of walls, where tight
confinements (low R values) are associated with a more prominent molecular layering next
to the confining surface and, therefore, with an increase of the collision frequency of fluid
particles with the wall. Finally, the Knudsen number Kn = 1/d quantifies the departure of
the fluid from its local quasi-equilibrium case. The continuum approach can be used for
Kn < 0.01, while non-equilibrium effects come progressively into play in the following
three regimes: slip (0.01 < Kn < 0.1, where the continuum model still holds but different
boundary conditions are needed to capture the ‘slippage’ of fluid particles at the solid
surface), transition (0.1 < Kn < 10, where the continuum description breaks down and
kinetic equations must be used instead) and free molecular (Kn > 10, where molecules
move ballistically between collisions with the confining wall). The expression of the MFP,
derived from kinetic theory, is given by Kremer (2010),

16 u | kT
A= ——/—, (2.1)
St PV 2m

where m is the molecular mass and P is the pressure, related to the density through P =
nkTZ, in which k is the Boltzmann constant, T the temperature of the system and Z is the
fluid compressiblity factor, that can be accurately approximated by the equation of state
for the hard-sphere fluid proposed in Carnahan & Starling (1969),

i_ 1+77—|—772—773

nkT (1—n)? 2

According to the Enskog theory, the shear viscosity w of a hard-sphere fluid is given by
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Figure 1. (@) Comparison between the dimensionless MFR provided by non-equilibrium simulations
(symbols) and the theoretical predictions assuming Fickian diffusion, as given by (3.1) (lines). There is good
agreement in the free molecular regime (Kn > 10), whilst Fick’s law underestimates MFR elsewhere, which
implies that convective transport terms cannot be neglected at any confinement. The normalising factor of the
MER m,, is presented in (A6) of Appendix A. (b) Dependence of the self-diffusivity D on the Knudsen number
Kn and the confinement ratio R. Horizontal lines represent the theoretical value of the Knudsen self-diffusivity
from (3.2) for each confinement ratio.

where 17 is the dense gas correction for the viscosity of a rarefied gas and x represents the
contact value of the pair correlation function in a hard-sphere fluid in uniform equilibrium,
which from the aforementioned equation of state reads as

1 P 1 2—n
x=— (4 —1)=2220 (2.4)
nb \ nkT 2(1—n)

where b = 2703 /3 is the second virial coefficient (Kremer 2010). It is worth stressing that
only two out of the three dimensionless groups are independent, as they are interrelated
through

A f

Kn=5-=—2
d  62nZR

(2.5)

3. Results and discussion
3.1. Knudsen minimum disappearance: analysis based on diffusion

The Knudsen minimum disappearance, which was initially presented for the slit geometry
in Wu et al. (2016), is demonstrated for a cylindrical pipe in this work, where it is seen
to occur between R = 20 and R = 8 in figure 1(a). Here, we show transport results from
non-equilibrium EDMD simulations that are performed in the presence of an external
unidirectional force F along the axis of the channel, whose value is assumed to be
sufficiently low so that the flow remains in the linear response regime — the artificial
addition of heat is adequately dissipated by the wall. The numerical evaluation of the
MER for each case, depending on 1 and R, is obtained from a spatial integration of local
densities and velocities.

As mentioned in § 1, the Knudsen minimum vanishing might be explained by supposing
that, under molecular confinements, a crossover from convective to diffusive transport
takes place up to the late transition regime (Kn < 10). This hypothesis is tested by
comparing the actual MFR with the analytical estimate assuming that the transport is
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solely driven by diffusion, which is based on the Fick’s first law where the MFR of
diffusing particles ni1,4 follows a linear response with the density gradient along the axial z
direction dn/dz,

md? dn Drd*m dP
—_—ml)— = — _
dz ’
R <z + n—) &
dn

in which D is the self-diffusion coefficient. Note that the number density n and pressure P
are interconnected using (2.2), with the pressure gradient being identified with the force F
through the fundamental relation given by —dP/dz = nF.

However, before comparing the MFR simulation results with the predictions given
by (3.1), self-diffusion results D are needed as this information is unavailable in the
literature for the cylindrical geometry. Therefore, a set of equilibrium EDMD simulations
is carried out, see details in Corral-Casas et al. (2021), where the self-diffusion coefficients
are determined by means of the Einstein relation in the entire range of flow regimes, for
different confinement ratios of interest. These simulation results are shown in figure 1(b),
where it can be seen that, from a qualitative standpoint, self-diffusivities increase
with Knudsen number because the MFP becomes larger and, therefore, particles have
more mobility before colliding with another entity in the system. At the same time,
self-diffusivities increase with the flow characteristic length for a given Kn, as large
R values imply less collisions with the diffuse wall model that hinder the molecular
displacement in the streamwise direction. Note that in the free molecular limit, where
there are just diffuse collisions with the wall, numerical results perfectly agree with the
analytical Knudsen self-diffusivity prediction from kinetic theory (Kremer 2010),

(3.1

g = —

_2d—a 2kT

Dy = (3.2)

3 m’

where it has been accounted for the fact that the effective transversal space accessible to
the centre of moleculesisd — o.

As presented in figure 1(a), it is found that the Fick’s first law unsurprisingly
reproduces the MFR simulation results very well in the free molecular regime. The
slight disagreement in the tightest of confinements (for R = 3) can be attributed to the
transition from Fickian to anomalous diffusion (e.g. of single-file type), as particles cannot
overtake each other when moving along the channel. However, it is evident that (3.1)
underestimates the mass transport along the remaining flow regimes (Kn < 10) and,
therefore, the governing mechanism in this range of Kn is no longer purely diffusive.
This clearly proves that, in straight channels, the supposed crossover from convection to
diffusion does not occur even under tight confinements and, consequently, cannot explain
the Knudsen minimum disappearance. Note that these results do not imply that diffusion
is not the governing transport mechanism within more complex geometries, such as in
microporous media, which will need to be addressed separately.

3.2. Knudsen minimum disappearance: analysis based on slip

As discussed so far, there are a number of mechanisms that influence the MFR through
a channel, and so the best explanation for describing the features of the MFR dynamics
can be inferred in the limits of the continuum (Kn — 0) and free molecular (Kn — 00)
regimes, as we illustrate in figure 2(a). As suggested by the analysis from § 3.1, the fluid
flow is convective in nature in the continuum regime, regardless of R. When moving
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Figure 2. (@) Qualitative analysis of the dimensionless MFR curves against the Knudsen number. In
sufficiently large channels (orange colour), where the continuum transport is larger than the free molecular one,
the MFR curve develops two stationary points. In tighter confinements (blue colour), where the free molecular
flow is larger than the continuum one, the MFR curve could either show the two stationary points or follow a
monotonic increase instead, where the Knudsen minimum disappears. (b) Relative percentage error of the MFR
predicted by the Navier—Stokes equation with slip, for different confinement ratios. Dashed horizontal lines are
the average percentage error over the displayed range of Kn: the mean error is within 8 % for the tighter R = 5,
whereas it reduces to less than 4 % for the largest R = 50 considered here. The inset shows the slip coefficients
determined from EDMD simulations, for different R and n values, obtained by fitting the quadratic velocity
profiles.

towards the free molecular regime (i.e. decreasing density values), the MFR initially
increases as the viscosity decreases, implying that the fluid velocity arising as a response
to a given external driving force will be larger. By contrast, the fluid flow is driven by
Knudsen diffusion in the free molecular regime. This means that, when moving back
towards the continuum regime (i.e. increasing density values), the MFR decreases as the
molecular MFP shortens, implying lower self-diffusivities as observed in figure 1(b).
Under a sufficiently loose confinement (R 2 60 as shown in Appendix A), the Knudsen
minimum existence follows from these two limiting behaviours. The MFR in the
continuum regime is always larger than that in the free molecular regime and, therefore,
the MFR curve must show two stationary points as depicted by the orange curve in
figure 2(a), namely the Knudsen maximum and the Knudsen minimum. If the confinement
is tighter, the continuum MFR is lower than the free molecular one. Accordingly, the
flow transport curve may either form two stationary points, given by the blue dotted
line, or else could show a monotonic increase throughout the entire range of Knudsen
numbers, as represented by the blue solid line. It is then clear that, for the confined
case, a necessary and sufficient condition for the Knudsen minimum to appear is that the
Knudsen maximum shows up as well. Indeed, the first derivative of the MFR is positive
in the continuum regime but, by definition, it is negative in the left neighbourhood of
the local minimum. Therefore, before this local minimum, there must necessarily be a
point at which the first derivative changes from positive to negative, which corresponds to
a local maximum. Consequently, proving the disappearance of the Knudsen minimum is
equivalent to demonstrating the Knudsen maximum vanishing. The latter question is easier
to address as this local maximum falls in the continuum/slip regime (Kn < 0.1), where it
can be tackled analytically using the Navier—Stokes equations with the first-order velocity
slip boundary condition, which in its dimensionless form (a step-by-step derivation of this
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mathematical expression is presented in Appendix A) reads as

1ty 5 ﬁ 127
Note that the velocity slip boundary condition at the wall used to derive (3.3) is based on
the strain rate and not on the stress tensor, leading to less accurate results if the wall is
not at rest (Lockerby et al. 2004). The validity of (3.3) in the considered range of Kn is
tested in figure 2(b), where we show the relative error with respect to the EDMD results
presented in figure 1(a). It is clear that, despite the tight confinements, the evaluation of
the Navier—Stokes equations with the numerical slip coefficients o presented in the inset of
figure 2(b) predicts the MFR very accurately. In the following analysis, the slip coefficient
o is assumed to be constant and equal to that of a rarefied gas, albeit the slip phenomenon
is known to be more complicated when dealing with liquid-like densities, and the standard
kinetic theory treatment is no longer applicable (Martini et al. 2008; Hadjiconstantinou
2021; Shan et al. 2022). This fact is also reflected in the inset of figure 2(b), where the
non-trivial dependence of « on both the confinement ratio R and the reduced density 1 can
be observed. The validity of this assumption will be discussed later.

Equation (3.3) clearly shows that, at constant R, there are three physical terms
contributing to the MFR, namely the viscosity (i.e. via jiy), the density (i.e. via ) and the
slip (i.e. via 1 4+ 8w Kn). These terms vary with the reduced density but, for the following
analysis, we find it more convenient to study the MFR with respect to the reduced specific
volume v = 1/1n, as in this way there is a one-to-one direct correspondence between
v and Kn. It should be stressed that this choice does not limit the generality of the
conclusions. The relative importance of these terms can be singled out by evaluating their
corresponding partial rates of change,

din _dn (m dus  9m O dKn
dv  dv \dur dnp ~ 3n  9Kn dpy

) my 3Rn
m= = (1 + 8aKn). (3.3)

1
) = ﬁ (Qu + Qn + ro) ) (3.4)

where
3Rn (1 + 8aKn) duy
"o symu?  dn
3R (1 + 8aKn)
e=" SV
_ 24Rna dKn
"= S g

These individual contributions are presented in figure 3(a) for R = 20, in a range of
v values corresponding to Kn < 0.1, namely the slip regime. Here, the plot of (3.5)
shows that the partial derivative of the MFR with respect to the viscosity, Q,,, is always
positive with increasing reduced specific volume. In particular, the rate of change is
higher for low v values, whereas its value decreases for large reduced specific volumes.
Equation (3.6) shows that the MFR partial derivative with respect to the density, O,
is always negative with increasing reduced specific volume. If the slip contribution is
temporarily disregarded, the density is seen to become relevant over the viscosity at v ~ 6,
and drives the MFR to decrease monotonically with a further increase in the reduced
specific volume. Equation (3.7) shows that the MFR partial derivative with respect to the
slip, Qq, 1s always positive with increasing specific volume. In particular, the rate of change
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Figure 3. (a) Partial rates of change against the reduced specific volume, for R = 20, under the continuum
framework of fluid modelling, which capture how flow transport is affected by a change of each of the
underlying contributions. (b) Interplay between the continuum (dash-dotted) and the slip (dotted) contributions
for different R. For sufficiently large R values, the continuum contribution dominates and the sum of all rates
of change (solid) crosses the x-axis, i.e. the Knudsen maximum appears. However, for tight channels, the
continuum contribution is less relevant whereas slip remains the same, driving the overall rate of change to be
positive throughout the entire range of v values, with the Knudsen maximum disappearing as a consequence.

is almost negligible in the continuum regime while it becomes larger in the slip regime
(v 2 3.33), where rarefaction effects become more prominent and the fluid slippage at the
wall increasingly contributes to the overall MFR.

Three important observations are in order and presented in figure 3(b), that helped us
to understand why the Knudsen minimum disappears only when confinements are tight.
The first remark is that the viscosity and density contributions exactly counterbalance
at the same v regardless of R. This can be easily proved using (3.5) and (3.6), and it
is clearly shown by dashed lines, representing the sum of viscosity and density rates of
change (dubbed the continuum contribution from here onwards), which always cross the
x-axis at v & 5.711. A second remark is that the magnitude of the rate of change of the
continuum contribution reduces with tighter channels, and so its absolute value decreases
with lower R for a given v value, as could also be deduced from (3.5) and (3.6). The third
remark is that the slip contribution (dotted line) is independent of R, as it is seen in (3.7),
and so its relative importance grows when the confinement ratio reduces.

The interplay between the three aforementioned contributions (denoted by solid lines in
figure 3(b), representing the sum of continuum and slip terms) significantly depends on the
size of the channel, and we can mainly distinguish between two types of flow behaviours.
For sufficiently large channel sizes and starting from the continuum regime (low v), the
viscosity contribution initially dominates and leads the MFR to increase with v. The region
corresponding to low v values can then be referred to as viscosity dominated since this
contribution overcomes that of density, and here the slip term is negligible. Unlike the
viscosity term that gets weaker as the fluid rarefaction increases, the density term becomes
progressively more important and causes the Knudsen maximum to form by eventually
driving the MFR to decrease.

For tight confinements, viscosity is initially dominant and drives the MFR increase as
in the previous case. However, now there is an interplay between density and slip in the
region where the transport was previously density dominated, as the relative contribution
of slip becomes more and more important for decreasing R values. Indeed, as emphasised
by the magnitude of the continuum and slip contributions in figure 3(b), there might be
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a threshold confinement ratio R at which the latter overcomes the former, preventing the
formation of the expected Knudsen maximum. Therefore, the velocity slip at the boundary
impels the MFR curve to monotonically increase throughout the entire range of flow
regimes, with the Knudsen maximum (and so, the Knudsen minimum) disappearing as
a consequence.

It is worth noticing that, within the simplified solution represented by (3.4), the Knudsen
minimum disappearance can be determined by a simple argument. As the rate of change
of the MFR is a continuous function that takes positive values in the continuum limit,
a sufficient condition for the MFR to cross the x-axis could be defined by the Bolzano
theorem,

lim (Qy + Oy + Q) = 8V2 3R (3.8)

V—> 00 5 ﬁ
from where the threshold value of the confinement ratio for the Knudsen minimum
disappearance is R; < 8+/2a/3 ~ 4.3. The numerical results presented in figure 1(a) show
that the MFR monotonically increases with rarefaction up to about R & 8, and so the
theoretical estimate from (3.8) only provides a sufficient condition, but not necessary, for
the Knudsen minimum disappearance.

The analysis carried out in this section is based on two main simplifying considerations.
The first assumption consists on using nominal values for density and viscosity in the
Navier—Stokes equations to predict the MFR values, despite the fact that it is well known
that, under tight confinement, density is non-uniform across the channel and viscosity
is no longer a local property of the position along the channel (Travis, Todd & Evans
1997). However, there is a large body of evidence demonstrating that the hydrodynamic
framework is valid down to nanoscale confinements (Bocquet & Charlaix 2010), and
indeed our numerical simulations in tight geometries also showed an agreement with the
theoretical prediction provided by the Hagen—Poiseuille solution with slip, (3.3), using
nominal values of the fluid properties — as it is presented in figure 2(b). The second
assumption involves the use of a constant slip coefficient although, unlike the rarefied case,
numerical evidence shows that it depends on the channel size and on the fluid density
— see the inset within figure 2(b). However, the validity of the presented analysis can
be straightforwardly extended when a more accurate expression of the slip coefficient
is used. As an example, a universal scaling law is derived for the slip coefficient in
a planar geometry by Shan et al. (2022), where it is shown that « varies significantly
with 7, while the dependence on R can be neglected. Accordingly, the slip contribution
is still independent of R and the continuum contributions remain linear functions of R,
counterbalancing each other at a specific n value regardless of the confinement ratio.
Therefore, although the curves corresponding to these contributions are different from
those depicted in figure 3(b), there still must exist a threshold confinement ratio for which
the Knudsen minimum disappears as, when R is small enough, the decay of the MFR due
to the density decreasing is overcome by the enhancing contribution of the slip.

4. Conclusions

We have studied the Knudsen minimum disappearance that occurs for Poiseuille flows
in tight cylindrical geometries. High-fidelity EDMD simulations have been carried out
in a wide range of reduced fluid densities n and channel confinement ratios R, in
both equilibrium (to obtain the self-diffusivities needed in the Fickian framework) and
non-equilibrium (directly evaluating the MFR) set-ups. Although diffusion is supposed
to be the main transport mechanism at the nanoscale, we found that the convective
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contribution to the MFR cannot be disregarded — even under confinements of molecular
dimensions. This convection-dominated transport, which is analytically studied using the
Hagen—Poiseuille solution with first-order slip, is decoupled into its three fundamental
contributions, namely viscosity, density and slip. The individual influence of each of
them on transport is assessed for different fluid rarefaction states and confinement ratios,
which revealed that the disappearance of the Knudsen minimum is a consequence of
the interplay between these contributions. More specifically, the combined contribution
of viscosity and density weakens in tight geometries, whereas the slip term remains the
same when R decreases, and so its relative importance increases in this context. Therefore,
the Knudsen minimum vanishing under tight confinement can be explained by the more
accentuated importance of the fluid slippage at the wall. The relevance of this work
underpins in its qualitative explanation of dense flow mechanisms at the molecular scale,
which may help to better understand how slip, from a fundamental standpoint, affects the
flow of dense gases/liquids confined within tight geometries, such as the high-pressure
methane transport in unconventional shale rocks (Zhang et al. 2019) or water transport in
nano-structured filtration membranes (Falk et al. 2010).
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Appendix A

The Navier—Stokes equations for the incompressible flow of a Newtonian fluid through an
infinite cylindrical channel simplify to

1d [/ du, 1dP
—— (=) ===, (A1)
rdr \' dr u dz

where u; is the fluid macroscopic velocity in the streamwise direction and r is the radial
direction. The first-order slip at the wall, r = d/2, can be written as

du
Uy = —ad —

dr ’ (A2)

r=d/2

where u; is the slip velocity and « = 2/./m is the velocity slip coefficient (Gibelli 2012).
The straightforward solution of the boundary value problem from (A1), (A2) reads as

u(r) = —— (;»2 —doad — —) . (A3)
Z
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The spatial integration of the velocity field over the circular cross-section yields the
Hagen—Poiseuille solution for the MFR

mnwd* dP (1 + 8arkn) (Ad)
— aKn) .
128 dz

dj2
my = mn/ u(r)2mrdr = —
0

The dimensionless MFR in the continuum limit, Kn — 0, can be obtained from (A4)
by setting & = 0 (i.e. the non-slip solution) and ng = 0.494, which corresponds to the
freezing density of a hard sphere fluid (Sigurgeirsson & Heyes 2003),

; 3R
L (AS)
my Sﬁﬂf(ﬂo)
where 71, is a normalising factor defined as
d11dp d & dp
tity = —mng—— z (A6)

4 mnodz JKTjm  4JkT m dz’

On the other hand, the dimensionless MFR in the free molecular limit, Kn — o0, is
provided by (3.1), with the Knudsen self-diffusivity from (3.2) as the proportionality factor

and Z =1,
m, D, |m 2 /2 1
—=—/l—=—/—(1=-=). (A7)
my d\VkT 3Vm= R

As discussed at the beginning of § 3.2, independently on the confinement ratio R, the
MER increases/decreases with the increasing/decreasing of the Knudsen number in the
continuum/free molecular regimes. Therefore, a sufficient condition for the Knudsen
minimum to show up easily follows from the condition that the MFR in the continuum
regime is larger than that in the free molecular regime, from where it turns out that the
only acceptable solution is R = 60.
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