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A residue theorem for rational functions
on star-shaped domains
M. Nasri

Abstract. M.Heins demonstrated that any finite Blaschke product defined on the open unit disc, pro-
vided it has at least one finite pole, possesses a nonzero residue. In this work, we extend Heins’ result
by generalizing the class of functions under consideration. Specifically, we prove that a broader class
of rational functions, defined on certain star-shaped domains in the complex plane, also exhibits this
nonzero residue property. This class includes, as a special case, the family of finite Blaschke products.
Our findings contribute to a better understanding of the analytic behavior of rational functions on
more complex domains, opening new avenues for exploration in this area.

1 Introduction

A domainΩ ⊂ C is said to be star-shaped with respect to a point 𝜁 ∈ Ω, referred to as a
center ofΩ, if for every point 𝑧 ∈ Ω, the line segment

[𝜁, 𝑧] = {𝜆𝜁 + (1 − 𝜆)𝑧 : 0 ≤ 𝜆 ≤ 1}

lies entirely within Ω. This is a weaker form of convexity, where the difference lies in
the fact that the center 𝜁 is fixed, whereas for a convex set, the line segmentmust remain
inside the set for any pair of points 𝑧1, 𝑧2 ∈ Ω.

Consider a rational function

𝑅 =
𝑃

𝑄
,

where 𝑃 and𝑄 are polynomials of the same degree. The sets

Γ𝑐 = {𝑧 ∈ C : |𝑅(𝑧) | = 𝑐},

where 𝑐 is a positive constant, are called the level curves of 𝑅. Since 𝑅 is a rational func-
tion, Γ𝑐 is a finite disjoint union of C∞ curves (for a finite number of constants 𝑐, Γ𝑐
may contain branch points and thus is not a Jordan curve). The rational function 𝑅 is
called zero-pole separable if there exists a Jordan level curve Γ𝑐 such that all zeros of 𝑅 are
inside Γ𝑐 and all poles of 𝑅 are outside Γ𝑐 . This specific Γ𝑐 is referred to as a separating
level curve.

Two important classes of zero-pole separable rational functions merit mention. Let
{𝑧𝑘}1≤𝑘≤𝑁 be a finite sequence of nonzero complex numbers inside the open unit disc
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D, and let 𝑚𝑘 ≥ 1 and 𝑚 ≥ 0. Then, the rational function

𝐵(𝑧) = 𝑧𝑚
𝑁∏
𝑘=1

(
𝑧 − 𝑧𝑘

1 − 𝑧𝑘𝑧

)𝑚𝑘

is called a finite Blaschke product for the open unit disc D [8, page 158]. While finite
Blaschke products have long been a classical subject, they have recently gained renewed
attention, particularly in relation to the Crouzeix conjecture. The role of finite Blaschke
products in this context can be found in [1] and the references therein. For a detailed
treatment of finite Blaschke products, see [3].

A fundamental property of finite Blaschke products is that

Γ1 = T,

where T is the unit circle in the complex plane. Therefore, T is a separating level curve,
and every point insideD can be regarded as a center.

Similarly, if we take {𝑧𝑘}1≤𝑘≤𝑁 to be a finite sequence in the upper half-plane C+,
and let 𝑚𝑘 ≥ 1, then the rational function

𝐵(𝑧) =
𝑁∏
𝑘=1

(
𝑧 − 𝑧𝑘

𝑧 − 𝑧𝑘

)𝑚𝑘

is called a finite Blaschke product for the upper half-plane. In this case, the level curve

Γ1 = R,

where R is the real line, forms a degenerate level curve. However, for 𝑐 < 1 sufficiently
close to one, Γ𝑐 is a C∞ curve with a convex interior containing all the zeros of 𝐵.

M. Heins [6] showed that every finite Blaschke product for the unit disc, which has at
least one finite pole, has a nonzero residue. Recent developments on the residue theorem
can be found in [2, 4, 5, 9, 10]. It is important to emphasize the necessity of having at least
one finite pole, as the function 𝑓 (𝑧) = 𝑧𝑛, for 𝑛 ≥ 1, is a well-defined finite Blaschke
product for the unit disc, yet it has no finite poles.

In [7], J. Mashreghi extended this result to the Blaschke products in the upper half-
plane, although the proofs for the two cases are entirely different. In this paper, we
generalize Heins’ method using the concept of zero-pole separable rational functions.
This provides a unified approach that applies to both the unit disc and the upper
half-plane cases.

2 The Main Result

In the following, a global primitive of a function 𝑓 refers to a function 𝐹 such that 𝐹′ =
𝑓 , except possibly at the poles of 𝑓 .

Theorem 2.1 Let 𝑅 be a zero-pole separable rational function. Suppose 𝑅 has a separating
level curve Γ𝑐 , whose interior is star-shaped, with a center 𝜁 in the interior of Γ𝑐 . Then, for
any 𝑛 ≥ 0, the rational function

(𝑧 − 𝜁)𝑛 𝑅(𝑧)
has a nonzero residue.
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We emphasize that Theorem 2.1 asserts, in particular, that a zero-pole separable
rational function 𝑅, with a separating level curve whose interior is star-shaped, has a
nonzero residue. This corresponds to the special case where 𝑛 = 0.

To illustrate, in the examples of zero-pole separable rational functions mentioned
earlier, the finite Blaschke product

𝑅(𝑧) =
𝑁∏
𝑘=1

(
𝑧 − 𝑧𝑘

1 − 𝑧𝑘 𝑧

)𝑚𝑘

is zero-pole separable with Γ1 = T as the separating level curve, and 𝜁 = 0 as its center.
Therefore, for each 𝑛 ≥ 0,

𝐵(𝑧) = 𝑧𝑛
𝑁∏
𝑘=1

(
𝑧 − 𝑧𝑘

1 − 𝑧𝑘 𝑧

)𝑚𝑘

has a nonzero residue. This is precisely Heins’ theorem [6]. Similarly, in the upper half-
plane case,

𝑅(𝑧) = (𝑧 − 𝜁)𝑛
𝑁∏
𝑘=1

(
𝑧 − 𝑧𝑘

𝑧 − 𝑧𝑘

)𝑚𝑘

, (𝑛 ≥ 0),

has a nonzero residue for all 𝜁 ∈ C+ and for all 𝑛 ≥ 0.

3 Proof of Theorem 2.1

Let 𝑅 =
𝑃

𝑄
where

𝑄(𝑧) =
𝑁∏
𝑘=1

(𝑧 − 𝑝𝑘)𝑚𝑘 .

Then, by the Partial Fraction Expansion Theorem, (𝑧 − 𝜁)𝑛 𝑅(𝑧) has the unique
decomposition

(𝑧 − 𝜁)𝑛 𝑅(𝑧) = (𝑧 − 𝜁)𝑛 𝑃(𝑧)∏𝑁
𝑘=1 (𝑧 − 𝑝𝑘)𝑚𝑘

=

𝑛∑︁
𝑘=0

𝛼𝑘 𝑧
𝑘 +

𝑁∑︁
𝑘=1

𝑚𝑘∑︁
ℓ=1

𝛽𝑘,ℓ

(𝑧 − 𝑝𝑘)ℓ
, (3.1)

where 𝛼𝑘 and 𝛽𝑘,ℓ are numerical constants; 𝛽𝑘,1 is the residue of (𝑧 − 𝜁)𝑛 𝑅(𝑧) at the
pole 𝑝𝑘 .

We now appeal to an elementary, but very important fact from complex analysis: the
function (𝑧 − 𝜁)𝑛 𝑅(𝑧) has a global primitive if and only if 𝛽𝑘,1 = 0 for each 𝑘 . In other
words, (𝑧 − 𝜁)𝑛 𝑅(𝑧) has a global primitive if and only if all its residues are zero.

To proceed, suppose that

𝛽𝑘,1 = 0 (3.2)

for all 𝑘 . We then seek a contradiction. The assumption ensures that (𝑧 − 𝜁)𝑛 𝑅(𝑧) has
a global primitive 𝐹 . Since

𝐹′ (𝑧) = (𝑧 − 𝜁)𝑛 𝑅(𝑧),
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we have, for each 𝑧 inside Γ𝑐 ,

𝐹 (𝑧) = 𝐹 (𝜁) +
∫
𝛾

𝐹′ (𝑤) 𝑑𝑤 = 𝐹 (𝜁) +
∫
𝛾

(𝑤 − 𝜁)𝑛 𝑅(𝑤) 𝑑𝑤, (3.3)

where 𝛾 is any rectifiable curve inside Γ𝑐 from 𝜁 to 𝑧. Remember that the poles of 𝑅 are
outside Γ𝑐 . By the MaximumModulus Principle [8, page 129], for each 𝑧 inside Γ𝑐 , we
have |𝑅(𝑧) | ≤ 𝑐. Hence,

| 𝐹 (𝑧) − 𝐹 (𝜁) | =
���� ∫

𝛾

(𝑤 − 𝜁)𝑛 𝑅(𝑤) 𝑑𝑤
����

≤ 𝑐

∫
𝛾

|𝑤 − 𝜁 |𝑛 |𝑑𝑤 | = 𝑐
|𝑧 − 𝜁 |𝑛+1

𝑛 + 1
, (3.4)

if 𝛾 is the line segment [𝜁, 𝑧]. Here, we used the fact that the interior of Γ𝑐 is star-shaped.
Otherwise, we cannot connect 𝜁 and 𝑧 by a line segment and thus such a crucial estima-
tion is not valid. Since 𝐹 is continuous inside and on the curve Γ𝑐 , the inequality (3.4) is
also valid for all points of Γ𝑐 . Up to here, we have not profoundly used the fact that 𝑅 is
a rational function. The estimation (3.4) is valid for any analytic function 𝐹 defined on
the interior of Γ𝑐 , provided that Γ𝑐 is a level curve of 𝑅 where 𝑅 is given by

𝑅(𝑧) = 𝐹′ (𝑧)
(𝑧 − 𝜁)𝑛 .

Now, we dig further to detect the implications of the rational function 𝑅.
Since 𝐹′ (𝑧) = (𝑧 − 𝜁)𝑛 𝑅(𝑧), if we directly integrate (3.1), we get

𝐹 (𝑧) = 𝛼 +
𝑛∑︁

𝑘=0

𝛼𝑘

𝑘 + 1
𝑧𝑘+1 +

𝑁∑︁
𝑘=1

𝑚𝑘∑︁
ℓ=2

−𝛽𝑘,ℓ

(ℓ−1)

(𝑧 − 𝑝𝑘) (ℓ−1) , (3.5)

where 𝛼 is an arbitrary constant. Note that, by assumption, the index ℓ starts from 2.We
choose the free parameter 𝛼 such that 𝐹 (𝜁) = 0. Since 𝐹 (𝜁) = 0 and

𝐹′ (𝑧) = (𝑧 − 𝜁)𝑛 𝑅(𝑧),

𝐹 has a zero of order at least 𝑛+1 at 𝜁 . Here, by taking the common denominator in the
equation (3.5), we should get

𝐹 (𝑧) = (𝑧 − 𝜁)𝑛+1 𝑆(𝑧)∏𝑁
𝑘=1 (𝑧 − 𝑝𝑘) (𝑚𝑘−1)

, (3.6)

where 𝑆 is a polynomial of degree
∑𝑁

𝑘=1 (𝑚𝑘 − 1). The function

𝐺 (𝑧) = (𝑛 + 1) 𝐹 (𝑧)
(𝑧 − 𝜁)𝑛+1 𝑅(𝑧) (3.7)

will lead us to a contradiction. According to (3.1) and (3.6),

𝐺 (𝑧) =
(𝑛 + 1) 𝑆(𝑧) ∏𝑁

𝑘=1 (𝑧 − 𝑝𝑘)
𝑃(𝑧) ,

and thus the poles of 𝐺 are the zeros of 𝑃 which are all inside Γ𝑐 . Hence, 𝐺 is analytic
outside Γ𝑐 and has at least a simple zero at each 𝑝𝑘 .
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In the first place, by (3.1),

(𝑧 − 𝜁)𝑛𝑅(𝑧) = 𝛼𝑛𝑧
𝑛 +𝑂 (𝑧𝑛−1),

and by (3.5),

𝐹 (𝑧) = 𝛼𝑛𝑧
𝑛+1

𝑛 + 1
+𝑂 (𝑧𝑛).

Therefore, according to the definition (3.7),

lim
𝑧→∞

𝐺 (𝑧) = 1. (3.8)

In other words,𝐺 is also analytic at infinity with𝐺 (∞) = 1. Furthermore, according to
(3.4),

|𝐺 (𝑧) | =
���� (𝑛 + 1) 𝐹 (𝑧)
(𝑧 − 𝜁)𝑛+1 𝑅(𝑧)

���� = ���� (𝑛 + 1) 𝐹 (𝑧)
𝑐 (𝑧 − 𝜁)𝑛+1

���� ≤ 1

for each 𝑧 on Γ𝑐 . Therefore, by the Maximum Modulus Principle, 𝐺 is a unimodular
constant outside Γ𝑐 . But,𝐺 has some zeros in that domain, which is absurd.

In short, the identity (3.2) never happens for all values of 𝑘 . This means that

(𝑧 − 𝜁)𝑛 𝑅(𝑧)

always has a nonzero residue.

4 Concluding Remarks

We conclude with two intriguing open questions, followed by a comment, that arise
from the above work.

(1) Does every infinite Blaschke product possess a nonzero residue? This remains an
open problem and a natural extension of Heins’ result on finite Blaschke products.
The behavior of residues for infinite Blaschke products is far less understood, and
further investigation could yield deeper insights into the underlying structure of
these functions.

(2) Can the assumption of the domain being star-shaped in Theorem 2.1 be removed?
The requirement of a star-shaped domain plays a crucial role in our proof. However,
it is unclear whether this condition is essential or if the result can be general-
ized to broader classes of domains. Relaxing this assumption could lead to a more
comprehensive understanding of zero-pole separable rational functions.

(3) The following example is verified numerically. However, it lacks a rigorous proof.
For 𝑛 ≥ 1 and 1 ≤ 𝑘 ≤ 𝑛,

𝑧𝑘 =
𝑘

𝑛 + 1
+ 𝑖

√︄
1 −

(
𝑘

𝑛 + 1

)2

,

and

𝑅(𝑧) =
(𝑧 + 1)𝑛 (𝑧 + 𝑖)𝑛 ∏𝑛

𝑘=1 (𝑧 − 𝑧𝑘) (𝑧 − 𝑧𝑘) (𝑧 − 𝑖𝑧𝑘) (𝑧 − 𝑖𝑧𝑘)
𝑧6𝑛 .

The nominator is so chosen that the coefficient of 𝑧6𝑛−1 is zero and besides the zeros
of 𝑅 are placed on the arc −𝜋/2 ≤ arg 𝑧 ≤ 𝜋 of the unit circle T. Hence 𝑅 has no
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nonzero residue. However, it seems that the level curves Γ𝑐 , for some values of 𝑐 < 1,
are separating the zeros and poles of 𝑅.
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