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LINES ON HOLOMORPHIC CONTACT MANIFOLDS
AND A GENERALIZATION OF (2,3,5)-DISTRIBUTIONS

TO HIGHER DIMENSIONS

JUN-MUK HWANG and QIFENG LI

Abstract. Since the celebrated work by Cartan, distributions with small

growth vector (2,3,5) have been studied extensively. In the holomorphic setting,

there is a natural correspondence between holomorphic (2,3,5)-distributions

and nondegenerate lines on holomorphic contact manifolds of dimension 5. We

generalize this correspondence to higher dimensions by studying nondegenerate

lines on holomorphic contact manifolds and the corresponding class of distri-

butions of small growth vector (2m,3m,3m+2) for any positive integer m.

§1. Introduction

We work in the holomorphic setting. All manifolds and maps are holomorphic, unless

stated otherwise. Open subsets refer to Euclidean topology. A Zariski-open subset of a

complex manifold is the complement of a closed analytic subset. We use the following

terminology on distributions.

Definition 1.1. A distribution on a complex manifold M is a vector subbundle D ⊂
TM of the tangent bundle of M.

(i) Lie brackets of local sections of D give a homomorphism

LeviD : ∧2D → TM/D,

called the Levi tensor of D.

(ii) There is a sequence of vector bundles, called the weak derived system of D,

D = ∂(0)D ⊂ ∂D = ∂(1)D ⊂ ∂(2)D ⊂ ·· · ⊂ ∂(d)D = ∂(d+1)D

defined on a Zariski-open subset of M such that their associated sheaves satisfy

O(∂(i+1)D) = [O(∂(i)D),O(D)]+O(∂(i)D)

for each 0≤ i≤ d+1. We say that D is regular at x ∈M , if the weak derived system

of D is a sequence of vector bundles in a neighborhood of x.

(iii) The sequence of integers

(rank(D),rank(∂D),rank(∂(2)D), . . . ,rank(∂(d)D))

is called the small growth vector of D.

(iv) When D is regular at x ∈M , the graded vector space

symbx(D) :=⊕d
i=1(∂

(i)D)x/(∂
(i−1)D)x
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has a natural structure of a nilpotent graded Lie algebra induced by Lie brackets of

local sections. It is called the symbol algebra of D at x.

In the celebrated paper [C], Cartan studied distributions on five-dimensional manifolds

with the small growth vector (2,3,5), commonly called (2,3,5)-distributions. Cartan inves-

tigated the local equivalence problem for (2,3,5)-distributions and many mathematicians

have developed this study further (see the references in [IKTY]). A remarkable development

in 1990s was the theory of abnormal extremals of (2,3,5)-distributions, originated from

geometric control theory (see [BH] and [Z] and the references therein). It associates a certain

contact manifold of dimension 5 to each (2,3,5)-distribution. By reinterpreting this result

from the viewpoint of complex geometry, the following one-to-one correspondence has been

discovered in Theorems 5.10 and 5.12 of [HL], where small growth vector is abbreviated to

s.g.v.: {
distributions of

s.g.v.(2,3,5)

}
(Corr.1)⇐⇒

{
nondegenerate lines on contact

manifolds of dimension 5

}
.

See Definition 3.8 for the precise meaning of the right-hand side. Note that nondegenerate

lines are called “contact unbendable rational curves of Cartan type” in Definition 5.8 of [HL].

A local version of this correspondence, where the right-hand side is replaced by Lagrangian

cone structures on contact manifolds of dimension 5 satisfying certain conditions, is given

in Theorem 3.1 of [IKTY]. From the viewpoint of [HL], the Lagrangian cone structure is a

local description of the VMRT of the nondegenerate lines (see Lemma 3.3).

In the current paper, we generalize this correspondence to higher dimensions as the

following one-to-one correspondence:{
some distributions of

s.g.v.(2m,3m,3m+2)

}
(Corr.m)⇐⇒

{
nondegenerate lines on contact

manifolds of dimension 2m+3

}
.

The major difference from the case m = 1 is that the distributions on the left-hand side

are not determined by the small growth vector alone: their symbol algebras must be of

the form g+(F ) described in Definition 3.14, where F is a nondegenerate cubic form on a

vector space of dimension m. For simplicity, we call distributions on the left-hand side g+-

distributions. Our main results are Theorems 3.15 and 4.4, which give a precise statement

of the correspondence (Corr. m). When m= 1, the Lie algebra g+(F ) is determined by the

small growth vector because all nondegenerate cubic forms on a vector space of dimension 1

are isomorphic. Thus, g+-distributions in dimension 5 are just (2,3,5)-distributions. There

is more than one isomorphism type of nondegenerate cubic forms when m ≥ 2. So when

m ≥ 2, the small growth vector alone cannot determine the type of our distributions. As

a matter of fact, when m ≥ 3, there are nontrivial moduli of nondegenerate cubic forms

and the isomorphism types of symbol algebras of a g+-distribution may vary from point to

point. A classical example of (Corr. m) is the following.

Example 1.2. Let g be a simple Lie algebra, and let G be a complex Lie group with

Lie algebra g. Let Xg be the adjoint variety of g, namely, the highest weight orbit of the

coadjoint representation on Pg∨, and let 2m+3 be the dimension of Xg. The variety Xg

has a natural G-invariant contact structure and is covered by nondegenerate lines. The

space of lines on Xg ⊂ Pg∨ is a rational homogeneous space Y g =G/P for some parabolic

subgroup P ⊂G. If g is not of type A or C, there exists a G-invariant distribution Dg ⊂ TY g
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of rank 2m whose symbol algebras are isomorphic to g+(F ) for a homaloidal EKP cubic

F (using the terminology in Theorem 3 of [D]), which is the cubic form whose associated

cubic hypersurface is either

(i) the union of a hyperplane and a quadratic cone with one isolated singular point outside

the hyperplane, or

(ii) the secant variety of one of the four Severi varieties.

The correspondence (Corr.m) in this case is

distribution Dg on Y g of

s.g.v.(2m,3m,3m+2)
⇐⇒ lines on the contact manifold

Xg of dimension 2m+3.

One interesting consequence of (Corr.m) is that there are many examples of holomorphic

contact manifolds covered by nondegenerate lines, which is already nontrivial when m= 1.

Another interesting aspect of (Corr.m) is its potential application in Riemannian geometry.

A well-known conjecture in complex geometry, which is equivalent to the LeBrun–Salamon

conjecture (page 110 of [LS]) on quaternionic-Kähler manifolds, is that a Fano contact

manifold whose automorphism group is reductive is biholomorphic to an adjoint variety in

Example 1.2. There is an approach to this conjecture using lines on Fano contact manifolds

of Picard number 1 (see, e.g., [BKK], [K1], [K2]). The lines in this case are expected to be

nondegenerate (see Remark 3.9) and we have the associated g+-distributions via (Corr.m).

We believe that it is important to understand the geometry of these distributions for this

approach to the LeBrun–Salamon conjecture. Note that, if the cubic forms are homaloidal

EKP cubics, it is already proved that the Fano contact manifold is an adjoint variety (by

Main Theorem in §2 of [M]).

Let us discuss briefly the content of the paper and the methods employed. The key

ingredients in establishing (Corr.m) come from deformation theory of rational curves, in

particular, the theory of VMRT, some standard results of which are recalled in §2. Section 3

discusses how to go from the right-hand side to the left-hand side of (Corr.m). The proof of

the main result, Theorem 3.15, is much more involved than the proof in the case of m= 1,

because the structure of the symbol algebras of the distributions is more intricate in higher

dimensions. Its proof uses some special features of deformation theory of rational curves on

contact manifolds. Section 4 discusses how to go from the left-hand side to the right-hand

side of (Corr.m). The proof of the main result, Theorem 4.4, is a generalization of that of

Theorem 5.10 in [HL] to higher dimensions and the idea has originated from [Z].

§2. Unbendable rational curves and VMRT

Definition 2.1. Let X be a complex manifold of dimension n, and let Douady(X) be

its Douady space parameterizing all compact analytic subspaces of X.

(i) A smooth rational curve P
1 ∼= C ⊂ X is unbendable if its normal bundle NC is iso-

morphic to O(1)⊕p⊕O⊕(n−1−p) for some nonnegative integer p≤ n−1. Consequently,

TX|C ∼=O(2)⊕O(1)⊕p⊕O⊕(n−1−p)

with TC ⊂ TX|C corresponding to O(2). In this case, we denote by N+
C (resp. TX|+C)

the subbundle of NC (resp. TX|C) corresponding to O(1)⊕p (resp. O(2)⊕O(1)⊕p).
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(ii) Let URC(X) be the subset of Douady(X) parameterizing all unbendable rational

curves on X. It is an open subset of Douady(X) because the vector bundle NC
∼=

O(1)⊕p ⊕ O⊕(n−1−p) on C ∼= P
1 has no nontrivial deformation. Using the basic

deformation theory of rational curves (e.g., Main Theorem of [K3]) and H1(C,NC) = 0,

we see that URC(X) is an open subset in the smooth locus of Douady(X).

It is convenient to use the following notion.

Definition 2.2. Let C be a complex manifold, and let E be a vector bundle on C. For

a point x ∈ C, denote by H0(C,E ⊗mx) the vector space of sections of E vanishing at x.

The homomorphism

jetEx :H0(C,E ⊗mx)→ T∨
x C⊗Ex

is defined by taking the derivative at x of sections vanishing at x.

The following is well known (see, e.g., page 58 of [HM] and Lemma 3.3 of [HL]).

Proposition 2.3. In Definition 2.1, let Y be a connected open subset of URC(X). Let

Y
ρ←Z

μ→X be the associated universal family morphisms. Define the following distributions

on Z:

V := Ker(dμ),

F := Ker(dρ),

T 0 = V ⊕F .

For the point y = [C] ∈ Y corresponding to an unbendable rational curve C ⊂X and a point

z ∈ ρ−1(y)⊂ Z, set μ(z) = x ∈ C.

(i) We have the following natural identifications:

TyY =H0(C,NC),

TzZ =H0(C,TX|C)/H0(C,TC⊗mx),

Vz =H0(C,N+
C ⊗mx),

Fz =H0(C,TC)/H0(C,TC⊗mx) = TxC,

where the third (resp. fourth) identification is induced by the differential dzρ : TzZ →
TyY (resp. dzμ : TzZ → TxX).

(ii) Define T 1 := ∂T 0. It is a vector subbundle of TZ and the Lie brackets of sections

induce a natural isomorphism of vector bundles ψ : F ⊗V → T 1/T 0.

(iii) The differential dzμ sends T 1
z /T 0

z to N+
C,x ⊂ TxX/TxC such that in combination with

(i) and (ii), we have the commutative diagram

Fz ⊗Vz = TxC⊗H0(C,N+
C ⊗mx)

ψ ↓ ↓ jx
T 1
z /T 0

z
dzμ−→ N+

C,x,

where jx is the contraction of vectors in TxC with the image of

jet
N+

C
x :H0(C,N+

C ⊗mx)→ T∨
x C⊗N+

C,x.
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(iv) We have isomorphisms F|ρ−1(y) = TC ∼=O(2) and

V|ρ−1(y) =Hom(TC,N+
C )∼=O(−1)⊕m.

Definition 2.4. In Proposition 2.3, the tangent map τ : Z → PTX sending z ∈ Z to

[dμ(Fz)] ∈ PTxX is an immersion whose image C ⊂ PTX is called the variety of minimal

rational tangents (to be abbreviated as VMRT) of the family Y. The fiber Cx ⊂ PTxX at

x∈ μ(Z) is called the VMRT at x. Often, we replace Y by a suitable connected open subset

to assume that C ⊂ PTX and Cx are submanifolds in PTX.

Notation 2.5. Let W be a vector space, and let S ⊂ PW be a (not necessarily closed)

submanifold. For a point s∈ S, we denote by ŝ⊂ Ŝ the corresponding affine cones in W. Let

NS be the normal bundle of S in PW . The second fundamental form IIS : Sym2TS →NS

is a homomorphism of vector bundles. Let Dom(IIIS)⊂ S be the Zariski-open subset where

the image of IIS is a vector subbundle N
(2)
S of NS . Then we have the third fundamental

form

IIIS,s : Sym
3TsS →NS,s/N

(2)
S,s

for each s ∈ Dom(IIIS). Denoting by T̂sS ⊂ W the affine tangent space of S at s, we

write N̂S,s for W/T̂sS and N̂
(2)
S,s for the vector subspace of N̂S,s such that we have natural

identifications

NS,s = ŝ∨⊗ N̂S,s and N
(2)
S,s = ŝ∨⊗ N̂

(2)
S,s.

The following is well known (see, e.g., the proof of Proposition 1.4 in [H1] and Corollary

3.14 and Proposition 3.16 in [HL])

Proposition 2.6. In Definitions 2.1 and 2.4, replace Y by a neighborhood of y to

assume that C and Cx are submanifolds of PTX and the immersion τ in Definition 2.4 is

an embedding. Let us identify Z with C ⊂ PTX by the embedding τ .

(i) The affine tangent space T̂zCx ⊂ TxX satisfies

T̂zCx = dzμ(T 1
z ),

T̂zCx/TxC =N+
C,x.

(ii) The natural isomorphism

dz(τ |μ−1(x)) : Vz =H0(C,N+
C ⊗mx) → TzCx = T∨

x C⊗N+
C,x

coincides with jet
N+

C
x .

(iii) For a local section �f of F and local sections �v1,�v2 of V near z ∈ C with values v1,v2 ∈Vz

at z,

([�v2, [�v1, �f ]]z mod T 1
z ) = �fz ⊗ IICx,z(v1,v2),

where the left-hand side is regarded as an element of N̂Cx,z = NC,x/N
+
C,x by (i) and

Proposition 2.3(iii), and �fz⊗ stands for the contraction of �fz ∈ Fz = TxC with

IICx,z(v1,v2) ∈ T∨
x C⊗ N̂

(2)
Cx,z

⊂ T∨
x C⊗ N̂Cx,z.
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(iv) Assume that z ∈ Cx is in Dom(IIICx). Then T 2 = ∂T 1 = ∂(2)T 0 is a vector subbundle

of TZ in a neighborhood of ρ−1(y) in Z and

N̂
(2)
Cx,z

= (dzμ(T 2
z ) mod T̂zCx)

as subspaces of N̂Cx,z =NC,x/N
+
C,x.

(v) In (iv), for a local section �f of F and local sections �v1,�v2,�v3 of V near z ∈ C with values

v1,v2,v3 ∈ Vz at z,

([�v3, [�v2, [�v1, �f ]]]z mod T 2
z ) =

�fz ⊗ IIICx,z(v1,v2,v3),

where the left hand-side is regarded as an element of N̂Cx,z/N̂
(2)
Cx,z

by (iv), and �fz⊗
stands for the contraction of �fz ∈ Fz = TxC with

IIICx,z(v1,v2,v3) ∈ T∨
x C⊗ N̂Cx,z/N̂

(2)
Cx,z

.

Definition 2.7. In Proposition 2.3, define Dy :=H0(C,N+
C ) ⊂ TyY . This determines

a distribution D ⊂ TY of rank 2m. For each x ∈ C, define

Ux :=H0(C,O(x)),

the two-dimensional vector space of rational functions on C with at most one pole at x and

define

Vx :=H0(C,N+
C ⊗mx)⊂Dy,

such that we have a canonical tensor decomposition Dy = Ux⊗Vx.

Proposition 2.8. In Definition 2.7, let 1x ∈ Ux be the constant function on C with

value 1. The differential dzρ : TzZ → TyY induces an identification T 1
z /Fz =Dy such that

Vz = 1x⊗Vx ⊂ Ux⊗Vx =Dy.

Moreover, when z ∈Dom(IIICx), it induces an identification T 2
z /Fz = (∂D)y.

Proof. The identification T 1
z /Fz = Dy follows from Propositions 1 and 8 of [HM] (see

Proposition 3.7 of [HL]). Then Vz = 1x ⊗ Vx follows from Proposition 2.3(i) and the

identification T 2
z /Fz = (∂D)y comes from T 2 = ∂T 1 in Proposition 2.6(iv).

We skip the proof of the following two elementary lemmata.

Lemma 2.9. In Proposition 2.8, let f ∈ Ux be a nonconstant rational function on C.

(i) The homomorphism

resx : ∧2H0(C,O(x))→ TxC

that sends 1x∧f to

Resx(f dt)
∂

∂t
,

where t is a local holomorphic coordinate on C centered at x and Resx(f dt) is the

residue of the logarithmic form f dt at x, is independent of the choice of the coordinate

t and gives a canonical identification of ∧2Ux with TxC.
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(ii) Write �fx := resx(1x ∧ f) ∈ TxC. For any vector bundle E on C and a section v ∈
H0(C,E ⊗mx), let �fx(v) ∈ Ex be the contraction of �fx with jetEx(v) ∈ T∨

x C⊗Ex. Then
�fx(v) = (f ⊗v)(x) ∈ Ex,

where f ⊗v stands for the section of H0(C,E) under the natural homomorphism

Ux⊗H0(C,E ⊗mx)→H0(C,E).

Lemma 2.10. In Lemma 2.9, for any point x′ ∈ C different from x, define

Ax′

x := {f ∈ Ux | f(x′) = 0} ⊂ Ux.

Then we have canonical isomorphisms

Ax′

x ⊗Ux′ = Ux and Ax′

x ⊗Vx = Vx′

coming from multiplication by rational functions. Moreover, for any f ∈Ax′

x and v ∈ Vx, we

have f ⊗v = 1x′ ⊗fv under the two tensor decompositions Dy = Ux⊗Vx = Ux′ ⊗Vx′ .

Proposition 2.11. In Definition 2.7, for a local section �f of F and �v of V near z ∈ C,
denote by f ∈ Ux a rational function satisfying dzμ(�fz) = resx(1x∧ f) in Lemma 2.9 and

by v ∈ Vz = Vx the value of �v at z. Then

dzρ([�v, �f ]z) ≡ f ⊗v mod 1x⊗Vx(⊂ Ux⊗Vx =Dy). (2.1)

Proof. The vector [�v, �f ]z ∈ TzZ is represented by a section w ∈ H0(C,TX) by Propo-

sition 2.3(i). Regarding v as an element of H0(C,N+
C ⊗mx), Proposition 2.3(iii) says that

(dzμ([�v, �f ]z) mod TxC) = �fz ⊗ jet
N+

C
x (v) = �fz(v) ∈N+

C,x.

This implies that the value wx at x of the section w of TX|C satisfies

(wx mod TxC) = �fz(v).

Since dzρ([�v, �f ]z) in TyY = H0(C,NC) is represented by w modulo H0(C,TC), its value

modulo 1x⊗Vx =H0(C,NC ⊗mx) is just

(wx mod TxC) ∈H0(C,NC)/H
0(C,NC ⊗mx) =NC,x.

So the left-hand side of (2.1) is just �fz(v) in Lemma 2.9(ii). Then Lemma 2.9(ii) says that

this is equal to (f ⊗v)(x), the right-hand side of (2.1).

Proposition 2.12. In Proposition 2.11, for u1,u2 ∈Ux and v1,v2 ∈ Vx, let u1⊗v1,u2⊗
v2 be elements of Dy = Ux⊗Vx. Then we have

LeviDy (u1⊗v1,u2⊗v2) = (u1∧u2)⊗ IICx,z(v1,v2), (2.2)

where the second fundamental form IICx,z : Sym
2Vx → T∨

x C⊗ (NC,x/N
+
C,x) is interpreted as

a homomorphism

Sym2Vx →∧2U∨
x ⊗ (H0(C,NC)/H

0(C,N+
C )) = ∧2U∨

x ⊗ (TyY/Dy)

via the isomorphism resx : TxC ∼= ∧2Ux in Lemma 2.9(i) and the natural isomorphism

H0(C,NC/N
+
C ) =NC,x/N

+
C,x coming from NC/N

+
C
∼=O⊕(n−m−1).
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Proof. We may check (2.2) assuming u1 = f and u2 = 1x. It is a direct consequence of

([�v2, [�v1, �f ]]z mod Vz) = �fz ⊗ IICx,z(v1,v2) (2.3)

from Proposition 2.6(iii). In fact, the vector v2 ∈ Vz is sent by dzρ to the corresponding

element v2 ∈ Vx =H0(C,N+
C ⊗mx), which is just 1x⊗v2 in Ux⊗Vx =Dy. The vector [�v1, �f ]z

is sent to f ⊗ v1 modulo 1x⊗Vx by Proposition 2.11. Then the left-hand side of (2.3) is

equal to LeviD(u2⊗ v2,u1⊗ v1). By Lemma 2.9, the isomorphism resx identifies �fz with

−1x∧f =−u1∧u2. Thus, the right-hand side of (2.3) is

−(u1∧u2)⊗ IICx,z(v1,v2).

This proves (2.2).

Proposition 2.13. In Proposition 2.11, assume that D is regular at y ∈ Y . Then for

any f ∈ Ux,v1,v2,v3 ∈ Vx, the Lie bracket in symby(D) satisfies

[1x⊗v3, [1x⊗v2,f ⊗v1]] = (1x∧f)⊗ IIICx,z(v1,v2,v3),

where IIICx,z : Sym
3Vx → T∨

x C⊗ (N̂Cx,z/N̂
(2)
Cx,z

) is interpreted as a homomorphism

Sym3Vx →∧2U∨
x ⊗ (TyY/(∂D)y),

via the isomorphism resx : TxC ∼= ∧2Ux and the isomorphisms

N̂Cx,z/N̂
(2)
Cx,z

dzμ
= Tzz/T 2

z
dzρ
= TyY/(∂D)y.

Proof. The proof follows the same argument as the proof of Proposition 2.12, using

Proposition 2.6(v) in place of Proposition 2.6(iii).

§3. From nondegenerate lines on contact manifolds to distributions with

symbols g+(F )

Definition 3.1. Let X be a complex manifold of dimension 2m+3,m ≥ 1, and let

H ⊂ TX be a contact distribution, namely, a distribution of rank 2m+2 such that the

Levi tensor LeviH : ∧2H → TX/H gives a symplectic form, that is, a nondegenerate anti-

symmetric form, on each fiber of Hx. The pair (X,H) is called a contact manifold. The

quotient line bundle L := TX/H is called the contact line bundle on X. An unbendable

smooth rational curve C ⊂X satisfying L|C ∼=O(1) is called a line. Denote by Lines(X,H),

the open subset of URC(X)⊂Douady(X) parameterizing lines.

Definition 3.2. Fix a one-dimensional vector space L, and let ω : ∧2W → L be a

symplectic form on a vector space W of dimension 2m+2.

(i) For a subspace B ⊂W , define B⊥ := {w ∈W | ω(w,B) = 0}.
(ii) A subspace B ⊂W is Lagrangian if B⊥ =B. In this case, the dimension of B is m+1.

(iii) A submanifold S ⊂ PW is Legendrian if its affine tangent space T̂sS ⊂ W at every

point s ∈ S is a Lagrangian subspace of W.

Lemma 3.3. In Definition 3.1, choose a connected open subset Y ⊂ Lines(X,H) such

that C ⊂ PTX in Definition 2.4 is a submanifold.
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(i) For each line C ⊂X, the normal bundle NC is isomorphic to O(1)⊕m⊕O⊕(m+2) and

H|C is isomorphic to O(2)⊕O(1)⊕m⊕O⊕m⊕O(−1). In other words, the integer p in

Definition 2.1 is exactly m= 1
2(dimX−3).

(ii) For each x ∈ C, the VMRT Cx ⊂ PTxX is contained in PHx and is Legendrian with

respect to the symplectic form LeviHx on Hx.

Proof. From the well-known relation detTX = L⊗(m+2) (e.g., from (2.2) of [LB]), we

have the isomorphism NC
∼=O(1)⊕m⊕O⊕(m+2). Consequently,

TX|C ∼= TC⊕NC
∼=O(2)⊕O(1)⊕m⊕O⊕(m+2).

Since TC ∼=O(2), it must belong to the kernel of the projection TX|C → (L= TX/H)|C ∼=
O(1). Since this holds for all lines represented by elements in the parameter space Y, we have

C ⊂PH. By Proposition 2.6(i), T̂zCx/TxC =N+
C,x, where x∈C and z=PTxC ∈Cx. It follows

that O(2)⊕O(1)⊕m is contained in H|C . This gives H|C ∼=O(2)⊕O(1)⊕m⊕O⊕m⊕O(−1),

completing the proof of (i). By (i), any line is tangent to H, and Cx ⊂ PHx. Moreover, the

Levi tensor gives a family of nondegenerate antisymmetric forms on the bundle H, that is,

a homomorphism

∧2HC
∼= ∧2(O(2)⊕O(1)⊕m⊕O⊕m⊕O(−1))→L|C ∼=O(1).

The subspace (O(2)⊕O(1)⊕m)x is a Lagrangian subspace of Hx with respect to this

antisymmetric form. As this subspace corresponds to the affine tangent space of Cx at

PTxC by Proposition 2.6(i), the VMRT must be Legendrian, proving (ii).

Definition 3.4. In Definition 3.1, let Y ⊂ Lines(X,H) be a connected open subset,

and let Y
ρ← Z

μ→ X be the universal family. Given z ∈ Z, write x = μ(z),y = ρ(z) and

C = μ(ρ−1(y))⊂X. Using the symplectic form LeviHx on Hx, define

Rz := (TxC)⊥ ⊂Hx and R+
z := T̂zCx ⊂Rz ⊂Hx.

Then R+ ⊂R are vector subbundles of the vector bundle H on Z, of rank m+1 and 2m+1,

respectively. Denote by R+
C ⊂RC ⊂H|C the corresponding vector subbundles on C.

Lemma 3.5. In Definition 3.4, we have the following.

(i) The vector bundle RC (resp. R+
C) is isomorphic to the subbundle

O(2)⊕O(1)⊕m⊕O⊕m ( resp. O(2)⊕O(1)⊕m)

of H|C from Lemma 3.3(i).

(ii) If s ∈H0(C,TX|C) satisfies sx ∈RC,x for a point x ∈ C, then s ∈H0(C,H|C).
(iii) LeviH induces a perfect pairing of vector bundles on C

N+
C ⊗RC/(TX|C)+ →L|C .

Proof. Note that LeviH gives a perfect paring

TC⊗ (H|C/RC)∼= L|C ∼=O(1).

This implies (i). From (i), the quotient bundle TX|C/RC is isomorphic to O⊕2. The

assumption sx ∈ RC,x implies that s modulo RC defines a section of O⊕2 vanishing at

x. Hence, it vanishes identically. This shows that s ∈ H0(C,H) = H0(C,R), proving (ii).

(iii) is immediate from (i).
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Definition 3.6. A cubic form F ∈ Sym3V ∨ on a vector space V is nondegenerate if

{v ∈ V | F (v,v1,v2) = 0 for all v1,v2 ∈ V }= 0.

Definition 3.7. In Definition 3.2, let S ⊂ PW be a Legendrian submanifold. We say

that S has nondegenerate fundamental forms at s ∈ S if the following are satisfied.

(i) The point s is contained in Dom(IIIS).

(ii) The image of the second fundamental form N̂
(2)
S,s is equal to ŝ⊥/T̂sS.

(iii) The third fundamental form IIIS,s : Sym
3TsS → ŝ∨⊗W/ŝ⊥ is a nondegenerate cubic

form on TsS in the sense of Definition 3.6.

(iv) For any v1,v2 ∈ TsS, the element

IIIS,s(v1,v2, ·) ∈ T∨
s S⊗ ŝ∨⊗W/ŝ⊥

coincides with

IIS,s(v1,v2) ∈ ŝ∨⊗ N̂
(2)
S,s = ŝ∨⊗ ŝ⊥/T̂sS

via the natural isomorphisms

ŝ⊥/T̂sS = (T̂sS/ŝ)
∨⊗L and W/ŝ⊥ = ŝ∨⊗L

induced by ω.

Definition 3.8. A line C on a contact manifold (X,H) is a nondegenerate line, if for

some point x ∈ C, the VMRT Cx at x has nondegenerate fundamental forms at the point

PTxC ∈ Cx. Let NDL(X,H) be the subset of Lines(X,H) parameterizing nondegenerate

lines. It is a Zariski-open subset in Lines(X,H).

Remark 3.9. The conditions in Definition 3.7 may look technical, but actually they

hold at general points of a general Legendrian submanifold. For example, §3 of [LM] shows

that if the Legendrian submanifold S ⊂ PW is a smooth projective variety different from

a linear subspace, then S has nondegenerate fundamental forms at a general point s ∈ S.

When (X,H) is a Fano contact manifold of Picard number 1, Theorem 1.1 of [K2] implies

that the VMRT at a general point is a smooth projective variety. Thus a general line is

nondegenerate in the sense of Definition 3.8, unless the VMRT’s are linear. It is expected

that the latter situation does not occur and [BKK] proposes an approach to exclude this

possibility.

Proposition 3.10. In Definitions 3.8, assume that Y ⊂ NDL(X,H). Then the second

fundamental forms of the VMRT determine a surjective homomorphism II : Sym2V →F∨⊗
R/R+ and the third fundamental forms of the VMRT determine a surjective homomorphism

III : Sym3V →F∨⊗ (H/R). In particular, we have

T 1
z = (dzμ)

−1(R+
z )⊂ TzZ and T 2

z = (dzμ)
−1(Rz)⊂ TzZ

for any z ∈ Z.

Proof. It is immediate from the definition of a nondegenerate line that the second and

the third fundamental forms of VMRT determine homomorphisms II and III, which are

surjective at general points of Z. By Proposition 2.3(iv) and (H|C/RC) ∼= O(−1) from

Lemma 3.5(i), the two homomorphisms are surjective at every point of Z. Then T 2
z =

(dzμ)
−1(Rz) follows from Proposition 2.6(iv).
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Proposition 3.11. Under the hypotheses of Proposition 3.10, the two subspaces (∂D)y
and H0(C,H|C/TC) of TyY =H0(C,NC) coincide. Consequently, the two quotient spaces

TyY/(∂D)y and

H0(C,L) =H0(C,NC)/H
0(C,H|C/TC)

can be identified in a natural way.

Proof. By Lemma 3.5(ii), the subspace T 2
z = (dzμ)

−1Rz ⊂ TzZ in Proposition 3.10 can

be identified with

H0(C,H)/H0(C,TC⊗mx) ⊂ H0(C,TX)/H0(C,TC⊗mx)

under the identification in Proposition 2.3(i). Since dzρ : TzZ → TyY is the quotient map

H0(C,TX)/H0(C,TC⊗mx)→H0(C,NC),

the subspace (dzμ)
−1R is sent to H0(C,H|C/TC)⊂ TyY . This agrees with (∂D)y because

dzρ(T 2
z ) = ∂D by Proposition 2.8.

Lemma 3.12. In Proposition 3.11, define

Ix := T∨
x C⊗H0(C,L⊗mx) = (T∨

x C)⊗2⊗Lx

and write Fx : Sym3Vx → Ix for IIICx,z. For each pair x �= x′ ∈ C, recall from Lemma 2.10

the one-dimensional vector space Ax′

x of rational functions on C with pole at x and zero

at x′.

(i) There is a canonical isomorphism between (Ax′

x )⊗3⊗Ix and Ix′. For f ∈Ax′

x and j ∈ Ix,

denote by f3 · j the element of Ix′ corresponding to f3⊗ j ∈ (Ax′

x )⊗3⊗ Ix.

(ii) For any v1,v2,v3 ∈ Vx and f ∈Ax′

x ,

f3 ·Fx(v1,v2,v3) = Fx′(f ·v1,f ·v2,f ·v3).

Proof. Fix a base point x0 ∈C and define a line bundle A on C whose fiber at x is Ax0
x .

Then A is isomorphic to O(1). Let I be the line bundle on C whose fiber at x ∈ C is Ix.

Then I is isomorphic to O(−3). Thus we have a canonical trivialization of the line bundle

A⊗3⊗I = Ix0 ×C, which shows (i).

Note that V|ρ−1(y)
∼= O(−1)⊕m from Proposition 2.3(iv). Thus the collection of the

homomorphisms Fx for all x ∈ C gives rise to a surjective homomorphism between trivial

vector bundles Sym3(V ⊗A)→A⊗3⊗I, which corresponds to Fx0 : Sym
3Vx0 → Ix0 under

the canonical trivialization A⊗3⊗I. This shows (ii).

Proposition 3.13. In Proposition 3.11, there are natural identifications:

(i) Dy = Ux⊗Vx,

(ii) (∂D)y/Dy = ∧2Ux⊗ Ix⊗V ∨
x , and

(iii) TyY/(∂D)y = ∧2Ux⊗ Ix⊗Ux.

In particular, for any pair x �= x′ ∈ C, there is a natural identification of ∧2Ux⊗ Ix⊗Ux

and ∧2Ux′ ⊗ Ix′ ⊗Ux′ compatible with the identification (Ax′

x )⊗3⊗ Ix = Ix′ in Lemma 3.12

and the identification Ax
x′ ⊗Ux′ = Ux in Lemma 2.10.
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Proof. We have already seen (i) in Definition 2.7. (ii) is from (∂D)y/Dy = T 2
z /T 1

z in

Proposition 2.8, the identification ∧2Ux = TxC from Lemma 2.9, and

T 2
z /T 1

z = (N+
C,x)

∨⊗Lx = V ∨
x ⊗T∨

x C⊗Lx

from Lemma 3.5(iii). (iii) follows from

TyY/(∂D)y =H0(C,L) =H0(C,L⊗mx)⊗Ux,

where the first equality is by Proposition 3.11.

Definition 3.14. Let U be a vector space of dimension 2, and let V be a vector space

of dimension m ≥ 1. Fix a one-dimensional vector space I. Let g+ = g1 ⊕ g2 ⊕ g3 be the

vector space defined by

g1 := U⊗V, g2 := (∧2
U)⊗ I⊗V

∨, g3 := (∧2
U)⊗ I⊗U.

Fix a cubic form F : Sym3
V→ I on V which is nondegenerate in the sense of Definition 3.6.

For v1,v2 ∈ V, define Fv1v2 ∈ I⊗V
∨ by

Fv1v2(v) := F (v1,v2,v) ∈ I.

We define a graded Lie algebra structure on g+ := g1⊕g2⊕g3 by

[u1⊗v1,u2⊗v2] = (u1∧u2)⊗Fv1,v2 and (3.1)

[[u1⊗v1,u2⊗v2],u3⊗v3] = (u1∧u2)⊗F (v1,v2,v3)⊗u3. (3.2)

By the nondegeneracy of F, (3.1) implies [g1,g1] = g2. Thus (3.2) is sufficient to determine

the Lie bracket [g1,g2]. It is easy to check that this gives a graded Lie algebra structure on

g+. Note that the Lie bracket [g1,g2]→ g3 is independent of F and satisfies

[(u1∧u2)⊗v∗,u3⊗v3] = (u1∧u2)⊗u3⊗v∗(v3) (3.3)

for any u1,u2,u3 ∈ U,v3 ∈ V and v∗ ∈ I⊗V ∨. Sometimes, we write g+ = g+(F ) to indicate

that the Lie algebra structure depends on the cubic form F.

The following is the precise formulation of going from the right-hand side to the left-hand

side of (Corr.m) in §1.

Theorem 3.15. Let (X,H) be a contact manifold of dimension 2m+3. Let C ⊂ (X,H)

be a nondegenerate line, and let y ∈NDL(X,H) be the corresponding point. Then the symbol

algebra symby(D) of the natural distribution D on NDL(X,H) is isomorphic to g+(Fy) in

Definition 3.14 for some nondegenerate cubic form Fy on an m-dimensional vector space V.

Proof. Let Fx : Sym3Vx → Ix be the cubic form given by

IIICx,z : Sym
3Vx → (F∨

z )
⊗2⊗Lx

via the natural isomorphism Vx
∼= Vx for a point x ∈ C. Using Proposition 3.13, let us

identify symby(D) with g+ as graded vector spaces by setting U = Ux,V = Vx and I = Ix.

It suffices to show that the Lie algebra structure of symby(D) agrees with that of g+(Fx),

namely, it satisfies (3.1) and (3.2).

For any x∈C and v1,v2 ∈ Vx, let Fv1v2 ∈ Ix⊗V ∨
x be the contraction of F =Fx with v1,v2.

Fix a nonconstant rational function f ∈Ux. For v1,v2 ∈ Vx, Proposition 2.12, combined with
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Definition 3.7(iv), says that in symby(D),

[1x⊗v2,f ⊗v1] = (1x∧f)⊗Fv1v2 ∈ (∧2Ux)⊗ (Ix⊗V ∨
x ).

Thus the Lie algebra symby(D) satisfies (3.1) with F = Fx.

For v1,v2,v3 ∈ Vx, Proposition 2.13 says

[1x⊗v3, [1x⊗v2,f ⊗v1]] = (1x∧f)⊗Fx(v1,v2,v3)⊗1x (3.4)

as elements in (∧2Ux)⊗Ix⊗Ux. Thus, the Lie algebra symby(D) satisfies (3.2) with F =Fx

when u3 = 1x. It remains to check (3.2) when u3 is a nonconstant function in Ux.

For a given nonconstant function f ∈ Ux, let x
′ ∈C be the zero of f such that f ∈Ax′

x in

the notation of Lemma 3.12. For v1,v2,v3 ∈ Vx, we have w1,w2,w3 ∈ Vx′ such that wi = f ·vi
for i= 1,2,3. Let h ∈ Ax

x′ be the rational function 1
f . Then

1x⊗vi = h⊗wi and 1x′ ⊗wi = f ⊗vi (3.5)

for i= 1,2,3, under the tensor decomposition H0(C,N+
C ) = Ux⊗Vx = Ux′ ⊗Vx′ . From (3.4)

applied to the point x′ ∈ C,

[1x′ ⊗w3, [1x′ ⊗w2,h⊗w1]] = (1x′ ∧h)⊗Fx′(w1,w2,w3)⊗1x′ (3.6)

as elements of TyY/(∂D)y = (∧2Ux′)⊗Ix′ ⊗Ux′ . By (3.5), the left-hand side of (3.6) is equal

to [f ⊗v3, [f ⊗v2,1x⊗v1]]. On the other hand, the right-hand side of (3.6) is

(1x′ ∧h)⊗f3 ·Fx(v1,v2,v3)⊗1x′

by Lemma 3.12. Using the compatibility of the tensor multiplication by Ax′

x in the

identification (iii) of Proposition 3.13, this is equal to

f2 · (1x′ ∧h)⊗Fx(v1,v2,v3)⊗ (f ·1x′)

= (f ∧1x)⊗Fx(v1,v2,v3)⊗f.

Thus, (3.6) gives

[f ⊗v3, [f ⊗v2,1x⊗v1]] =−(1x0 ∧f)⊗Fx(v1,v2,v3)⊗f.

This proves (3.2) when u3 is a nonconstant function f ∈ Ux.

§4. From distributions with symbols g+(F ) to nondegenerate lines on contact

manifolds

Definition 4.1. Let D ⊂ TM be a distribution on a complex manifold M, and let

D⊥ ⊂ T∨M be its annihilator.

(i) Consider the null space of the Levi tensor at y ∈M ,

Null(LeviDy ) := {v ∈Dy | LeviDy (v,u) = 0 for all u ∈Dy}.

As y varies over M, the null spaces define a distribution Ch(D) on a Zariski-open subset

of M, called the Cauchy characteristic of D. It is easy to see that this is an integrable

distribution, defining a holomorphic foliation on the Zariski-open subset of M.

(ii) For each y ∈M and α ∈D⊥
y ⊂ T∨

y M, define the anti-symmetric form on Dy,

α◦LeviDy : ∧2Dy → C
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and its null-space by

Null(α◦LeviDy ) = {v ∈Dy | α◦LeviDy (v,u) = 0 for all u ∈Dy}.

Notation 4.2. The projectivization PT∨M of the cotangent bundle of a complex

manifold M has a natural OPT∨M (1)-valued 1-form ϑM such that Ker(ϑM ) is a contact

structure on PT∨M (see Notation 2.4 of [H2] for more details).

The following is Proposition 3.6 of [H2] (note that Levi
˜H
α is written as ďα(ϑ

M |PD⊥) in

[H2]).

Proposition 4.3. In the setting of Definition 4.1, the restriction ϑM |PD⊥ defines a

distribution H̃ of corank 1 on the manifold PD⊥. For any y ∈M and any nonzero a ∈D⊥
y

with the corresponding point α ∈ PD⊥
y , we have an isomorphism

Null(Levi
˜H
α )∼=Null(α◦LeviDy )⊂Dy

induced by the natural projection PD⊥ →M .

The following is the precise formulation of going from the left-hand side to the right-hand

side of (Corr.m) in §1.

Theorem 4.4. Let D ⊂ TY be a distribution regular at every point of Y such that the

symbol algebra symby(D) is isomorphic to g+(Fy) in Definition 3.14 for a nondegenerate

cubic form Fy for each y ∈ Y . Let W ⊂ T∨Y be the annihilator of ∂D. Denote by 
 :PW → Y

the P
1-bundle obtained by the projectivization of W. Then, for each y ∈ Y , there exists an

open neighborhood Oy ⊂Y of y and a submersion μy : 

−1(Oy)→Xy of relative dimension m

onto a complex manifold Xy equipped with a contact structure Hy ⊂ TXy with the following

properties.

(i) The distribution of corank 1 on 
−1(Oy) given by the restriction of ϑY to the

submanifold PW ⊂ PT∨ has the fiber at α ∈ 
−1(Oy)⊂ PW equal to (dαμy)
−1(Hy

μy(α)
).

(ii) For two distinct points α1 �= α2 ∈ PWy, the two vector spaces Ker(dα1μy) ⊂ Tα1PW
and Ker(dα2μy)⊂ Tα2PW satisfy

dα1
(Ker(dα1μy)) ∩ dα2
(Ker(dα2μy)) = 0.

(iii) The submersion μy sends the fibers of 
 to lines on (Xy,Hy).

(iv) The lines on (Xy,Hy) in (iii) form a (3m+2)-dimensional family, that is, all of their

small deformations on Xy come from the μy-images of the fibers of 
.

(v) The lines in (iii) are nondegenerate.

We need the following two lemmata. We skip the proof of the first one, which is

straightforward. The second is well known (e.g., Lemma 3.5 of [K1]), but we reproduce

the proof for the reader’s convenience.

Lemma 4.5. In Definition 3.14, denote by ς : ∧2(g1+ g2) → g3 be the homomorphism

defined by the Lie bracket of g modulo g1+ g2. It is independent of F and for any a ∈ g∨3
the anti-symmetric form a◦ ς on g1+g2 satisfies

Null(a◦ ς) = a⊥⊗V ⊂ g1,

where a⊥ = {u ∈ U | a(u) = 0}.
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Lemma 4.6. For a contact manifold (X,H) of dimension 2m+3 with the contact line

bundle L= TX/H, let C ⊂X be a smooth rational curve such that L|C ∼=O(1) and TX|C
is semipositive, that is,

TX|C ∼=O(l1)⊕·· ·⊕O(l2m+3)

for some nonnegative integers l1 ≥ ·· · ≥ l2m+3 ≥ 0. Then C is a line on (X,H).

Proof. It suffices to show that C is unbendable. Let λ : TX → L be the quotient

homomorphism. Since TC ∼=O(2) and L|C ∼=O(1), we have λ(TC) = 0, which implies that

C is tangent to H=Ker(λ). Since detTX = L⊗(m+2), we have

l1+ · · ·+ l2m+3 =m+2. (4.1)

Let

f∗H∼=O(k1)⊕·· ·⊕O(k2m+2)

for k1 ≥ ·· · ≥ k2m+2. Since LeviH gives symplectic forms on fibers of H with values in L,
we have

k1+k2m+2 = k2+k2m+1 = · · ·= km+km+3 = km+1+km+2 = 1.

Thus k1 ≥ ·· · ≥ km+1 ≥ 1 and 0 ≥ km+2 ≥ ·· · ≥ k2m+2. Combining 2 ≤ k1 ≤ l1 and ki ≤ li
for 1≤ i≤ 2m+2 with (4.1), we conclude

l1 = k1 = 2, l2 = · · ·= lm+1 = k2 = · · ·= km+1 = 1,

lm+2 = · · ·= l2m+3 = km+1 = · · ·k2m+1 = 0, k2m+2 =−1.

Thus, C is unbendable.

Proof of Theorem 4.4. By Lemma 4.5, for any y ∈ Y , any α1 �= α2 ∈ PWy and

corresponding nonzero vectors a1 �= a2 ∈Wy, we have

dimNull(ai ◦Levi∂Dy ) =m (4.2)

and

Null(a1 ◦Levi∂Dy )∩Null(a2 ◦Levi∂Dy ) = 0. (4.3)

Applying Proposition 4.3 with M = Y,D = ∂D,D⊥ = W, (4.2) shows that the Cauchy

characteristic of H̃ is a distribution defined on the whole P(∂D)⊥. For each y ∈ Y , we can

choose a neighborhood Oy such that the space of leaves of the foliation Ch(H̃) in 
−1(Oy)

becomes a complex manifoldXy (e.g., by Lemma 5.6 of [HL]) and the quotient map becomes

a submersion μy : 
−1(Oy)→Xy. Then H̃ descends to a contact structure Hy ⊂ TXy on

Xy, satisfying (i). (ii) follows from (4.3).

To check (iii), let C ⊂Xy be the image of 
−1(y) under μy. Then Ly|C ∼= O(1) for the

contact line bundle Ly = TXy/Hy by (i) together with the fact that ϑM |PW is OPW(1)-

valued 1-form. Since μy is a submersion, the vector bundle TXy|C is semipositive. This

shows that C is a line by Lemma 4.6.

To prove (iv), we need to check that there exists no arc Δ⊂ Y with y ∈Δ such that the

surface 
−1(Δ) is sent to a single curve in Xy by μy. But if such an arc Δ exists, for two

https://doi.org/10.1017/nmj.2023.3 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2023.3


LINES ON CONTACT MANIFOLDS 667

distinct point α1 �= α2 ∈ PWy, we have

TyΔ⊂ dα1
(Ker(dα1μy))∩dα2
(Ker(dα2μy)),

a contradiction to (ii).

By (iv), after shrinking Oy if necessary, we may regard Oy as an open subset of

Lines(Xy,Hy) and identify 
−1(Oy) with the open subset Z := ρ−1(Oy) in the universal

family. By Proposition 4.3 and Lemma 4.5, the distribution D is spanned by the images

of d
(Ker(dαμy)) for α ∈ 
−1(y). Thus D|Oy agrees with the distribution D of Definition

2.7 under the identification of Oy as an open subset of URC(Xy). Let C := μy(

−1(y)) be

the line in (Xy,Hy) corresponding to y. By Proposition 2.12, we see that IICx,z for a point

z ∈ 
−1(y) satisfies (i) and (ii) of Definition 3.7. By Proposition 2.13, we see that IIICx,z

satisfies (iii) and (iv) of Definition 3.7. It follows that C is a nondegenerate line.

The arguments in the proof of Theorem 4.4 show that the constructions in Theorems

3.15 and 4.4 are the inverse of each other.
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