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p-adic Families of Cohomological Modular
Forms for Indefinite Quaternion Algebras
and the Jacquet-Langlands
Correspondence

Matthew Greenberg and Marco Seveso

Abstract. We use the method of Ash and Stevens to prove the existence of small slope p-adic families
of cohomological modular forms for an indefinite quaternion algebra B. We prove that the Jacquet-
Langlands correspondence relating modular forms on GL, /Q and cohomomological modular forms
for B is compatible with the formation of p-adic families. This result is an analogue of a theorem of
Chenevier concerning definite quaternion algebras.

1 Introduction

This paper deals with a basic instance of the compatibility between two of the major
themes in the study of automorphic forms:

* Langlands’ principle of functoriality: this (mostly conjectural) principle describes
the precise relationships between automorphic representations of different groups.

* p-adic variation: systems of Hecke eigenvalues associated with automorphic forms
often vary in p-adic analytic families.

The Jacquet-Langlands correspondence, perhaps the simplest nontrivial instance of
the principle of functoriality, gives precise conditions under which a classical cuspi-
dal eigenform f can be lifted to an eigenform f® on a Shimura curve attached to a
quaternion algebra B. Both classical cuspidal eigenforms and eigenforms on Shimura
curves are known to display p-adic variation. Our main result is that the correspon-
dence f ~ f® is compatible with moving f and f® in p-adic analytic families when
B is indefinite." Sections 2-6 deal with the local theory, and Sections 7-12 with the
global thing.

Remark 1.1  We began studying these issues with applications to p-adic L-functions,
p-adic Abel-Jacobi maps and Stark-Heegner points/Darmon cycles in mind (see, for
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The corresponding result for definite B was proved by Chenevier [6]. His work was an inspiration
for ours, and we adapt many of his techniques.
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example, [8,12,15,19] for the definition of these points/cycles). For these applications,
we refer the interested reader to [9,13,20].

1.1  p-adic Families

Let p be a prime and let M be a positive integer with p + My. Let X be the p-adic
weight space and let O ¢ X be an affinoid subset defined over Q,, and let E be a p-adic
field. A p-adic analytic family of overconvergent eigenforms on Q of tame level M is a
formal g-expansion

F(q) = i anq" € (0(Q) Bg, F) [4]

such that, for all classical weights k € Q,
Fi(q) = ) an(k)q" € E[[q]]
n=1

is the g-expansion of an eigenform in ST, (To(pMo)).

In this introduction, we will consider modular forms with trivial nebentype and
level divisible by p but not by p? for ease of exposition. In the rest of the paper, we
will work in more generality.

1.2 The Jacquet-Langlands Correspondence

Suppose My = DM, where D is squarefree with an even number of prime factors and
(D, M) = 1. Let B be the indefinite quaternion Q-algebra ramified precisely at the
primes dividing D. Associated with these data is a space Sy, (TP (pM)) of eigen-
forms on a Shimura curve associated with a choice of Eichler order of level pM in
B. Let T} = T'(pMy,1), and TP = TP (pM, 1), be the double-coset Hecke algebras
described in Section 7.1. There is a natural map T2 — Endc Sk+2(To(pMo)). The
D-new subspace Si;2(To(pMg))P ™Y ¢ Si,2(To(pMy)) is T: -stable, and we can set
TP = im(T% — Endg Sksa(To(pMo) )P ™). Define

T =im(T? - Endc Sg,,(To(pM))).

Theorem 1.2 (Jacquet-Langlands correspondence)  There is a canonical isomorphism
Tl,D-new :) TD
k k-

Thus, if f € Sky2(To(pMo))P ™™ is an normalized eigenform, then there is an
eigenform f2 € Sy, (TP (pM)) with the same system of Hecke eigenvalues.

Under certain conditions, f can be fit into a p-adic analytic family. Let a,(f) be
the U,-eigenvalue of f.

Theorem 1.3 (Hida, Coleman) Iford, a,(f) < k +1and a,(f)* # p**', then there
is an affinoid Q ¢ X with k € Q and a p-adic analytic family F of eigenforms on Q of
tame level M such that Fy = f.

At the expense of possibly shrinking Q around k, we assume that for all classical
weights w € Q, the specialization F,, of the family F is D-new. Thus, F,, admits a
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Jacquet-Langlands lift F2 € S,,,»(T2(pM)). It is natural to ask if the F,, can be
interpolated by a “p-adic analytic family” The quotation marks in the last sentence
are used because we have not yet defined a notion of p-adic family for modular forms
on Shimura curves. The corresponding notion for elliptic modular forms does not
generalize, as modular forms on B do not admit Fourier expansions. Note also that the
absence of Fourier expansions precludes a simple notion of “normalized” for modular
forms on Shimura curves; the FZ are only well defined up to scalar multiple.

1.3 Cohomological Modular Forms

There are two ways to resolve these issues that allow for a useful notion of p-adic fam-
ily in the context of Shimura curves. The method we pursue in this paper involves
replacing the forms F2 by their associated Eichler-Shimura cohomology classes.? Tt
is these cohomology classes that we interpolate. The Eichler-Shimura theorem fur-
nishes us with a canonical isomorphism

ES*: Sz (1§ (Mp)) — H'(I9(Mp), Ve(C)) ",

where V is the highest weight k representation of GL,q and I’ (Mp) acts on Vi (C)
through a choice of splitting B ® C = M,(C). For either choice of sign, there is a
natural action of T2 on the right hand side and ES* is TP -equivariant. It follows that
the image of T acting on this cohomology group is identified with T7.
There is a canonical isomorphism
H'(Ty(Mp), Vk(Q)) ® C — H'(Ty(Mp), Vi(C)).

The +-decomposition is defined over Q, as are the Hecke operators. The above map
respects +-decompositions and is Hecke-equivariant. It follows from the Eichler-
Shimura theorem that if Q( f®) is the number field obtained by adjoining the Hecke
eigenvalues of f5, then

dimgqgny H' (T (Mp), Vi (Q(f*))*!" =1,

where the superscript f2 denotes the associated TP -eigenspace. If E is a p-adic field
containing Q( f?), then

dimg H'(T2 (Mp), Vi(E)) ™ =1.
1.4 p-adic Families of Cohomological Modular Forms

Remarkably, the representations Vi (Q,) themselves can be p-adically interpolated.
Consider the subsemigroup

2o(pZy) = {(’; 5) eMy(Zy) NGL2(Qp) : p + aand p | c}.

of GL,(Qj ). Then there is a universal highest weight module/vector pair (D, §) for
linear representations of X (pZ, ) on locally convex O(X)-vector spaces. Let k € X.

2 Andreatta, Iovita, and Stevens [2] have developed an elegant and powerful arithmetico-geometric
method of studying p-adic families.
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If v e Vi(Qp) is a highest weight vector, then by the universal property of (D, §),
there is a unique O(X)-linear, X (pZ,)-equivariant weight k specialization map

(1.1) pi: D — Vi(Qp)

such that pi(8) = v. Here, O(X) acts on Vi (Q,) through the evaluation-at-k map
O(X) = Qp.

If Q c X, write Dg for D ®g ) O(Q). We define the space of p-adic families of
quaternionic modular forms parametrized by Q to be the space H' (TP (Mp), Dq)*.
The Hecke algebra TP acts naturally on H (T2 (Mp),Dq)*. If k € Q is a classical
weight, then the specialization map (1.1) induces an O(Q)-linear, T2 (pM, N)-equi-
variant map

(1.2) pi H'(IP (pM), Dq) " — H'(TP(Mp), Vi(Qp)) ™.

The specializations of such a family ® ¢ H'(TY(Mp),Dq)* are simply the classes
pr(®) e HY(TP (Mp), Vi )*, where k € Q) is a classical weight.

But the principal question remains: to what extent do p-adic families of quater-
nionic eigenforms exist? Our answer is given by the following theorem.

Theorem 1.4  Suppose ¢ € H'(I{(Mp), Vi(E))* is a TP -eigenvector with U,-
eigenvalue a,(¢x) such that ord, a,(¢x) < k +1and a;, # p**L. Then there is a
TP _cigenvector ® € H'(TP (Mp), Dq)* such that py.,.(®) = ¢y, and @ is unique up
to multiplication by an element o € O(Q)* with a(k) = 1.

The distribution module D to be considered in this paper is the “classical one”
considered in [22]. The relation with those considered in [4, Theorem 3.7.3] when
the reductive group is isomorphic to GL, over Q,, is the following. Let w be the char-
acter of the Borel subgroup of upper triangular matrices that sends g to its upper left
entry. Ash and Stevens define a space of distribution D, (X) supported on a suitable
three dimensional manifold X modelled on the “big cell” of GL,. This space is en-
dowed with the action of a semigroup X, 2 £o(pZ,) and has a highest weight vector
0 € Dy (X). The universal property of (D, §) yields a unique %o (pZ, )-equivariant
morphism (D, ) - (D,(X), ). However, we will not need and will not exploit
the universal property of (D, §): the specialization maps will have a more concrete
description.

1.5 Slope < h Decompositions

Key to the proof of Theorem 1.4 is the fact that, for sufficiently small Q, the space
H'(TP(Mp),Do)* admits a slope < h decomposition with respect to U, i.e., a
TP _equivariant decomposition

+,>h

H'(T2(Mp), Do) = HI(FOD(Mp),DQ)i’Sh ® H'(Iy (Mp),Dq)
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such that H'(TP (Mp), Do )*=" is a finitely generated O(Q)-module on which U,
acts with slope < h and is maximal with respect to this property (see [3]). The Eichler-
Shimura cohomology group H' (T (Mp), Vk(Q,)) also admits a slope < i decom-
position. (This is a linear algebraic result, lacking the functional analytic depth of the
existence of slope < h decompositions over affinoid algebras.)

Theorem 1.5 There is an affinoid Q ¢ X with k € Q such that the following hold.

() HYTP(Mp),Dq)* admits a TP-equivariant slope < h decomposition with re-
spect to Up.

(i) HYTP(Mp), Dq)*=" is free of finite rank over O(Q).

(iii) The specialization map (1.2) induces an isomorphism

+,<h
bl

,<h ~
H(TP (Mp), Da) ™" ®0(a) E —> H'(TP (Mp), Vi(E))
where the O(Q)-algebra structure on E is given by the evaluation-at-k-map.

Theorem 1.5(i) and (iii) are applications of the Ash-Stevens theory of slope decom-
positions for the arithmetic cohomology developed in [3,4] of slope decompositions
of arithmetic cohomology. Much of the first part of the paper is devoted to estab-
lishing the functional analytic properties of the modules D¢, required for application
of Ash-Stevens machinery. Part (ii) is not a formal consequence of the Ash-Stevens
theory in that it uses the one-dimensionality of X in an essential way.

Theorem 1.5 is the main input for the proof of Theorem 1.4. Before taking up the ex-
istence of eigenvectors, we discuss the problem of lifting systems of Hecke eigenvalues
or eigenpackets. Note that liftability of eigenvectors implies liftability of eigenvalues,
but these are not equivalent in general.

It is convenient to use geometric language when considering systems of Hecke
eigenvalues. Write TkD <M and T =< for the image of the images of the Hecke
algebras in the endomorphism rings of

) +,<h ) +,<h

H'(Iy(Mp), Vi(E) and H'(Ty(Mp),Dq

>

respectively. There is a structural morphism
SpT>*<" — SpE (resp. Sp T2*<" — Q).
Specialization in weight k induces a morphism Sp T,? <k, §p TP+<k guch that

Tl?,:k,gh Sp

| |

SpE————>Q

Sp Tg,:k,gh

commutes, where Sp E — Q is induced by the evaluation-at-k map O(Q) — E. We
view the eigenpacket of ¢x € H'(TP(Mp), Vi(E))*=" as an E-valued point x; of
Sp T,? <k Our prospective lift of this eigenpacket is a section of xq of Sp Tg ash
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Q such that
SP TkD,:!:,Sh SP Tg’i’Sh
|k
SpE ——Q
commutes.

Corollary 1.6 Under the above assumptions, the section xq, exists at the expense of
possibly shrinking Q around k.

In addition to its reliance on Theorem 1.5, this corollary depends crucially on the
multiplicity-one property:

dimg H' (TP (Mp), Vi (E))*™ =1.
From here, the fact that the eigenspace associated with xq is free of rank one over

0(Q) follows from some commutative algebra. This establishes Theorem 1.4. For
details, see Corollary 11.4.

1.6 Eigencurves

The preceding discussion can be globalized. The compatibility of slope < i decompo-
sitions with flat base change implies that there is a unique coherent sheaf of Oy -mod-
ules T2*<" such that I(Q, TR*<") = T2*<" whenever H'(I? (Mp), Dq)* admits
a slope < h decomposition. We define the slope < h eigencurve CP+=<" by

D,+,<h _ D,+,<h
C =Spe, Ty .

By construction, it admits a structural “weight” map wt : €?*<h — X As indicated
above, the fiber of wt over a classical weight k with k + 1 > } is identified with the set
of slope < h systems of TP -eigenvalues occuring in H!(To(Mp), Vi (E))*=":

D,+,<h _ D,+,<h
Cy =SpT, .
A similar approach, built on overconvergent modular forms rather than Eichler-

Shimura cohomology groups, yields the more classical eigencurves wt: C5h . — X of
Coleman—-Mazur and Buzzard; see Section 12.1 for details.

1.7 Compatibility with the Jacquet-Langlands Correspondence

We can reword Theorem 1.2 as follows. By the Hecke-equivariance of slope < h de-
compositions, there is a canonical isomorphism

1,D-new,<h "~ D,+,<h
Sp T, — Sp T, .

On the other hand, by construction, the fiber over a classical weight k with k > h -1

of C2new<h s Sp T,i’gh. Consequently,

D-new,<h _~ D,+,<h
eCMB,k ek '
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It follows from Chenevier’s lemma (Proposition 10.9) that there is a unique morphism

CoMmrea /X" — Crg =" [
whose restriction to fibers above k with k > h—1are as described above. The subscript
“red” means that we need to take the associated reduced curve, and the isomorphism
is over a suitable flat locus X! c X as defined in Section 10 containing all the arithmetic
weights. As a consequence, we prove that, loosely speaking, D-new p-adic families
have Jacquet-Langlands lifts.

Theorem 1.7 Let F be a p-adic family of eigenforms on Q of tame level M, and
slope < h. Then there is a system of Hecke eigenvalues xq € Sp ‘J'g’i’ﬁh and a Hecke
eigenvector ®* ¢ H'(TP (Mp), Dq)**@ such that for all classical weights k € Q with
k>h-1, pp(®*) e H(TP, Vi (E))*** is the image under the Eichler-Shimura map
of a Jacquet-Langlands correspondent of Fy.

1.8 Other Approaches

We use the cohomological machinery of Ash and Stevens to establish p-adic Jacquet-
Langlands correspondences, it being well-adapted to the applications to p-adic L-
functions we have in mind; see [13,20]. There are two other approaches to such p-
adic Jacquet-Langlands correspondences in the literature, both of a more geometric
nature than that of this paper. In [14], Newton establishes p-adic Jacquet-Langlands
correspondences using the vanishing cycles functor on integral models of Shimura
curves in conjunction with Emerton’s completed cohomology theory and correspond-
ing eigencurve construction [11]. Presumably, one could also approach the results
of [13,20] using Newton’s method in conjunction with Emerton’s completed coho-
mology based construction of p-adic L-functions [10]. The second alternative ap-
proach, due to Andreatta, Iovita, and Stevens [2] uses their notion of (families of)
p-adic overconvergent sheaves and corresponding eigencurve construction. The the-
ory developed in [2] has two very attractive features. First, it gives us a conceptual,
geometric way to talk about the space of p-adic families of overconvergent modular
forms. This theory would allow for a much cleaner statement of Theorem 1.7. Second,
it seems to generalize extremely well to higher dimensional situations; see [1].

1.9 Organization of the paper

We begin the paper by describing the weight space—the parameter space for the
p-adic families we want to study in Section 2. In the subsequent Sections 3-5, we
attach polynomial, locally polynomial and locally analytic weight modules to points
k € X(R) valued in certain affinoid algebras. As we describe their construction, we
establish functional analytic properties of these modules required for the existence
of slope decompositions on their cohomology. Our local study of weight modules
being finished, we move on to describing the Ash-Stevens machinery that gives rise
to slope decompositions of arithmetic cohomology groups with coefficients in the
weight modules studied in the previous sections: this is the content of Section 6.
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We analyze closely the case of the cohomology of unit groups arising from indefi-
nite quaternion algebras in Section 7-9. This analysis, together with an formalism for
eigencurves developed in the subsequent Section 10, yields our main results concern-
ing the existence of p-adic families of classes in the cohomology groups of quater-
nionic unit groups, proved in Section 11, and the compatibility of their existence with
the Jacquet-Langlands correspondence, proved in Section 12.

2 Weight Characters

We fix E, a p-adic field, as our working field. Let N € N prime to p and let X'y be the
rigid analytic variety over Q, such that, for every affinoid E-algebra R,

xN(R) = Homcts( Z;,l\p Rx) >
whereZj y := Zyx(Z/NZ)*. We will refer to elements of Xy (R) as R-valued weights.

Write D(Z; y) for the space of locally analytic distributions on Zj . If u €
D(Zj,n)» we can define a function fz on Xy by the rule

A= [ Adu().

ps

Theorem 2.1 (Amice-Velu) The map y — U is a topological E-linear isomorphism
of D(Z;, ) onto O(X).

Definition 2.2

* A weighte € Xy (E) has level r if it factors through (Z/p"NZ)*. The minimal such
r is called the conductor of €.

* A weight k € Xy(E) is arithmetic of level (resp. conductor) r if t* = t*e(t) for some
keNande: Z;, N — E* oflevel (resp. conductor) r.

Ifk € Xy (E) isarithmetic of level r, we write x = (k, €). This slight abuse is justified
by the fact that « is uniquely determined by (k,e€). More precisely, setting Ay :=
Hom((Z/NZ)*,E*) and assuming that u,-y c E, the set of E-valued arithmetic
weights of level r is identified with N x A ,ry = Xy (E) by the rule (k,€) = (-)*e.

We set X := X so that, over E 2 py,

An= | ] Xey and X=X,
ENEAN

the identification being given by the rule x — xey.
Definition 2.3 When y,ry ¢ EwedefineN, y ¢ Xy(E) tobe theimage of NxA -y,
i.e., the set of arithmetic weights of level r.

With this notation we have, when y -y c E,

N, n = |_| Nievs Nrey=NenynXey and Ny=Npj >N .
ENEAN
The canonical inclusion Zj; ¢ Z7 \ induces a finite and étale morphism Xy — X
under which N, y (resp. N, ¢, ) maps to N,. Note that N; ¢ X(Q),). For later use we
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define
N4 ={x=(ke)eN,y:k>1}

for A € R as well as the sets N7} and N;* defined in a similar way.

Remark 2.4 If QO c X is an affinoid subset, we write Qx c Xy for its inverse
image under the map Xy — X identifying each X, c Xy with X. We also set Q,, =
QnNX,,. Furthermore, if M is an O(Qy )-module, it will be locally free if and only if

the ex-component is locally free over O(Q)-module for every ey. (This follows from
the fact that X — X is finite and étale.)

3 Arithmetic Weight Modules

3.1 Algebraic Highest Weight Modules

For an integer k > 0, let P, be the space of polynomials in x of degree at most k. The
algebraic group GL; acts on Py from the left by the rule

(3.1) (&xf) (%, y) = ji(& %) f(x8),
where

) X b+dx . b
(3.2) jk(gx) = (a+cx)” and Xg=— with g =(24).

Let Vi be the space of linear functionals on Py. Then Vy is a right GL,-module under
the dual action: (u|xg)(f) = u(gxf). The Py (resp. Vi) form a complete list of the
irreducible left (resp. right) representations of the algebraic group GL,, up to twists
by powers of the determinant.

3.2 Locally Polynomial Weight Modules

For integers n > 0, let Py, = P ,[Z,] be the space of functions f:Z, — E such that,
for each disk B[a, p™"] = a + p"Z, of radius p™" in Z,, the restriction f|,4pnz, is a
polynomial function of degree at most k. There are obvious inclusions iy, ,: Py, =
Py, m for m > n. Define the semigroup

So(p"Zp) = {(24) € GLa(Qp) N My(Z,) s a € Zy, cep'Zy).
Then Xo(pZ,) acts on Z, from the right by the rule (x, 0) = x0 asin (3.2).
Lemma 3.1 Ifo e Xo(pZ,) and a € Zy, then
Bla,p™"]o c B[ ag, p~"|det(0)|]
Equality holds when det(o) € Zj, i.e., 0 € To(pZy).

Let k = (k,e,) be an arithmetic weight with €, of conductor r. Then for o €
20(pZy), the function ji (o, -) defined by

jk(o,x):(a+cx)k:ep(a+cx)jk(a,x), 0:(?3),
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belongs to Py ,_; (Where Py _; := Py ). Therefore, (3.1) with k replaced by k defines a
left weight k action of £o(pZ,) on Py, for n > r — 1. We can actually make a more
precise statement. It follows from Lemma 3.1 that if 0 € £o(pZ, ), 0y is as in (3.1) and

ng = ord,(deto),

then there is a (unique) E-linear map 6y: Py 44, = Pk,n such that oy = i, s, © 0k
foralln >r—1.
Note also that the natural map

(3.3) Py — Py

is a £o(pZ,)-equivariant isomorphism.

Let Vi , be the E-dual of Py ,,. This space is equipped with a right weight k action
of 2o (pZ,) by duality for n > r—1; write Vi , for the corresponding module. Abusing
notation, write o for the endomorphism of Vj ,, dual of the endomorphism oy of Py ,.
Dual to 6, there is a unique map 6k : Vi, = Vi,n4n, such that ox = pyin,,n © Ok,
where p,, , is dual to i, ,:

V]k,n+ng

Ok \L

Vk,n O > V]k,n'

The projection Vi,o — Vi dual to (3.3) is a Xy (pZ, )-equivariant isomorphism.
Let P = Pr(Z,) be the space of functions on Z, that are locally polynomial of
degree at most k:

Py = im Py,

The maps iy m: Px,n = Px,n being of Zo(pZ,) equivariant, we obtain a left weight
k action of £¢(pZ;) on Py; write Py for the corresponding module. Define V. =
Vi(Zy) to be the strong dual of Py. Equipping V. with the weight k action dual to
that on Py, we have a canonical X (pZ, )-equivariant topological isomorphism:

V]k — lim Vk,n-
<«

n

In the special case 0 € Zo(p'Z, ), we have
ji(o,x) =€p(a+cx)(a+ cx)k = ep(a)(a+ cx)k e Peo.

Thus, by the same reasoning as above, we obtain a weight k-action of %o (p"Z;) on
Py, for all n > 0. Write Py ,, for the corresponding Xo(p"Z,)-module. It is clear
that if n > r — 1, then this weight k action of £o(p’Z,) agrees with the weight k ac-
tion of X (p"Z,) defined above, justifying the overlapping notation. Dually, we have
2o(p"Zp)-modules Vi, for all n > 0, notationally consistent with those introduced
previously for n > r — 1.
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3.3 Twisting

If Vis an (E,2o(p'Z,))-module, we write V{e,} for the £¢(p"Z,) module with
underlying set V but with action twisted by €,: (v, o) - €(a,)vo. With this conven-
tion, the identity maps Py, {€y}— Pi,n and Pi{e, }>Py are Zo(p"Z,)-equivariant
isomorphisms. Dualizing, we obtain canonical identifications Vi ,{€,}— Vi, and
Vk{ep};\?k,n.

4 Locally Analytic Weight Modules
Let ) be an E-affinoid variety and suppose k: QO — X is a morphism of E-rigid spaces.

Assumption 4.1 We assume throughout that Q) is absolutely reduced so that the norm
on the F-algebra

O(Q XSpE SpF) = O(Q) §E F
is multiplicative for any p-adic field F.

(Our primary cases of interest are when Q is a closed disk in X or an E-valued
point.) Set R = O(Q) and let A,[R] = A,[Z,, R] be the R-Banach module for the
sup-norm |- |, of functions f:Z, — R that can be represented by convergent power
series on each disk B[a, p~"]. When there is no danger of ambiguity, we will use the
shorthand

A, = A,[E].
In fact, we have a canonical isomorphism
(4.1) A, ® R —> A,[R].

Since |- |, is the sup-norm, we have the following lemma.

Lemma 4.2 Let o € Zo(pZy), let f € Ay[R], and let of € A,[R] be defined by
(0f)(x) = f(x0). Then |0 fln < |f]n-

It is well known that the continuous homomorphism Zj — R* associated with
k is necessarily locally analytic. In other words, there is an n = ny such that k «
Ay 1[Z;, R]. Tt follows that for each o € Zo(pZ)), we have ji (0, - ) € An, [R], where

jk(0,x) is defined as in (3.2). Combining this with Lemma 3.1, we conclude that

(01f)(x) = ji(o, x) f(x0)

defines an left weight k action of £¢(pZ,) on A,[R] for all n > ny; write Ay , for the
corresponding module. (We drop explicit mention of the coefficient ring R, since it is
encoded in the weight k.)

It follows from Assumption 4.1 that |ji (0, - )|n, < 1forall o € Z¢(pZ,). Together
with Lemma 4.2, this observation implies

(42) ‘O'|An[R] <1

Here, | -[4,[&] is the operator norm on the space Lr (A, [R], A,[R]) of bounded R-li-
near endomorphisms of A,[R]. As in the locally polynomial case, the mapping oy
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increases radius of convergence: there is a unique 0i: Ay yin, [Zp] = Ak,n[Zp] such
that 0% = iy, n4n, © Ok, Where i, ,, is the inclusion of A,[Z,] into A,,[Z,] for n > m.
Let D,[R] = D,[Z, R] be the strong dual of A, [Z,, R], i.e.,

D,[R] = Dyu[Zp,R] := Lr(Au[Zp,R], R).
When confusion is unlikely to result, we can write D, = D,[E]. When D,[R] is
equipped with the dual action of X¢(pZ,) written (y,0) + ulxo, we obtain an

(R, Zo(pZ))-module denoted Dy ,,. Dualizing the situation for locally analytic func-
tions, for each n > ny there is a unique map i making the diagram

(4.3) Dyin,[R]

>~

Dn[R] T> Dn[R]

commute. It follows from (4.2) that |o|p,[z] < 1, where |-|p, z] is the operator norm
on the space Lr(D,[R], D,[R]).
Let A(R) = A(Zj, R) be the space of locally analytic R-valued functions on Z,:

A(R) = A(Zy,R) = lim A,[Z,, R].

When there is no danger of confusion, we will use the shorthand A = A(E). Since
completed tensor products commute with direct limits (because R is normed), we
have a canonical isomorphism

(4.4) A®R — A(R).

The inclusion maps A,[R] < A,;1[R] being X (pZ,)-equivariant, we obtain a left
weight k action of £¢(pZ,) on A(Zj, R), giving rise to a left Xy (pZ, )-module that
we denote Aj.

The space of locally analytic distributions D(R) = D(Zy, R) is, by definition, the

strong dual of A(R):
D(R) = D(Zy,R) = Lr(A(Zp,R),R).
When confusion is unlikely, we will use the shorthand D = D(E). The natural map
D(R) — Lin D,[R]
n

is a topological isomorphism. The we write Dy, for the module D(R) equipped with
the right 3o (pZ, )-action arising from duality.

Let L£(V, W) be the space of bounded, E-linear functionals between E-Banach
modules V and W and write W ® V for W ®g V. Let V' be the strong E-dual of

V. Then the canonical map W ® V' — L (V, W) identifies W ® V' with the closed
subspace Cg(V, W) c Lg(V, W) of completely continuous maps. We have

(4.5) R®D, — Cg(A,,R) c Lg(A,,R) — Lr(A,[R],R) = D,[R].

(The natural map L (A,[R],R) — Lg(A,, R) obtained from (4.1), always a contin-
uous bijection, is a homeomorphism by the Open Mapping Theorem.) Thus, R ® D,
is identified with an R-submodule of D, [R], proper if R has infinite dimension over
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E. On the other hand, after taking inverse limits, we get a canonical isomorphism [16,
Proposition 18.2]

(4.6) R®D — D(R).

Lemma 4.3  'The image of C(A,, R) in D, [R] is stable under the weight k-action of
Zo(pZy).

Proof Consider the diagram

(4.7) R&D L~ D(R)

lﬁéanJ ipn

R® D, —— D, [R]

where j, and j are given by (4.5) and(4.6), respectively. We must show that im(j,) c
D[R] is stable under the weight k-action of Xo(pZ, ). Since j, is a topological iso-
morphism of R ® D, onto the closed subspace Cg(A,,R) of Lz(A,,R) = D,[R], it
follows that j, induces an isomorphism

closure of im(1® p, )in R® D,, —> closure of j,(im(1& p,))in D,[R].

It is a standard fact that p,, : D — D,, has dense image, implying that 1 ® p, does too.
Therefore, the closure of im(1® p,) in R® D,, is equal to R ® D,,. Thus, it remains to
show that the closure of j, (im(1®p,)) is stable under the weight k action of 2o (pZ, ).
By the commutativity of (4.7) and the fact that j is an isomorphism, j,(im(1® p,)) =
im(p,). But p, is equivariant for the weight k action of £, making im(p, ) stable. The
stability of the closure follows from the continuity of the endomorphism oy of D,,[R]
forall 0 € 3o (pZp). [ |

Thus, we can define Cy,, ¢ Dy, to be the £o(pZ,)-submodule with underlying
space Cg(A,, R). We have established the following lemma.

Lemma 4.4  There is a canonical (R, 2o(pZ,))-equivariant isomorphism
@k —> Lin C]k,n .
4.1 J-distributions

For each x € Z,, we define
8 =08 e D(R) (resp. 8, = 6% € D,[R]) by 0.:(f) = f(x),

where f € A(R) (resp. f € A,[R]). It is obvious that the projections p, : D(R) —
D,[R] send 8, to &y, justifying the overlap in notation.

Lemma 4.5 The distributions 8%, x € Z,, topologically generate D(R) over R.

Proof By [17, Lemma 3.1], the E-span of {8% : x € Z, } is dense in D. One can verify
that the isomorphism (4.6) maps 1 ® 6% to 6%, and the result follows. ]
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4.2 Specialization

Let ¢: R — R’ be an R-algebra homomorphism and let k' € X(R’) be an R’-valued
weight character. Ifk’ = ¢ok, we say thatk’ is a specialization of k or, more specifically,
that ¢ specializes k to k'.

Lemma 4.6  Suppose ¢ specializes k to k'. There are canonical (R, 2o (pZy))-equi-
variant maps

¢n:Dyn —> Dyr and ¢: Dy — Dyr.
They satisfy the obvious compatibilities with the projections

Dy — Dy,pr1 — Dy,n and Dy — Dyt i1 — Dyt .

The map R-linear map ¢: D(R) — D(R") underlying ¢p: Dy — Dy is given by
D(R)=R8D L R®D=D(R).
Proof Let¢,:D,(R) — D,(R") be the composite

(48)  Du[R] = L(A4[R]LR) = L5(Am R) ~>L5(A, R')
= Lp(A,[R'],R") = D,[R'].

Here, we have used (4.1) twice, once for R and once for R’. By (4.4) we have the
continuous bijection Lg(A(E),R) — Lg(A,R), which is a homeomorphism by
the Open Mapping Theorem. Hence, we can define the map ¢ in a similar way. The
compatibilities alluded to in the statement of the lemma are obvious.

We now establish the X (pZ, )-equivariance of ¢, and ¢. Since the projections
pn:D(R) - D,[R] and p’: D(R’) - D,[R’] have dense image and ¢, 0 p,, = p}, 0 9,
the X (pZ,)-equivariance of ¢ implies that of the ¢,. By Lemma 4.5, it suffices to
show that ¢(8%|;0) = ¢(8®)|w 0. Tracing through the isomorphisms in the analogue
of (4.8) defining ¢, one easily checks that ¢(68) = 6¥'. Since A = A(E) generates
A(R’) as an R’-module, it suffices to show that ¢(8R (0 f)) = 6% (o f) for f €
A(E). This last identity follows from the specialization relation k' = ¢ o k. [ |

Remark 4.7  Setting b, = ( 5 f) , we have 68 = §8b,. Hence, by the density of the
d-distributions, ¢ is the unique (R, Zo(pZ,))-equivariant map Dy — Dy such that

¢(d0) = Jo.
5 Specializing Locally Analytic to Locally Polynomial

Letk:Z; — E* be an arithmetic weight. In this case, we have
Cin = Diyn = Din[Zy].

Write k = (k,e€,) with €, of conductor r. Then for n > ny = r — 1, we can define
Yi,n = Yi,n[Z,] by the following (E, £o(pZ))-equivariant exact sequence:

P
00— Y]k,n[Zp] — Dk,n[Zp] —_— Vlk,n[Zp] — 0,
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where p = py , is the dual of the natural inclusion Py ,[Z;] < Ay n[Z,]. Set
Y = Yu(Zp) = lim Yy,
where the transition maps are the restrictions of those in the projective system of the
Dy,n[Z,]. Then Y (Zy) fits into the exact sequence of (E, 2o (pZ,))-modules
(5.1) 0 —> Yu(Zy) — Di(Zy) = Vi(Z,) — 0,

The map 0 appearing in (4.3), specialized to the case k = k and R = E, sends
Yin[Zp) € Du[Zy, E] into Yi pin,[Zp] € Duin,[Zy, E], yielding the commutative
diagram

Yk,nJrnl7 [Zp] (I’I > I’Ik).

> |

Yi,n [Zp] T Yi,n [ZP]

Remark 5.1 If we restrict the weight k action to X¢(p’Z,), then all of the above
considerations hold for all n > 0. In particular, Yy ,[Z,] is defined for all n > 0 as a
Zo(p"Zy)-module.

5.1 An Operator Norm Calculation

Let 0 € 2o(pZ,) and write |0y, ,[z,] for the operator norm of ¢ as an endomor-
phism of the E-Banach space Yy ,[Z,].

Lemma 5.2 If o € Zo(pZy), we have |oily, ,[z,] = p~ k1 forall n > ny. If
0 € Zo(p"Zy), then the same holds for all n > 0.

Proof Since |0(kc,)|y,..(2,] = |0kly, .[z,]> it suffices to prove the result for k = k > 0.
We first remark that, for every o € Zo(pZ), there exist y,y" € [o(pZ) such that
o = ydiag(l, p"7)y’, and it follows that |oly, ,[z,] = [diag(L, p"*)ly, ,(z,]> and we
can assume that o = diag(1, p"7). In the following discussion we can unambiguously
write |- | for all the norms involved.

We begin with a key calculation. For ¢ € {0,..., p" =1}, 7 > 0, and |x| < 1, define

b”(x):{p‘ (x—¢) iflx—c|<p™,

0 otherwise.

Then the b,,, form an orthonormal basis of the E-Banach space A,[Z,]. Therefore,
if y € D,[Z,], we have

|u| = sup|u(be,r)|.

Let o = diag(1, p%). Then

0 otherwise.

—nr(od.. _ T d. n
(Ukbc,r)(x) — {p (p X C) lf|p X C| Sp ,
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Suppose 1 < d. Now [p?x — c| < p~" means that p?x = ¢ + p"t for some t € Z,,.
Therefore, p*|cas |x| <1,|c| <1,and n < d. But since 0 < ¢ < p" —1, this happens only
when ¢ = 0. Thus, 7 < d implies o3b,, = 0 if ¢ # 0, while oy bg , (x) = p™ (p?x)" for
every x € Zj, C p”’de. We write

p"-1
Zp= || c+p"Z,
c=0

and we note that, for x € ¢ + p"Z,,
—nr r v —nr r r : r r—=s _ n(s—r
okbo,r(x) = p~" (p*x)" = pTp T (x - c+ )" = p* Z(S)c P b ().
s=0

It follows that
_ dr T\ r—s n(s—r)
okbor=p E (S)c p bes.

When r > k + 1, we define the k-truncation of oy by, by the rule

r r r—=s  n(s—r
T =p" 5 (D) p b

s=k+1,..., r
c=0,...,p" -1
r\ ,_ _ _
_ pitks) > ( )Cr s pr(s-na(r=(ks )y
s=k+1,..., r S
¢=0,...,p" -1

We remark that n(s —r) + d(r— (k+1)) > (r—s)(d —n) > 0 for every k +1 < s and
n < d, so that

(5.2) |Ti(oxbo,)| < p 4 V| (n<d,r>k+1).
Suppose now that d < n. Then
Ipix—c|<p™ = |x-p | <pT <
There exist x € Z,, satisfying these inequalities only if p?c, i.e.,
c=picd, Jde{o,...,p" -1},
in which case

(d=m)r(y _ ! iflx = ¢/ < d—n’
(Ukbc,r)(x):(okbpdc,,r)(x):{f’ (x=¢) iflx-c<p

0 otherwise.
: Pl n—d -1 d
Wewrite Zp = | |\, ¢ +p" *Zy,and Z, =| |._, c" + p®Z,. Therefore, we have
p?-1 p?-1
C/+pn—dZP — |_| C’+pn_d(C"+dep) — |_| C’+pn_dC’,+anP.
c’"=0 c"=0

Ifc” €{0,...,p% =1} and |x — (¢ + p?c")| < p~", then one computes that

r (T r—s  (n— r—s)+n(s—r
(Ukbc,r)(x):pd Z(S)C” P( d)( )+( )bc’+p"*"c”,s(x)-

s=0
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It follows that

okbey = pdr Z (r)c”'isp("fd)(rfs)m(s*r)bcqpn—dcu,s-

If r > k + 1, we define the k-truncation of oy b, , by the rule

Tk(akbc,r) _ pdr Z (:)C//r—sp(n—d)(r—s)+n(s—r)bC,+Pn_dC”,s

s=k+1,..., r
¢""=0,...,p%-1
d(k+1 "\ nr—s d(s—(k+1
:p ( ) Z ( )C p ( ( ))bc’+p”’d6”,5'
s=ktl,.r VS
¢"=0,...,p%-1

We have d(s — (k+1)) >0 fors > k + 1, so that
(5.3) |Ti(oxbe, ) < p* D] (d<nr2k+1).

Suppose now that ¢ = diag(1, p?) and y € Y, x[Z,]. We have poy € Y, x[Z,] so
that (poy)(b.,r) =0ifr <k +1, and, when r > k + 1, by (5.2) and (5.3), we have

|(!4‘7k)(bc,r)| = |H(Tk(akbc,r))| Sp_d(k+l)|.“|)
implying
|uor| = sup| (uow) (be,r)| < p~**|ul.
C,r

Therefore, o acts on Y, x[Z,] with norm < p=(+D) = pne(k+D) T show that this
value is achieved, we must find a distribution y € Y, x[Z,] with |ugy| = p~4+D|y].
The bounded distribution determined by

u(be,) = {1 tle.r) = (0.k+1),

0 otherwise,

works. |

Slope Decompositions and the Ash-Stevens Machinery
S-decompositions

Suppose that R is a commutative Noetherian ring, R is a commutative R-algebra, and
8 c Risamultiplicative subset. Let H be an R-module. Ash and Stevens [4] introduce
the following key notion.

Definition 6.1 A direct sum decomposition H = Hs @ H' is an 8-decomposition if
the following hold:

(i) forevery h € Hg, there is an element s € 8 such that sh = 0;
(ii) Hs is a finitely generated R-module;
(iii) every element of 8 acts invertibly on H'.
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When 8-decompositions exist, they are unique.
Let G be a finite group of order » acting on H. Then have the canonical decompo-
sition of H:

H=@®H(y)
X

Lemma 6.2 Suppose the action of G on H commutes with that of R and that y,, ¢ R.
Then each H(x) admits an S-decomposition. Moreover, H(x)s = Hs(x) and H(x)' =

H'(X)-

Proof It is easy to check that G preserves Hs and H'. Therefore, Hs = ®, Hs ()
and H' = @, H'(x). Since Hs(y) ® H'(x) c H(x) and

H=Hs®H =®Hs(y)®H'(x) c®H(y) = H,
X X

it follows that Hs(x) @ H'(x) = H(y). It is obvious that this decomposition is fact
an 8-decomposition of H(), i.e., H(x)s = Hs(x) and H(x)" = H'(y). [ |

6.2 Slope < h Decompositions

Let E be a p-adic field and let R be an E-Banach algebra. We let R*™ be the group of
multiplicative elements in R, i.e., elements r € R* such that |rx| = |r||x| for all x € R.

Definition 6.3 A polynomial Q(T) € R[T]hasslope < h if the slopes of all segments
of comprising its Newton polygon are < h.

Let V be an R-module. We do not assume that V possesses a topological structure.
If Q(T) € R[T], we set Q*(T) := T8 Q(1/T) and we let ag = Q*(0) be the
leading coefficient of Q. Let u: V' — V be an R-linear map. For h € R, h > 0, define
the semigroup

Sp(u) = ({Q(u) :Q(T) has slope < hand aq € Rxm}) cEndg V

and set
VR = {x € V:Q*(u)x = 0 for some Q(u) € Sy (u)}.
Lemma 6.4 ([4, Lemma 70.2]) V=" isan R-submodule of V.

Suppose we have a direct sum decomposition
(6.1) V=vshe vt

for some R-submodule V>" of V. We call (6.1) a slope < h decomposition if it is an
8-decomposition with 8 = Sy, (u).

Among our main goals is showing that, for suitable Q ¢ X, the space H' (T, Dq)
admits a slope < h decomposition. To prove this, the Ash-Stevens machinery relies
on finiteness properties of the arithmetic group Iy as well as on functional analytic
properties of the coefficient module Dg,.
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6.3 Orthonormalizable Modules

Let G be a group, let T c G be a subgroup, and let X c G be a subsemigroup with
[cZcG.

Definition 6.5 By an orthonormalizable Banach (R, X)-module we understand a
Banach (R, £)-module V such that V is an orthonormalizable Banach R-module, as
defined in [7, p. 423], and such that each ¢ € ¥ acts on V with operator norm at most 1.

The next result follows directly from [18, Corollary to Proposition 1].

Lemma 6.6 Letk € X(E). Then Vg, Dy, ,, and Yy, are orthonormalizable Banach
(E,Zo(pZy))-modules for all n > ny. Ifk = (k, €) is an arithmetic weight of conductor
p', then spaces are orthonormalizable Banach (E, 2o(p"Z,))-modules for all n > 0.

We now consider projective limits of such objects.
Definition 6.7  An orthonormalizable (R, X)-module is an (R, Z)-module D to-
gether with an (R, £)-module isomorphism
@ ;) l(iLn(Dnaanrl,n),

where (Dy, Pus1,n)nznyp iS @ projective system of orthonormalizable Banach (R, X)-
modules. When X = 1, we simply say that D is an orthonormalizable R-module.

Lemma 6.8 Let R be an affinoid E-algebra and let k € X(R). Then Dy is an or-
thonormalizable (R, 2o (pZ,))-module.

Proof ByLemma4.4,thereisa canonical (R, Z¢(pZ,))-module isomorphism Dy, =
lim Cy, . Each Cy,, is orthonormalizable thanks to the canonical isomorphism R ®F
D, = Cx,, and [7, Proposition Al.3], and the lemma follows. [ |

Suppose that D is an orthonormalizable R-module and L: D — D is an R-module
homomorphism.

Definition 6.9 We say that L is completely continuous if

e L= 1(£n L,, where L,: D, - D, are completely continuous R-linear morphisms;
* there exists an integer n;, > np and, for every n > ny, a commutative diagram

Ln+1

(62) Dn+1 — Dn+1 .
Prn+in i < l}%-ﬁ-l,n
L,
Dy == Du
Remark 6.10 (i) Ifthe p,i1,, are completely continuous, then every continuous

R-linear morphism L,: D, - D, making (6.2) commutative is completely continu-
ous. Hence, in this case, we simply require the L, to be R-linear morphisms in order
for L = lim L, to be completely continuous.
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(ii) IfD isan orthonormalizable (R, X)-moduleand L = limL,, is completely con-
tinuous, yLy' = I(Ln yLny"is completely continuous for every y, y" € T with 1, = np
(take yL,y" in (6.2).

(iii) We always view D = LiLn(Dn, Pn+1,n) with the initial topology making the
projections p,: D — D, continuous (see [16, S 5 D]). In this way D becomes a Fréchet
space endowed with a continuous (R, £)-module structure. Conversely, a Fréchet
space is the inverse limit D = lim(Dy, py+1,n) of Banach spaces such that the py.1,u5
have dense image. If D is endowed with a continuous (R, £)-module structure, we
can take the D,, to be Banach R-modules on which X acts continuously and the p,,.1,x
to be (R, 2)-linear.

(iv) Let D be an orthonormalizable (R, ¥)-module and suppose R — R’ is a con-
traction. Then

R’ ®R D :l(ir_n(R' ®R D, 1®an+1)

and the 1 ®g py+1,» have dense image if the p,.;,, have dense image. In particular,
R’ ®g D is an orthonormalizable (R, £)-module.

Remark 6.11 Let V and W be Banach E-spaces on which a group I acts contin-
uously by operators of norm < 1. Then for every y € I and every f € L(V, W),

IfYlecv,wy = vflevwy = 1flev,wy-

Suppose from now on that (T, 2) is a Hecke pair in G. For each ¢ € %, the double
coset 'oT can be decomposed into finitely many left I'-cosets:
ToT =| |To;.
iel
When D = D is an orthonormalizable Banach (R, £)-module, Remark 6.11 implies
that |o| = |ToT| depends only on the double coset I'oT. Thus, we can set |[ToT| = |d|.
Justified by Remark 6.10(ii), we give the following definition.

Definition 6.12 If D is an orthonormalizable (R, X)-module, we say that [[oT]
defines a completely continuous operator if ¢’ € T'oT is completely continuous for
some or equivalently any ¢’ € T'oT. In this case, nrer := 1y 2 np is well defined.

We now assume that R is an absolutely irreducible affinoid E-algebra (endowed
with the supremum norm) and write Q := Gp(R). If Q' = Sp(R’) c Q is an open
affinoid domain, the associated morphism R — R’ is a contraction, and we set

Dn,Q’ = Rl@RDna pn+l,n,Q = 1®an+l,n’ and DQ’ = l(iLn(Dn,QUanrl,n,Q’)-

In particular, Do, = R'®gD (Remark 6.10(iv)). The following important result is the
main result of the theory of Ash and Stevens, in which the usefulness of the purely
algebraic notion of slope decomposition manifests itself. This result extends Cole-
man’s results on the existence of slope decompositions for orthonormalizable Banach
modules to the cohomology of an inverse limit of such objects.

We need one further notion.

Definition 6.13 We say that I is arithmetic if and only if there exists I'" c T of finite
index such that Z has a resolution by finitely generated free Z[T’]-modules.
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The proof of the following theorem can be extracted from [4].

Theorem 6.14  Suppose that D is an orthonormalizable left (R, X)-module on which
[[oT] defines a completely continuous Hecke operator, that (T, X) is a Hecke pair in G,
and that T is arithmetic. Let k € Q.

(i) There is an open affinoid neighbourhood Q' = Sp R" of k in Q such that, setting
Dqr = R &g D, the cohomology group H' (T, Dq) admits a slope < h decomposition
relative to the Hecke operator [ToT). The spaces H' (T, D, o) also admit slope < h
decompositions and the natural maps D — D,, induce isomorphisms

H (I, Do )" = H (I, Dy o))" (n>nop).

(ii) If Q" = SpR” is an open affinoid subset of Q)', then the groups H' (T, D)
and H' (T, D, q~ ) also admit slope < h decompositions and there are canonical isomor-
phisms

H'(I,Dan)" 2 R"8p H' (I, Do), H'(T,D,00)" 2 R"®r H (I, Dy 0/ )"
(iii) If R is a p-adic field, D = D is an orthonormalizable Banach (R, X)-module,
and [ToT| < p~", then H (T, D)=" = 0.

7 Level Structures

Let B be the (unique up to isomorphism) indefinite quaternion Q-algebra of discrim-
inant D. For a place v let H, (resp. M,(Q,)) be the unique (up to isomorphism)
division (resp. split) quaternion @, -algebra and fix identifications

B, —H, (v|D), 1:B, — Mz(Q,) (v D).

Taken together, these induce an identification

~ A
13:B® Ag — [TH, x [T M2(Q,).
v|D v+D

Note that co + D as B is indefinite.
For a 2-by-2 matrix g, we define ag, by, cg, and dg by

_ (9 b
£ (Cg dd)‘
Ifv = ¢| D, let Oy, be the ring of integers of H,. If v = € + Doo and r > 1, we write

31(€Ze) € My(Ze) N GLy(Qe)  (resp. To(€"Z¢) © My(Ze) N GLy(Qp))

to denote the subsemigroup defined by the conditions ag € 1+ €7Z, (resp. ag € Zy)
and cg € €"Ze. If r = 0, we define the semigroup

Z(Ze) = Mz(Zf) N GLz(Qg)

We set
T (£'Z¢) = 2.(€Z¢) 0 GLy(Zy)

for * =1, 0, or nothing.
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Let M, N € N be such that M, N, and D are pairwise coprime. We consider the
semigroup

z’j(M,N):BXmg(nH;x 1 Zo(€'Ze) x T1 Zi(€°Z¢)

¢|D er| M er|N

x T 3(Z)xGL}(R)),
¢+DMN oo

where * is + or nothing and GL} (R) indicates the subset of matrices with positive
determinant and its congruence subgroup

rP(M,N) = B* 0! ( TT O, x TT To(€'Ze) x T1 Ti(€'Ze)
¢D er| M er|N

x TI T(Ze)xGL;(R)).

¢+DMN oo
7.1 Hecke Algebras

For any commutative ring R, let
TR(M,N) = Tz(TP(M,N),=P(MN,1)),
TR(M,N), = Tr(IP(M,N),22(MN,1))
be the double coset R-algebras associated with the Hecke pairs
(r°?(M,N),=P(MN,1)) and (TP(M,N),=2(MN,1)),

respectively. We point out that, in addition to containing the Hecke operators T¢ for
¢ + MN and U, for £ | MN, the algebra TR (M, N also contains an involution “at
infinity”: let g, € P (M, N) c ZP(MN, 1) be an element of reduced norm -1 nor-
malizing I'” (M, N) and such that g2, = 1 and define the involution

Weo := [TP(M,N)g TP (M, N)] = [T°(M,N)g_1] € T°(M,N).

In addition, TR (M, N) contains the diamond operators (d) for d € (Z/NZ)*. If
g €TP(MN,1) c 2P(MN,1) is such that a,,(4) € d + NZg for £| N, then

(d) = [TP(M,N)gI'”(M,N)] = [TP(M,N)g] e T°(M, N).

IfTR(M,N) actson V, then V = V* & V-, where V* is the +1-eigenspace for the
action of the involution W,. If ey € Ay := Hom((Z/NZ)*, R*), let

Vien):= [ ker({d)-en(d));

de(Z/NZ)
then we can write V = V(ey) ® V¥ for an R-module V¥ such that

RerV= @ (RarV)(y)

enEAN ENFEN
for any R-algebra R’ such that yuy c R’. In particular, if yy c R, we have
V= @ Vien)= & V(en).

eneAn,ee{xl} eneAy,ee{x1}
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Since (d) € TP(M,N) for all d € (Z/NZ)*, if v is a TY (M, N)-eigenvector, then
v e V(en) forsomeey € Ay ande € {+1}. In our applications, R will be a D(Zj)-al-
gebra. Then V is naturally a D(Zj, y)-module via dv := v(d) for d € (Z/NZ)* and
Ve(en) (as well as V(en)) is naturally a D(Z} y)-module via ey. Via the Amice-
Velu theorem we can regard them as O(Xy)-modules.

Suppose now that D is an R[ZP (MN,1)]-module. Then

H'(I°(M,N),D) = @&  H'(I®(M,N),D)"(ex)

eneAN,ee{+1}

and, when R is a Q-algebra, restriction gives isomorphism

7 ~ . D D
H'(TP(MN, 1), D{ex}) = H'(T2(M, N), D{ey}) " D/ 000

= H'(T°(M,N),D) “(en).
As remarked above, when R is a D(Z} )-algebra,
H'(T°(M,N),D) and H'(T°(M,N),D)"(ey)
are naturally O(Xy)-modules. Thanks to Lemma 6.2 the same applies to the slope
< h subspaces with respect to suitable Hecke operators.

7.2 Dependence on D

By the local structure theory, there is a canonical isomorphism
T°(M,N).
= T(GL; (R),GL;(R)) ® Q‘?) T(Og, Hy) ® e%@MT(To(t”Ze), 20(€'Ze))
D 4
® erec”oN‘I( T1(€'Ze), 20(£'Ze)) ® ®pypunee T(T(Ze), 2(Ze))
= Teo ® ®@peoo T¢ (M, N),
the symbol ®" denoting restricted tensor product and * being + or nothing.
Suppose D = D’M’ is a factorization of D with D’ divisible by an even number
of primes. By our running assumption that D is squarefree, D’ is squarefree and
(D',M’) = 1. Let R be a commutative ring. For £ + M’, we have T?(M,N) =
TP (MM, N), while for €| M’, there are R-algebra isomorphisms
R[T] = Tr(To(€Z¢),%0(€Ze))  and  R[T,T']— Tr(H;,05,)

given by T = [To(£Z¢) (o p)To(£Ze)] = Up and T ~ [Of,meOF,] = W, where

me € Og, has reduced norm ¢. If A, € R, then the map Tr(To(¢Ze),20(¢Z¢)) —~

Tr(Hj,Og,) given by T + T induces an isomorphism
Tr(To(€Ze), 20 (€Ze)) [(Up = Ae) — Tr(Hj, 035,) /(W7 = A¢).

Taking the restricted tensor product of the above isomorphisms, we obtain an R-al-
gebra isomorphism

71 PPTR (MM, N)J(UR = dp: | M) = TR(M,N)/(WZ = Ap: €| M).
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8 The Comparison Theorem

Let p be a prime and suppose that M, N, and D are integers prime to each other and
prime to p. Consider the Hecke pair

(I,2) = (TP (p"M,N), =P (p"MN, 1))

and the associated Hecke algebra T°(T, 2). Letk = (k,€,) € X(E) be an arithmetic
weight character of conductor p”. The T(T, X)-equivariant long exact sequence in
I'-cohomology arising from (5.1) takes the form

- —> H'(T,Yy) — H'(T, Dy) — H'(T, V) — HA(T,Yy) —> -

Let 0 € X be such that n, > 1. By Theorem 6.14 and Lemma 6.8, we can take slope < h
components with respect to I'oT of each term in the above sequence without disturb-
ing the exactness. The following comparison theorem now follows from Lemma 5.2
and Theorem 6.14(iii).

Theorem 8.1 (Stevens) Ifh < (k +1)n, then the natural maps py: Dy — Vi and
P Vi = Vieo = Vilep } induce T(X, T)-equivariant isomorphisms

pit H'(T, Dy )<" 5 HY(T, Vi)=" > H'(T, Vi{e, )"

Remark 8.2 By the discussion in Section 7.1, these isomorphisms respect decom-
position into +-eigenspaces as well as ey -isotypic components associated with neben-
type characters.

9 The Control Theorem

Let R be an absolutely irreducible affinoid E-algebra, let k € X(R), and suppose that
¢:R — E specializes k to x € X(E) as in Section 4.2. Let I, = ker ¢, be its kernel,
sitting in the exact sequence

(9.1) 0—I, — R E—>0.

Applying the exact functor - ®g D yields the exact sequence

~ —~ 81
O—>IK®E®—>R®ED¢—>E®E®—>O.

We have canonical isomorphisms E ® D = D and, by (4.6), R®g D = D(R). More-
over,
L ®: D=1, R®: D = I, &z D(R).
The image of I, ®g D(R) in R®g D(R) = D(R) is I, D(R). Thus, we obtain the exact
sequence
0 — ID(R) — D(R) -2 D(E) — 0.

Taking X (pZ, )-actions into account and observing that if ¢ specializes k to « as in
Section 4.2 then the induced map ¢: Dy, — D, is 2o (pZ, )-equivariant by Lemma 4.6,
we get the following theorem.
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Theorem 9.1 (cf. [4, Theorem 3.74]) If ¢: R — E specializesk € X(R) to x € X(E),
then ¢ induces the following (R, 2 (pZ,))-equivariant, topologically exact sequence:

9.2) 0—> I,Dy —> Dy —2> D, —> 0.

Suppose that R is a principal ideal domain, so that we may write I, = Rm,.. Then
(9.1) is identified with the exact sequence

(93) 0— R R E—0.

Applying the exact functor - ® ¢ D and arguing as above, we obtain an alternate form
of (9.2):

(9.4) 0— Dy =5 Dy -2 D, — 0.

We continue with the Hecke pair
(I,2) = (I (p"M,N), =P (p"MN, 1))

and the associated Hecke algebra T (T, ). Suppose for the remainder of this sec-
tion that R = SpQ where Q is an affinoid subset of X. Let 0 € X be such that
ord,nrd(¢) > 1and so that o acts completely continuously on Dy. Then by The-
orem 6.14 and Lemma 6.8, H' (T, Dy, ) admits a slope < i decomposition with respect
to [T'oT], after possibly shrinking O around k. (We do not reflect this shrinking in
the notation.) Thus, we have a TP (T, X )-equivariant decomposition

H' (T, Dy) = H'(T, Dy)*" @ H (T, Dy)™".

The cohomology group H'(T, I, D) lies in the middle of a five term exact sequence
coming from the long exact sequence in I'-cohomology associated with (9.3). The
other terms in this sequence have slope < h decompositions for reasons we have
already discussed. It follows that H' (T, I,Dy) admits a slope < h decomposition
with respect to [T'oT'] by Theorem 6.14. Moreover, the long exact sequence associ-
ated with (9.3) remains exact after passing to slope < h parts:

e H(T, LDy — HI(T, D)< 25 HI(T, D) — ..

Considering instead the long exact sequence associated with (9.4), we obtain the fol-
lowing long exact sequence of TP (T, 2)-modules:

(95) - — HI(T, D) 25 HI(D, D) 25 HI(T, D) — -
Suppose for the remainder of this section that ¥ = (k,¢,) is arithmetic of level
r > 1and that h < n,(k +1). Then by Theorem 8.1, there is a canonical T°(T, X)-
equivariant isomorphism
pei H (T, D) 5 HI(T, Vide, ).

It follows that, abusively writing p, to denote the composition p, © ¢, (9.5) is iden-
tified with

(9_6) oo — Hi(r,D)Sh i) Hi(l", @k)gh ﬁ) Hi(l“, Vk{ep})gh e,
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Vanishing criteria for the I'-cohomology of Vi {e, } are well known.

Lemma 9.2 H'(T, Vi{e,}) = 0 if one of the following conditions is satisfied:
*i>2,

*i=0,2andk >0,

e i=2,k=0andT is cocompact, i.e, D # 1, where D is the discriminant of B.

We finally come to the control theorem. Typically, it is applied when [ToT] is the
Up-operator, i.e., when o € X has reduced norm p. The U, operator has degree p
by [21, Proposition 3.33]).

Theorem 9.3  We can shrink Q around « so that
* R=0(Q) is a principal ideal domain,

o H(T,Dy)" =0fori#1,

o HY(T, Dy)=" is free of finite rank over R.

Moreover, the sequence

©7) 00— LH(T,Dy)" — HY(T, D))" 25 H(T, Vi{e, )" — 0

is exact if one of the following conditions is satisfied:

e k>0andh < nrer(k+1);

* k=0, h < nrer and h < ord, deg[ToT].

In particular, when [ToT] = U,, is the degree p operator U, with ny, = 1, this is always
true when 1< h < k + 1.

Proof Replacing Q) by a closed subdisk containing x, we can assume that R is a prin-
cipal ideal domain. By (9.6), the sequence

0 — LH' (T, Dy)*" — H'(T, Dy,)*" — H'(T, Vi {e,})"

isexact. Set H' := H' (T, Dk)ﬁh and write H,i for the localization of H' at I,.. Since I, is
a maximal ideal, H: /I, H. = H'/I,H" and H' /I, H' ¢ H' (T, Vi{e,})=" by the above
exact sequence. If i > 3, then H'(T, Vi{¢,}) = 0 by Lemma 9.2, so that H'/I,H' = 0.
Since H' is a finitely generated R-module, by Nakayama’s Lemma H_. = 0, and this
means that there exists s ¢ I, such that sH' = 0. Choose p € K such that 0 < |p| <
|s(x)|. Let R[s™'] (resp. H'[s™']) be the localization of R (resp. H') at {s"}. They can
be endowed with a seminorm as in [5, p. 233 Prop. 3], that depends on the choice of p
and makes p/s power bounded in R[s™']. Let R(s™!) (resp. H'(s™!)) be the completion
of R[s7!] (resp. H'[s7']). Then Q' = Sp R(s™!) c Q is an open affinoid domain such
that x € Q' (it represents the element x € Q such that |p| < |s(x)|, see [5, p. 281,
Prop. 4]) and R(s™') ® H' = H'(s™!) = 0 because the image of H'[s™'] = 0 is dense
in H'(s7!). By Theorem 6.14, R(s!) &g H' = H'(T, Dy )*" with k’ associated with
Q' ¢ Q — X, and we are finished with the case i > 3.

If k > 0, Lemma 9.2 together with a similar argument shows that we can further
assume H' = 0 for i = 0,2. It follows that (9.6) reduces to (9.7). Localizing (9.7)
at x, we see that H.. is 7,-torsion free and hence free, since R, is a principal ideal
domain. Since the property of being free is Zariski-open, there exists s ¢ I,c such that
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H'[s™'] is a free R[s™']-module. It follows that H'(s™!) is a free R(s™')-module and
Q' =SpR(s™!) c Q is an open affinoid domain such that x € Q" and R(s™) &y H' =
H'(s™') is a free R(s™')-module. The claim when k # 0 follows.

Now suppose that k = 0, h < nrer and h < ord,(deg(T'oT)). Since the action of
[ToT] on H'(T, Vi{e,}) is Eisenstein for i = 0,2, i.e., acts through the degree char-
acter, we conclude that H'(T, Vi {e,})=" = 0. An argument similar to that presented
above shows that we can assume H' = 0 for i = 0,2, and the rest follows as in the
previous paragraph. [

Remark 9.4 By the discussion in Subsection 71, the maps in (9.7) respect decom-
position into +-eigenspaces as well as ey -isotypic components associated with neben-
type characters. In particular, we get a T2 (T, 2)-equivariant exact sequence

0 — LHY(T, Dy)(en)®" — HY(T, Dy.)(en )"
L5 HY(T, Vide,p)) (en) ™" — 0
such that H'(T, Dy ) (en )*=" is alocally free R = O(Q)-module in an affinoid neigh-

bourhood Q) of an arithmetic weight x € N /et

When k corresponds to the inclusion Q ¢ X of an affinoid in the weight space in
the weight space, we will sometimes write D, for Dy. As explained in Section 71,
HY(T,Dg)=" (resp. HY(T, Dq)(ex)*=") is naturally an O(Qy)-module that is a lo-
cally free in a suitable neighbourhood of any arithmetic

>h/ng-1 >h/n,—-1 . ny>h/ne—1
keN 'y (resp. x € N2/ « NJHMe™0)

(see Remark 2.4).

10 Abstract Eigenvarieties

Suppose that M is a finitely generated module over a noetherian ring A and that T =
Ty c Endy M is a commutative A-subalgebra, automatically finitely generated over
A. For every (commutative) A-algebra R, we can consider the canonical morphisms
of R -algebras

R®s T — R®4Endg M — Endr(R ®4 M).

We set

Tr:=R®, T, Mp:=R®4 M,

Tgr ::im(TR—>EndR(R®AM)), AR ::ker(TR —»TR),
and define dual modules

D(R) := Hom_aig(T, R) = Homp_aig(Tx,R),  D(R) := Homg_q1g(Tr, R).
If A € D(R), we define
M) = Mg := {m € Mg :tm = A(t)mforall t € TR}
= () ker (t—A(t): Mg - Mg).

teTr
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Elements of the set
E(R):={AeD(R): My #0}

are called systems of eigenvalues occurring in Mg.

Lemma 10.1 The following facts hold:

(i) IfRisaflat A-algebra, then Ty = Tk.

(i) IfR = Afaisa quotient of A, then (R/4)" = 0, with d = dy depending only on
the A-module M.

(iii) The identity E(R) = D(R) holds under either of the following conditions:
* R=Kisafield.
* M is a flat A-module and R is an integral domain.

Proof (i) Since M is finitely presented and R is A-flat,
R®,Endp M = EndR(R R4 M)

Furthermore, since R is a flat A-algebra, the inclusion T ¢ Endg M induces an inclu-
sion R®4 T c R ®4 Endy M.

(ii) When R = A/a, we have Tg = T/aT and Mg = M/aM. Suppose that t € T/aT
is zero in End,/q(M/aM) and let t € T be a lift of £. To say that the image of ¢
is zero means that tM c aM. Suppose that M is generated by d elements. Since
t € T c Endg M, Nakayama’s Lemma implies that the relation

a4t ay t+agwitha; ea’ ca

holds in Endg M. In particular, t € aT and ¥ = 0in Tg. In other words, (Raja)? =0.

(iii) If R is a field, then My is R-torsion free. Similarly, if R is A-flat, then My is
R-flat and, hence, R-torsion free. Suppose that A € E(R). We first claim that A: T —>
R factors through Tr. To see this, choose t € £z and a nonzero m € M,. Then
0 = tm = A(t)m, implying A(¢) = 0 by the R-torsion freeness of Mg. Thus, A factors
through Ty = Tr/&g, showing that E(R) c D(R).

Let K be the fraction field of R. Since My is R-torsion free, Mp ¢ M. The inclu-
sion R c K and the identification K ® Tr = Tk yield

D(R) = Hompg_1(Tr, R) c Homg_q1g(Tr, K) ¢ Homg_q1g( Tz, K)
= HomK—alg(TK’ K)

Let A € D(R) and write A again to denote its image in Hom k-alg( Tk, K). Suppose that
Mg, # 0 and choose a nonzero element x € Mg ). Writing x = m/s with m € Mg
and 0 # s € R, it easily follows that m € My ;. Then 0 # m = sx € My is such
that tm = A(t)m for every t € Tg. Thus, it suffices to prove that, given a K-algebra
T < Endg(M) acting on a finite dimensional K-vector space M and a K-algebra
homomorphism A: T — K, we must have M, # 0. Being a commutative Artinian
algebra over a field, we can write T = @, Ty as the direct sum of its localizations at
maximal ideals. There is a corresponding T-module decomposition M = @, My,.
Let m = ker A, so that A factors through T,. Since T c Endg (M), the equality My, =
mM,, (yvielding M, = 0 by Nakayama’s Lemma) would imply T,, = 0. Hence, we
have mM ., ¢ M, and there is a minimal # = n,, such that m™ ! M., = 0. The action
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of Ty on 0 # m" My, ¢ M factors through A and any non-zero x € m" M, yields an
eigenvector such that tx = A(t)x. [ |

Remark 10.2  Suppose that R is an A-algebra that is the composition of morphisms
as in Lemma 10.1(i) and (ii) taken in any order. It is easily checked, using Lemma
10.1(i) and (ii), that ﬁ‘fz = 0 with d = d) depending only on M as an A-module.

Let p be a prime ideal of A and set k(p) = A, /pA,.

Proposition 10.3  Suppose that R = k(p) := Ap/App is a residue field at p € Spec(A)
ot that M is a flat A-module and that R is an integral domain such that the A-algebra
structure on R is the composition of morphisms as in Lemma 10.1(i) and (ii) taken in
any order. Then E(R) = D(R).

Proof If R = k(p) is a residue field at p € Spec(A), then A - A, — k(p) is the
composition of a morphism as in Lemma 10.1(i) followed by a morphism as in (ii).
Therefore Ty — Tg has nilpotent kernel in both cases (Remark 10.2). Since R is
reduced, D(R) = D(R) and, by Lemma 10.1(iii), D(R) = E(R). [ |

Write f:A — T for the structural morphism, and let R = k(p) with its natural
A-module structure. Then T,y = Ty/pT, and My(py = M, /pM,. The maximal
ideals of Ty (p) are in natural bijection with the primes ‘B € Spec(T) such that p =
£71(*B). We can write Ty (p) as the product of its localization at maximal ideals

Tiy = @ Trepyp-
=B Tew.w

There is a corresponding Tj(,)-module decomposition

My = & Mito.p-

Note also that, by Remark 10.2, the maximal ideals of Tk( p) arein bijection with those
of Ti(p). In particular, we can also write

Ty = & Trpw

where, abusing notation, we denote by T,y the localization of Ty at the prime
corresponding to 3. Of course, Tk(p),m surjects onto

Ti(p)p © Endi(p) (Mi(p),p)>

and the residue fields of Ty, and T (y) 3 are identified with k() := Top/ Typ'B.
Suppose that Ty, acts semisimply on My ()3, i.e. Ti(p)q = k() is a field.
Then Mk(p),‘n = Mcp/mMgp and

(10.1) dimyp) (Mi(py.p) = [K(B):k(p) ] dimy () (M /BMy).

The following notion is useful in studying the ramification of the map A, — Ti;.

Definition 10.4 B € Spec(T) is said to be a multiplicity-one point when T (y)q =
k() is separable over k(p) and dimy () (M (py,3) = [K(B) : k(p)].
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Proposition 10.5 If A, — Ty is unramified, then Ty = k() is a separable
k(p)-algebra. Conversely, if B € Spec(T) is a multiplicity-one point, then A, — Ty is
unramified.

Proof Note that T c Endr(M), and M is finitely presented, so Ty ¢ Endr,, (Msp).
By Nakayama’s Lemma, My can be generated by

dpyp = dimy () (Mep /B M)

elements (as a Toz-module). Set

Sepyp = ker(Tegpy 3 = Tro)m)-
The proof of Lemma 10.1(ii) with (A,a, T,M) = (Ty,pTy, Ty, M) shows that

dy/p _
ﬁ‘n/p =0.

To say that A, — Ty is unramified is to say that Ty, = k() is a separable
k(p)-algebra, so Ti(p)p = Tk(p),3 is a separable k(p)-algebra. Conversely, let 33 be
a multiplicity one point. By (10.1), dg/p = 1, so that Ty(pyp = Th(pyp = K(B) is
separable over k(p). [ |

Remark 10.6  Suppose R = k(p) so that E(k(p)) = D(k(p)) (Proposition 10.3).
If A € D(k(p)), then M) # 0 and 3, := ker(A) is a prime ideal of Spec(T) such
that p = f7'(B1). Since A: Ty(,) — k(p) is a morphism of k(p)-algebras, we have
k(Br) = k(p). Furthermore, My () sy, = My (see the end of the proof of Lemma
10.1(iii)) and to say that 93, is a multiplicity one point is equivalent to saying that
dimk(p)(MA) =1

Suppose now that X is a locally Noetherian rigid analytic space, M is a coherent
sheaf of Ox-modules, and T is a sheaf of commutative subalgebras of Endp, M. De-
fine

(C =5 X) =Spy, T.

Let XM (resp. XT) be the maximal subspace of X such that M|y is a sheaf of

flat O ymn-modules (resp. T|xra is a sheaf of flat, commutative O xr-a-algebras). Then

XMAXTA and X = XM n XT1 are open in X. Setting C*1 = Sp,, o Tlxen,
X

for = = M, T, or nothing, we have a canonical isomorphism C “fl = Cxyx X*f and

w restricts to a finite, flat map C* 1 — x*f,

Corollary 10.7

(i) The formation of the covers w: C — X and w: C*7' — X*7' commute with flat
base change Y — X.

(i) If x € X(k(x)), then there is a canonical bijection between points of the fibre
Cx(k(x)) and the set of systems of Ty (x)-eigenvalues occuring in Myy).

(iii) IfQ = SpR c XM is an affinoid and R is an integral domain, then there is a
canonical bijection between the set of sections s : Q — CMS of w and the set of systems
of T(Q)-eigenvalues occuring in M(Q).

(iv) Ify € C (resp. y € CT) is a multiplicity-one point, then w is unramified (resp.
étale) at y.
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(v) Let x € X and let y € cl(k(x)) be a multiplicity-one point such that w is
integral in a neighbourhood of y. Let A, be the system of Ty(.)-eigenvalues occuring in
My (xy associated with y by (ii). Then:

* There is an affinoid neighbourhood Q = Sp R of x and a unique section s: Q — C' of
w such that s(x) = y.

o If A, is the system of T (Q)-eigenvalues occuring in M(Q) corresponding to s by (iii),
then A, is equal to the composite

T(Q) 25 R 25 k(x),

and A; is the only system of T(Q))-eigenvalues with this property.
o The eigenspace M(Q),, ¢ M(Q) is a free R-module of rank one.

Proof Part (i) follows from Lemma 10.1(i). Parts (ii) and (iii) are consequences of
Proposition 10.3. In (iv) we just have to prove that the morphism is unramified, since
w: CT & XTH s flat by construction. To see (iv), let y € C;, let A; — T; be the
morphism induced by w, and let A; x — T;,, be its localization. This localization
is unramified by Proposition 10.5 and induces Ox,x — Oc,, on the completions by
(5, p. 298 Prop. 3]. Hence, Ox,x — O,y is unramified. The existence and uniqueness
of s in (v) follows from the étaleness of w at y (which is (iv)). It also follows from
(ii) and (iii) that this is equivalent to the existence and uniqueness of a system of
eigenvalues A having the required property. ]

10.1 Maps Between Eigenvarieties

Let (T", M"), with h = 1,2, be two pairs with M" a coherent sheaf of locally free
Ox-modules and T" ¢ Endo, M h a coherent subsheaf of locally free commutative
Ox-subalgebras. We assume that there exists a commutative ring T and a cover X =
U; Q; by open affinoids such that, for every i, there exists a surjective homomorphism
of O(Q;)-algebras O(Q;) ®z T - T"(Q;). We set (C"-5X) = Spo, T".

Definition 10.8 A subset Z c X is called Zariski dense if, whenever Z c Y c X and

Y is an analytic subset, we have Y = X and if, moreover, the same property holds for
Z n Q c O when restricting to an open affinoid subdomain Q c X.

—h
Ift € T and x € X, we let t" be the natural image of ¢ in Tixy © Endk(x)(M,’z(x)).
We leave the proof of the following proposition, an adaptation of [6], to the reader.

Proposition 10.9  Suppose the Jacobson sheaf of ideals of Ox is trivial. Let Z c X be
a Zariski dense subset such that, for every x € Z and t € T,

det(T — t2) divides det(T - t.).
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in the polynomial ring k(x)[T). Then there is a unique closed immersion C%; — C! 4
of rigid analytic spaces over X such that the diagram

Ox(Q) ®7 T

BN

TI(Q)red I TZ(Q)red

commutes for every open affinoid Q).

11 The Case of Shimura Curves

Let h > 0. We continue working with the Hecke pair
(I,Z) = (IP(p"M,N),2P(p"MN,1)).
By Theorem 6.14, we can find an admissible cover
:X::UQ,', QiZSpRi
i
by open affinoids such that the spaces H'(T, D, ) admit slope < h decompositions

with respect to Up. As explained at the end of Section 9, H'(T, Dg,) is naturally an
0(Q;,n), where Q; y is the inverse image of Q; in Xy and, by Remark 2.4,

Xy = U Qi N> Q; N =SpRin,
is an admissible cover. Set
M; = H(T, Dg,)=",
Ti = Tg o (p"M,N)<" =im (T%, (p"M,N) —> Endp, ,(M,)).

Proposition 11.1

(i)  The correspondence Q; N = M; extends to a coherent sheaf M of O~ -modules.
(ii) The correspondence Q; n — T; extends to a coherent sheaf T c Endg g M of
commutative O, -algebras.

Proof The glueing conditions [5, $9.3.3] follow directly from the compatibility of the
formation of slope < h decompositions with flat base change and Lemma 10.1(i). M
Definition 11.2  The rigid analytic space
D <h ._
Cer (M’N) o SpOxN‘T
is called the slope < h eigencurve associated with the Hecke pair (T, Z). It comes
equipped with a finite weight map
wt: G2 (M, N)" — Xy — X.

Replacing the modules H'(T, Dg,)=" with the modules H'(T, Dq,)(en)*<" and

assuming that E > yy, we find in a similar way that

wt: 2 (M, en )" — X, = X,
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and we have, over E > uy;,

wtCO(M,N)*" = || CP(M,en)*" — || Xy =Xn-

eneAn,ee{+1} eN€AN

The following result is now a consequence of Theorem 9.3 and Corollary 10.7.
Corollary 11.3  Ifx = (k,€p,en) € NJA (resp. « = (k,ep,en) € N2~ N2IY),
the set of E-points of the fiber of CP (M, N)=" (resp. P (M, N)*=") is in a natu-
ral bijection with the E-systems of Hecke eigenvalues occurring in H'(T, Vi{e,})="
(resp. H'(T, Vi{e, }) (en)®=" = H'(T, Vi{epen })<M).

We give the following concrete application of Corollary 10.7.

Corollary 11.4 (Existence of cohomological p-adic families) Let k = (k,€,,€en) €

N,,n be an arithmetic weight. Suppose ¢ € H'(T, Vi{e,})=" is a nonzero Hecke eigen-

vector with associated system of eigenvalues Ay:T(X,T) — E. Suppose, further, that

one of the following conditions is satisfied:

(i) ordy(A¢(Up)) < k+1and dimg H' (TP (p"N), Vi(E){ep})a, = 1.

(i) r = 1and ¢ is an MN-new cuspidal eigenvector, ord,(Ag(U,)) < k +1 and
As(Up)* # A ((p))P*""

Then there exists an open E-affinoid neighbourhood Qn c Xy of « such that

HY(T,Dg)=" is a free O(Qn)-module of finite rank, and there exists an Hecke eigen-

vector ® € H'(T, Dq)=" such that the following hold:

(i)  pu(D) = pwhere p isasin (9.7). If®' € H(T, D )=" another Hecke eigenvector
with p(®") = ¢, then @' = a® with a € O(Qy) such that a(x) = 1.

(ii) IfAo is the system of Hecke eigenvalues attached to ®, then H' (T, Dq )iz is a free
0(Q)-module and

rankg () H'(T, Dg)iz =1
(iii) Ifk" = (k', €}, €y) is an arithmetic weight such that k" € Q and k' > h — 1, then
pu(®) £0.

Remark 11.5 Note that, ¢ being an eigenvector, we have ¢ € H'(T, Vi{e, }) (en) <"
for some (en, €) and A4 ({p)) = en(p). Then

H'(T, Vi(E){ep})3; = H'(T, Vi(E){ep}) (en) ",
H'(T, Dq)5h = H'(T, Do) (en) 55",
Furthermore, A4 satisfies the second property in Corollary 11.4 if, e.g., ¢ is cuspidal

and MNp-new or is a p-stabilization of an N-new cusp form with slope < h.

Proof Ifr=1and¢ € H'(T, Vi{e,}) = H is an MN-new cuspidal eigenvector such
that Ay (U,)? # Ag({p)) p**, then dimp H,, = 1as explained in [7, B.5.71].

Now let r > 1be arbitrary. Assume that dimg H,, = 1and that ord,(A4(U,)) <
k + 1. Then ¢ gives rise to a point over E and, by Remark 10.6, A4 corresponds to
a multiplicity one point. By Corollary 10.7(v), there is a lift A of A occurring in
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HY(T,Dg)<". Let 0 # ® ¢ H'(T,Dq)*" be a corresponding eigenvector. Since
dimg Hy, = 1, we can assume that p,(®) = ¢, scaling @ if necessary. It follows
from Corollary 10.7(v) that H'(T, Dg)iz is free of rank one. That ®’ = «® when @’
is another eigenvector lifting ¢ easily follows from (9.7).

Let e be a basis element of HI(F,DQ)i’;, so that ® = ae for some a € O(Q)
with a(k,e,) # 0. By the Weierstrass Preparation Theorem we can assume that « €
O(Q)* after shrinking Q in an affinoid neighbourhood of (k,€,). Then p.(®) =
a(k',€},)pxr(e) # 0, because py(e) # 0 by (9.7). [ |

In the next section we will focus for simplicity on the case r = 1, and we will write
@ = C,. If C=" is one of the curves CP (M, N)®=" or CP (M, ex)*=" we will write
eshxfl /505 to denote the corresponding flat loci. We remark that, since the weight
space Xy is covered by open affinoid domains Q0 = Sp R such that R is a principal
ideal domain, we have

esh,ﬂ/xg _ eSh,M-fl/xl\N/I-fl c eSh,T—ﬂ/x;\"’-fl c esh/xN

for our eigencurves.

12 p-adic Jacquet-Langlands Correspondences

12.1 The Eigencurves of Coleman-Mazur and Buzzard

The following theorem, summarizing the construction of eigencurves parametrizing
systems of Hecke eigenvalues occurring in spaces of overconvergent p-adic modular
forms, is the outgrowth of Coleman’s theory of orthonormalizable p-adic Banach al-
gebras and his corresponding functional analytic study of spaces of overconvergent
modular forms over affinoids.

Theorem 12.1 (Coleman-Mazur, Buzzard)
(i) There is an admissible, open, affinoid cover of X = U Q; such that the spaces

M; = s, (L(MD) n Ty (N)) """

of D-new p-adic families of overconvergent cusp forms over Q; admit slope < h decom-
positions

st (To(MD) Ty (N)) "™

) D-new,<h ) D-new,>h

S4, (To(MD) NTy(N) ® S§,, (To(MD) nTy(N)

with respect to U, such M; := Sgi(I‘o(MD) NI (N))Pmew=<h s an R; n = Sp(Qin)-
module of finite rank, Q; n being inverse image of Q; in Xy.
(ii) Let

Ti _ T}IZ,;N (pMD, N)D-new,sh
=im (Tr,(T'(pMD,N), 2, (pMND,1)) —> Endg,, (M;)).

Then the correspondence Q; n + T; extends to a coherent sheaf T of commutative Ox, -
algebras.

https://doi.org/10.4153/CJM-2015-062-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2015-062-x

p-adic Families of Cohomological Modular Forms 995

(iii) The slope < h Coleman-Mazur-Buzzard eigencurve
Comp(MD, N)Pemsh .= SPo., 7
comes equipped with a finite, flat weight map
wt: Cemp (MD, N)Prew<h _, x — X,

When D = 1, we abbreviate this to Copp(MD, N)<". In a similar way, one
can consider, for an admissible cover X = U; Q; by open affinoids Q;, the spaces
M ;“)i (MD, N) of p-adic families of overconvergent p-adic (not necessarily cuspidal)
modular forms. A similar construction applies, giving rise to a weight map

wt: MCMB(MD, N)Sh —> DCN — X.
When E > uy, we can define the ex-components
GCMB(MD,eN)Sh and MCMB(MD,GN)Sh

for ey € Ay and the above curves decomposes as the disjoint union of these
en-eigencurves.

We apply Proposition 10.9 as follows. Thanks to Theorem 9.3 (see also the dis-
cussion at the end of Section 9) we know that N; y c DC%, where x?v = I)Cg h.M.D
is the flat locus defined by any one of the eigencurves C° (M, N)*<" /Xy, depend-
ing on h, M, and D. Let h > 0 and let Z := fol’\,’l. Then Z n Q c Q is infi-
nite for every open affinoid Q c X&. Since Oy, (Q) is a principal ideal domain,
an easy application of the Weierstrass Preparation Theorem shows that Z c X' is
Zariski dense. Let Copp(MD, N)P-new-<hfl /il (resp. Mcmp(MD, N)< /X1 ) be
the pull-back of Coyp(MD, N)Pewsh 10y (resp. Mcms(MD, N)<"/Xy) to this
flat locus. By construction, the conditions required for the application of Propo-
sition 10.9 are fulfilled over Xf,. More precisely, take T := T'(pMD, N), so that
Oxy(Q)®z T = Téx,\,(ﬂ) (pMD, N). We have the following surjections.

(a) By definition,
Oy (Q) @2 T > Ty, (a)(PMD, N)D-new.<h,
(b) Letko:Zj; v = Oxy ()™ be the weight corresponding to Q c Xy. Noticing
that ko (1) € Oy, (Q)* and that W7 = ko (1) on H' (TP (pM, N), Dq) because
7 = I and D has central character kg for every I | D, we have
‘J’be(Q)(pMD,N) o ‘I{OXN(Q)(pMD,N)

Ox( @) @2 > Ty (11D) ~ (W2 —ka(D)1] D)

— TD(pM, N)Sh,

where the isomorphism jP! is given by (7.1).

Suppose first that D # 1. The comparison Theorem 9.3, together with analogous com-
parison results for the Coleman-Mazur-Buzzard eigencurve Coyp(MD, N)P -new,<h
imply that the fibers over (k, €y, €en) € Z are identified, respectively, with

H' (I’ (pM,N), Vk(E))(e;eN)i’Sh and Sy, (I'(pMD, N), E)(e;IeN)D'“eW’Sh_
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By the Jacquet-Langlands correspondence, they are isomorphic as T-modules and
Proposition 10.9 applies. Suppose now that D = 1. In this case, we replace
Cemp(MD, N)=H with Mceys (MD, N)=" to take into account the presence of Eisen-
stein cohomology in the fiber of €2 (M, N)*=<" over (k, €,, ex). Then we replace the
Jacquet-Langlands correspondence with the Eichler-Shimura isomorphism. Sum-
marizing, we have proved the following result.

Theorem 12.2 If D # 1, there is a canonical DC];\Z, =X

N.n.v,p isomorphism of rigid
analytic spaces

GD(M, N):!:,Sh,ﬂ ~ GCMB (MD, N)D—new,gh,ﬂ’

red red
D +,<h,fl ~ D-new,<h,fl
e (M’eN)red ~ GCMB(MD,GN)red .

If D = 1there is a canonical DCJZ,—isomorphism of rigid analytic spaces

,<hofl <h.fl ,<h,
UM, N)=S" » Mepg(MD, N), 1 (M,en) 25" « Memp(MD, ey)

red °

<h,fl
red *

As a concrete manifestation of the Jacquet-Langlands correspondence stated in
Theorem 12.2, we give the following result.

Corollary 12.3  Let F(q) = ¥.,512,q" € SL,(MD, ex)P ™ =" be a D-new Q-eigen-
family of cuspidal forms with system of eigenvalues Ag such that D is squarefree and

divisible by an even numer of primes. Set @' := Q n I)CJ;\II, where DC{\II = DC]Z] wop- There
exists and eigenfamily ® € H (TP (pM, N), Don) (en ) =" with system of eigenvalues

Ao = Ar.

Proof We assume D # 1 for simplicity. Since Q! is reduced,
GD(M, eN)i,sh,ﬂ(Qfl) _ GD(M, eN):ih’ﬂ(Qﬂ)’
GCMB (MD, eN)D-new,Sh (Qﬂ) _ GCMB (MD, eN)ﬁ-(;leW)Sh (Qﬂ)
Hence, by Theorem 12.2,
GD(M, eN)i,Sh,ﬂ(Qﬂ) _ GCMB(MD> eN)D-new,gh (Qﬂ)

The eigenvalue Ap gives rise to a section of the weight map, hence an Qf'-point in
Cemp(MD, ey )Prew<t (1), The claim follows from Corollary 10.7(v). [ |

12.2  Moving Between Cohomological Families

Suppose D = D'M’ is a factorization of D with D’ divisible by an even number of
primes. By our running assumption that D is squarefree, D’ is too and (D', M’) = 1.
We consider the groups/semigroups:

I =T?(pM,N), ' =P (pMM', N),
2 = 2P(pMN,1), > =3P (pMM'N,1).
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Let G2/ (MM’, N)M'mew:<h _, X be the eigencurve obtained from the procedure
described in Section 11 with H'(I”, Dg, )™ <k and

TRi,N (PMM,> N)M'-new,sh = im(TRi,N (PMN” N) - EndRi,N HI(F,> DQ;‘ )M'—new
in place of H'(I", Dg, )" and Tx, y (pMM’, N)=", respectively. Take
T:= T (pMM’, N)
so that Ox,(Q) ®z T = TQ;N(Q) (pMM', N'). We have the following surjections.
(a) By definition,
OxN (Q) ®7 T > T(lng(Q) (pMM,, N)M,*new’Sh.

(b) Letko:Zj v = Ox, ()" be the weight corresponding to Q ¢ Xy. As above we
have

oy (MM N)

(T2 ~ka(D):1| M)
P2 T, (PMN)

(W2 ko (1):1| M)

OxN(Q) ®7 T >

s TD(pM, N)Sh,

where the isomorphism ;2P s given by (7.1).
Let X be the intersection of the flat loci defined by the eigencurves CP(M, N)=<"
and G2 (MM, N)M'mew:<h depending on (h, N, M, M’, D, D’) and containing the
arithmetic weights N i};\,_l. The following p-adic Jacquet-Langlands correspondence
now follows from Proposition 10.9 and the above discussion.

Theorem 12.4  There is a canonical X{f,—isomorphism of rigid analytic spaces

CP (M, N)<M = 2" (MM, NYM newshifl,
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