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THE STABLE AND UNSTABLE TYPES
OF CLASSIFYING SPACES

HYANG-SOOK LEE

ABSTRACT. The main purpose of this paper is to study groups Gi, G, such that
H*(BGy, Z /p) isisomorphic to H*(BG,, Z /p) in U, the category of unstable modules
over the Steenrod algebra A, but not isomorphic as graded algebras over Z /p.

0. Introduction. Let G be afinite group. A classification of the stable homotopy
type of BG is given by Martino and Priddy’s paper [4] in purely algebraic terms. It is
known that the stable type of BG does not determine G up to isomorphism; however [4]
showsthat for each prime p, the local stabletype of BG dependson the conjugacy classes
of homomorphismsfrom p-groupsQ into G. One applicationto the classification theorem
in [4] is the case G, G, arefinite groups with normal Sylow p-subgroups Py, P,. Then
BG; and BG; have the same stable homotopy type, localized at p, if and only if P; >~ P,
(say P) and W, (P) is pointwise conjugate to W, (P) in Out(P). The paper [4] givesthe
example of groups G1, G; illustrating this theorem. For these groups H*(BG1, Z /p) and
H*(BG,, Z /p) areisomorphic in U, the category of unstable modules over the Steenrod
algebra A, but are not isomorphic in K, the category of unstable algebras over A. The
goal of this noteis to exhibit groups G1, G such that H*(BG1. Z /p) and H*(BG;. Z / p)
are isomorphic in U, but are not even isomorphic even as graded algebras over Z /p.
These algebras have the added advantage of a much smaller Krull dimension than those
of [4].

Section One gives some information on the classification of the p-local stable ho-
motopy type of BG. Thisincludes the main classification theorem and its application in
case of finite groups with normal Sylow p-subgroups. We give an example of two finite
groups with stably homotopy equivalent classifying spaces localized at p > 2. Then
in Section Two, we demonstrate the cohomology of these classifying spaces which are
necessarily isomorphic in U, are not isomorphic as graded algebras over Z /p. To show
this, we calculate the invariant elements of their cohnomology groupsin dimension 3 and
6, and then we compare cup productsin dimension 6 so that we obtain the result that two
cohomology rings have different algebra structures.

1. A classification of the stable type of BG. Let G be a finite group. We denote
BG aclassifying space of G, which has a contractible universal principal G bundle EG.
With G. Carlsson’s solution of the Segal conjecture it has become possible to determine
the complete p-local stable decomposition BG ~ X; V X, V - -+ V X,. The suspension
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spectrum of BG and its wedge summands have played an important role in homotopy
theory. In paper [5], the authors give a characterization of theindecomposablesummands
of BG in terms of modular representation theory of Out(Q) modulesfor Q < Pthe Sylow
p-subgroup of G. Thisisthe characterizationwhich is used to study the stabletype of BG
in [4]. It is known that the stable type of BG does not determine G up to isomorphism.
A simple example [due to N. Minami] is given by Q4, x Z/2 and Dy, x Z/4 where
p is an odd prime, Qg is the generalized quaternion group of order 4p and Dy, is the
dihedral group of order 2p. It is even worse for p-local classifying spaces since BG and
BG/ Oy (G) have isomorphic mod p homology and hence equivalent stable types. Here
Op(G) is the maximal normal subgroup of G of order prime to p. But there is a good
result in this direction by Nishida.

THEOREM 1.1[6]. Let G1, G, befinite groupswith Sylow p-subgroupsPy, P,. If BG;
and BG; are stably equivalent localized at p, then Py >~ P,. ]

However the following classification theorem which is established by J. Martino and
S. Priddy gives us a necessary and sufficient condition.

THEOREM 1.2 [4]. For two finite groups G1, G, the following are equivalent.

(1) Localized at p, BG; and BG; are stably equivalent.

(2) For every p-group Q, FyRep(Q.G1) =~ FpRep(Q, G,) as Out(Q) modules.
Rep(Q. G) = Hom(Q, G) /G with G acting by conjugation.

(3) For everyp-group Q, Fy Inj(Q, G1) = Fp Inj(Q, Gy) as Out(Q) modules.
INj(Q. G) < Rep(Q, G) consists of conjugacy classes of injective homomorphisms. =

This classification simplifies if G has a normal Sylow p-subgroup. Then the stable
homotopy type depends on the Weyl group of the Sylow p-subgroup.

DerINITION 1.3. Two subgroups H, K < G are called pointwise conjugate in G if
there is a bijection of sets H —— K such that a(h) = g;, *hg, for g, € G depending on
heH. n

Alternately it is easy to see that an equivalent condition is |H N (g)| = |K N (g)| for
al g € G, where (g) denotesthe conjugacy class of g. We assume G hasanormal Sylow
p-subgroup P. We set G = P x H for p’-group H by Zassenhaus'stheorem, and G = P-H,
HNP = {1}. Let Wg(P) denote the Weyl group of P < Gi.e. Wg(P) = Ng(P)/P - Cs(P)
where Ng(P) is the normalizer and Cg(P) is the centralizer of P in G. Then Wg(P) <
Out(P).

THEOREM 1.4 [4]. Suppose G; and G, are finite groups with normal Sylow p-
subgroupsP; and P,. Then BG; and BG, have the same stable homotopy type, localized
at p, if and only if P; =~ P, (& P say) and Wg, (P) is pointwise conjugate to W, (P) in
Out(P). n

To seethe relation between Theorem 1.2 and 1.4 refer to the paper [4].
Let usgive G;. G, suchthat BG; is stably equivalent to BG; localized at p > 2.
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ExAMPLE 1.5. Letp, | bedifferent odd primes suchthat p=1 (mod I). We set P be
an elementary abelian p-group of rank 12, i.e. P = (Z/p)'z. Then OutP = GL2(Fp). Let
H/ = (Z/1)® and H} = U3(Fy) so that H} is not isomorphic to H} where Us(Fy) is 3 x 3
upper triangular matrices over Fy. Let Qy, Q. be the subgroups of H7, H) given by

Q= <(1~ Of 0)>

sz</é ' cl))>

0 01

ThenuptoisomorphismQ; =~ Q(= Z /1) (i = 1.2). Thustheinclusion p: Q — GL1(Fp) =
F; isal-dimensional representation where Fisacyclic group of order p— 1 which hasa
generator . (In fact thisisaprimitive p— 1-th root of unity.) Now | | p — 1, hencewe set
|-k =p—1for somek.Then(PT_1 = ¢k = wisaprimitivel-th root of unity. Wedefinep(q) =
w where q is the generator of Q. Then p induces representations f; = Indgi(p): Hi —
GL2(Fp) and f> = Indgé(p): H; — GL2(Fp). These induced representations are defined
by the following composition maps.

’ o 12
(*) fi = Indg () : H = Q" x % 2 GLi(Fp)” X 5 — GLe(Fp)

a 21
h—= (@ G 0) = (p(@). ... p(G2). 0) — Tz

wherefor fixedi = 1, 2 we define g € Q and o € 2 by choosing coset representatives
{sek=1,.... 12} for H/ /Q and then setting hs, = S,490k. T7 isthe1? x 12 matrix with
the p(q;)’s replacing the ones of the permutation matrix o in GL 2(Fp).

Forh e H{, hs. € sQforsomes e R (1 <i <2, 1<j.k< 12) where R; is a set of
coset representativesof Hf / Q, hencethere existso suchthat o(k) = j and hs, = s, 0 for
some g € Q. Here s, and g are uniquely determined. Thus « is injective. Therefore
the induced representations f; (i = 1,2) are injective. Now we set f1(H;) = H; and
f2(H5) = Ha. These groups Hi and H, act on P. It follows that G; = P x H; (i = 1.2)
are not isomorphic and satisfy Oy(G;) = 1. This implies H; 1 Cg (P) = {1}. Thus
W, (P) = P- Hi /P - Cg (P) = H; /Hi N Cg (P) = Hi. Now we need to show that H; is
pointwise conjugate to H, in GL2(Fp).

If M isanm x np matrix and N is an mp x n, matrix, then we note that the tensor
product of M and N is a matrix of size mym, x nyn,. For agiven matrix M, we denote
wM by M,, for somew € F,.

Let h; = (1,0,0), h, = (0,1,0) and h; = (0,0, 1) be the generators of Hj. Then
by the representation map (x), we get the generators fi(h}) = 1 @ 1, fi(h) = | @ M,
fi(h) = M@ |, wherel isan| x | identity matrix and M isthe| x | permutation matrix
of (12- - - I). We set the images of the generators hy., hy, hs. Therefore H; is generated by
(h1, hy, hg).

https://doi.org/10.4153/CMB-1997-040-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1997-040-4

344 HYANG-SOOK LEE
Let

_ /101, _ /110 /100
h’l:(o 1 0). h’zz(o 1 0) and hg:(o 1 1)
0 01 0 01 0 01

be generators of Hj. Here E’l [r_l’2 _’] Then, similarly, we obtain the generators
hy =1®@l,,hp =D®M,hg = M@, where D is an | x | diagona matrix with
w, w2, ..., 1 on the diagonal. We also have hy = [hy. hg]. Thus H; is generated by

We_claum H; is pointwise conjugate to Hy in GL2(Fp). First we notice hy = hy,
hs = hs. Let J be a subgroup generated by (hs.hg) in Hi. Thenforany h € J, (I ®
)~th(l ® 1) = h € H,. Now we consider the elementsin H; — J and H, — J. For the
glement h € Hy — J, his of the form W*(I @ M)(M! @ I) = WM @ M') for some
1<i<Il—-11<j, k<1 Alsofor the element h € Hy, — J, h is of the form
KO MM @1) =KD @ MYM @ 1) = KD'M @ M) forsomel <i <1—1,
1<j, k<L

We show that M @ M' is similar to D'M! @ M' for eachi, j. First it is enough to show
that Mi is similar to D'MI. Here Mi is also a permutation matrix and D'M! is a matrix
replacing ones of Mi by o', w2, ..., 1. Then both Mi and D'MI have the same
characteristic polynomial f(t) =t' — 1 = 0. To seethis, let A € Fp be an eigenvalue of
M. Since Ml is a cyclic permutation matrix of order I, A' = 1 and X is an | th root of
unity. (i.e. X isaroot of t' — 1 = 0.) Similarly, we can see (D'M})' = I, since

(D'M))' = DMID'MI - .. D'M
= D'(MD'M)(MIDM~3). .. (M(-DIDi M-yl

= D' [ (M5DIM)MY
k=1
=1
=D [[7(D') sinceM' =1
k=1
o
= I 75(®)
k=1
| . i
= (T4 o)
k=1

=1 sinceeachdiagonal entry is ]I_[wi =1, for odd primel.
i=1
Hence each eigenvalue of D'M is also a root of t' — 1 = 0. We chose w as a
primitive | th root of unity. Then they have | distinct eigenvalues w, u?. .... Jh
in Fp, and hence they are diagonalizable. Thus there exist P,Q € GL,(Fp) such that
P-IMIP = D, Q'!D'MIQ = D, and hence QP !MIPQ! = (PQ1)~IMI(PQ?) =
D'MI. Thus M! is similar to D'M/. Now we choose PQ™! @ | € GL.(Fp) such that
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PQ @) (M @eM)PQ1al) = (PQ ) !M(PQ 1) ®I"tMI =D'M @ M'. There-
foreM @ M issimilartoDMI @ M|, 1 <i <|—1,1<j <. Obviousy «*(M @ M)
is similar to «*(D'M! @ M') where 1 < k < I. This completes our claim. Therefore by
Theorem 1.4, BG; is stably equivalentto BG, at p > 2. n

ThusweconcludeH*(BG;. Z /p) isisomorphicto H*(BG,. Z /p) in U, the category of
unstablemodulesover A.Now H*(BG;. Z /p) = H*(BPxH;. Z /p) = H*(BP, Z /p)"'. But
we have H*(BP,Z /p) = H*(B(Z/p)'z.Z/p) =Z/ply1. ... Y] @ E[xq,. .., %2] where

I%| =1, il =2, yi = 3% and 3 is the Bockstein homomorphism. ThusH*(BG;, Z /p) =
Z/plys. .- Vi 1 2] @ E[X1,. ... % - APH (i = 1. 2).

2. Unstablehomotopy typeof BG. Inthissection, we demonstratetwo groupssuch
that H*(BG,) isisomorphic to H*(BG,) in U, but not isomorphic as graded algebras over
Z /p. From now on we consider thecasel = 3, p = 7in Example 1.8. Then Gy = P x Hy,
G, =P x Hsy where P = (Z/7)9, H; =~ (2/3)3, Hy ~ U3(F3) and Hy, Hy < GLg(F7).
According tothe Theorem 1.4, BG; isstably homotopy equivalentto BG,, localized atp =
7. However, we shall show that H*(BG1. Z /7) is not evenisomorphic to H*(BG;, Z / 7)
as graded algebras over Z /7. Note H*(BG;, Z /7) = H*(BP. Z /) = (Z /7[y1. ... . Yo :
2] @ E[X1,....X% : 1)) fori = 1, 2. By using the representation map () constructed
in Section 1, we obtain the generatorshy = | ® 2I.h, =1 @ M,hg =M @ | in H; and
hy =1 ®2,h, =D®M.hz =1 ® M in Hy, where | isan 3 x 3 identity matrix, M is
the permutation matrix of (123) and D is an 3 x 3 diagonal matrix with 2,4, 1 on the
diagonal.

First we give the straightforward cal culation of the invariants of the action of H; and
H, on H*(BP. Z/7) in dimension 3 and 6. (Here we give the invariants in dimension 6
relating to cup products.)

(1) Invariantsin H*(BP,Z /7)M

(i) dimension3

a1 = X1X3X2 * Xa4XeXs + X7XoXg

A = X1X7X4 * X2XgXs5 + X3XoXs

Az = X1X5Xg + XoXeX7 + X3XaXsg

a4 = X1XgXp + XoXgXq + X3X7Xs5

85 = X1X3X5 + XoX1Xe T X3X2X4 + X7XgX2 + XgX7X3 T XgXgX1 + X4XeXg
TX5X4Xg + XgX5X7

8s = X1X3Xg T X2X1Xg + X3XoX7 + XaXeX2 + X5X4X3 + XeX5X1 T X7XoX5
TXgX7Xp T XoXgXa

a7 = X1X3X4 * X2X1X5 + X3X2Xp + X7XgX1 T XgX7X2 + XgXgX3 + XaXeX7
+X5XaXg T XeX5Xg

8g = X1X3X7 + XoX1Xg + X3X2Xg + X7XgXg + XgX7X5 *+ XgXgXe + X4XeX1

+X5XgX2 + XeX5X3
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8g = X1X3Xp * X2X1Xg T X3X2Xs5 + X7XgX3 + XgX7X1 + XgXgXo + XaXeXg
TX5XaX7 T XeX5Xg
Q10 = X1X3Xg 1 XoX1X7 + X3XoXg + X7XgXg + XgX7X4 + XgXgX5 + X4X6X3
+X5X4X1 + XeX5X2
a1 = X1XaXg T XoX5X7 + X3XeXg T X7X1Xg + XgXoXa + XgX3X5 + X4X7X3
TX5XgX1 T XgXgX2
a12 = X1XaXg  XoX5Xg T X3XeX7 + X7X1X5 T XgXoXp + XgX3Xg + XaX7X2
+X5XgX3 T XeXoX1
(ii) dimension 6
€1 = X1X2X3XaX5Xg + XoX3X1X5X6X7 T X3X1XoXeX4Xg + XaX5XeX7XeX3
TX5XeXaXgXoX1 T XeX4X5XgX7X2 T X7XgXgX1X2Xp + XgXoX7X2X3X4
TXgX7XgX3X1X5
€2 = X1X2X3XaXgXg + X2X3X1X5X0X7 T X3X1XoXeX7Xg + XaX5XeX7X2X3
TX5XeXaXgX3X1 T XeX4X5XgX1X2 T X7XgXgX1X5Xg + XgXoX7X2XeX4
TXgX7XgX3X4X5
€3 = X1X2X3XaX5Xg + X2X3X1X5X6X9 T X3X1XoXeX4X7 + XaX5XeX7XgX2
TX5XpXaXgX9X3 + XeX4X5XgX7X1 T X7XgXgX1X2X5 + XgXoX7X2X3Xe
TXgX7XgX3X1X4
€4 = X1X2X3X5X7Xg + X2X3X1X6XgX9 T X3X1X2X4XgX7 + XaX5XeXgX1X2
TX5XeXaXoX2X3 + XeX4X5X7X3X1 T X7XgXgXoX4Xs5 + XgXoX7X3X5Xe
TXgX7XgX1X6X4
€5 = X1X2X3XaX5X7 + XaX3X1X5X6Xg T X3X1X2XeXaXg + XaX5XeX7XgX1
TX5XgXaXgXoX2 + XeXaX5XgX7X3 T X7XgXgX1X2X4 + XgXgX7X2X3Xs5
+XgX7XgX3X1X6
€6 = X1X2X3XaX7Xg + X2X3X1X5XgX9 T X3X1X2XeXgX7 + XaX5XeX7X1X2
TX5XgXaXgX2X3 T XeXaX5XgX3X1 T X7XgXoX1XaX5 + XgXgX7X2X5X6
+XgX7XgX3X6Xa
€7 = X1X2XaXeX7Xg + XaX3X5XaXgX7 T X3X1XeX5XgXg + XaX5X7XgX1X3
TX5XgXgX7X2X1 + XeXaXgXgX3Xo + X7XgX1X3XaXp + XgXgXoX1X5Xe
TXgX7X3X2X6Xs5
€8 = X1X2XaX5X7Xg * X2X3X5XeXgX7 T X3X1XsXaXgXg + XaX5X7XgX1X3
TX5XgXgXgXoX1 + XeXaXgX7X3X2 + X7XgX1X2XaXe + XgXgXoX3X5Xe
+XgX7X3X1X6Xs5

€9 = X1X2X3X7XgXg + X4X5XgX1X2X3 + X7X8XgX4X5Xe
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€10 = X1X2X5XeX7X9 + XoX3XeX4XgX7 + X3X1X4X5X9Xg
€11 = X1X2X4XgXpXg + X2X3X5XgX4X7 + X3X1X6X7X5X8
€12 = X1X3XgXgX7Xg + XoX1X5X4XgX7 + X3X2XeX5XgXg

(2) Invariantsin H*(BP, Z / 7)"
(i) dimension3

a1 = X1XaXa + XaXeXs + X7XoXg
A = X1X7Xa + XoXgXs + X3XoXe
ag = X1XsXg *+ XoXeX7 + X3XaXg
a4 = X1XgXe * XoXoXa + X3X7Xs
A5 = X1X3X5 + 2XoX1 X + AX3XoXa + X7XgXo + 2XgX7Xg + AXgXgX1 + XaXeXs
+2X5X4Xg + AXX5X7
ap = X1XaXg + 4XoX1Xg + 2X3XoX7 + X7XgXs5 + 4XgX7Xe + 2XgXgXa + XaXeX2
+AX5X4X3 + 2XeX5X1
a7 = X1XaXa + 2XX1X5 + 4X3XoXe + X7XgX1 + 2XgX7X2 + 4XoXgXa + XaXeX7
+2X5X4Xg + 4XeX5Xg
ag = X1XaX7 + 4XoX1Xg + 2X3X2Xg + X7XgXa + 4XgX7X5 + 2XgXgXe + X4XeX1
+4X5X4X2 + 2XeX5X3
Ay = X1X3Xg + 2XoX1Xa + AX3XoXs5 + X7XgXa + 2XgX7X1 + AXgXgXo + XaXeXo
+2X5X4X7 + AXgXsXg
@10 = X1XaXg + 4XoX1X7 + 2X3XoXg + X7XgXe + AXgX7X4 + 2XgXgXs5 + X4X6X3
+AX5X4X1 + 2XeX5X2
a11 = X1X4Xg + X2X5X7 + X3XeXg + X7X1X6 + XgX2X4 + XgX3X5 + XaX7X3
+X5XgX1 + XeXoX2
a1 = X1XaXg + XoX5Xg + X3XeX7 + X7X1X5 + XgXoXe + XgXaXa + XaX7Xo
TX5XgX3 T XgXoX1
(ii) dimension 6
€1 = X1X3X2XaXeXg + 2X2X1X3X5XaXg + AX3X2X1XeX5X7 + XaXeX5X7XoX2
+2X5X4XeXgX7X3 + AXsX5XaXgXgX1 + X7XgXgX1XaX5 + 2XgX7XgXoX1Xe
+4XgXgX7X3X0X4
€2 = X1XaXoX5X7Xg + AX2X1XaXeXgX7 + 2XgX2X1XaXoXg + XaXeX5XgX1X3
+AX5X4XeXgXoX1 + 2XsX5XaX7X3X2 + X7XgXgXoXaXe + AXgX7XgXaX5Xa
+2XoXgX7X1X6X5

€3 = X1X3X2XaXeX7 + 2XoX1X3X5X4Xg + 4XaX2X1X6X5Xg + X4X6X5X7XgX1
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+2X5X4XeXgX7X2 + AX6X5XaXoXgX3 + X7XoXgX1X3Xq + 2XgX7XgXoX1X5
+AXgXgX7X3X2X6
€4 = X1XaXpXaX7Xg + AXaX1XaX5XgX7 + 2XgX2X1XpXoXg + XaXeX5X7X1X3
+AX5XaXeXgXaX1 + 2X6X5XaXoXaX + X7XgXgX1XaXe + AXgX7XgXoX5Xa
+2XgXgX7X3X6Xs5
€5 = X1XaXpXaXeXg + 2XaX1X3X5XaX7 + AXaXoX1XpX5Xg + XaXeX5X7X0X3
+2X5XaXeXgX7X1 + AXeX5XaXoXgXa + X7XgXgX1X3Xe + 2XgX7XgXaX1Xa
+4X9X8X7X3X2X5
€6 = X1X3X2XeX7Xg + AXaX1X3X4XgX7 + 2X3XoX1X5XoXg + XaXeX5XgX1X3
+AXsX4XpX7XaX1 + 2XpX5X4XgX3X2 + X7XoXgX3X4Xs + AXgX7XgX1X5X4
+2XgXgX7X2X6X5
€7 = X1X2XaXgX7Xg + X2X3X5XaXgX7 + X3X1XeX5XoXg + X4X5X7XoX1X3
TX5XeXgX7X2X1 T XeX4XgXgX3X2 T X7XgX1X3X4Xp T XgXoX2X1X5X4
TXgX7X3X2X6X5
€8 = X1X2XaX5X7Xg + X2X3X5XeXgX7 + XaX1XgXaXoXg + X4X5X7XgX1X3
TX5XeXgXoX2X1 + XeXaXgX7X3X2 + X7XgX1X2X4Xe T XgXoX2X3X5X4
TXgX7X3X1X6X5
€9 = X1XpXaX7XgXg + XaXsXeX1X2X3 *+ X7XgXoXaX5Xe
€10 = X1X2X5XeX7X9 * X2X3XeXaXgX7 + X3X1XaX5X0X8
€11 = X1XoX4XgXeXg + XoX3X5XgXaX7 + X3X1XeX7X5X8
€12 = X1X3XaXeX7Xg *+ XoX1X5XaXgX7 + X3XoXeX5X0X8

Next we compute cup products of the generators of H*(BG;.Z/7) in dimension 3.
Table 1 and Table 2 show the cup productsin dimension6. Eacha; and g, (j = 1..... 12)

is the generator of H3(BG;. Z /7). These cup product structures give the main clue for
proving the Proposition 2.1.
With this information, we prove the following proposition.

PROPOSITION 2.1. H*(BP, Z /7)1 and H*(BP. Z / 7)"2 are not isomorphic as graded
algebrasover Z /7.

PROOF. Suppose ¢, : H*(BP,Z /7)™ — H*(BP.Z/7)" is an isomorphism as
graded algebras over Z /7. We consider the following diagram.
0 — Kerfy — H3BP.Z/7)M@H¥BP.Z/T - HeBP,Z/7)H:

l P3Rp3 l P3Rp3 l Y6

0 — Kerg, — H3BP.Z/7)@H3BP.Z/7)* 2. HEBP,Z/7)

wheref, and g, are cup product maps and the rows are exact.
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| & |a [as|a [a [a [a [a [a [an]|an [anp |
ag 0 0 0 0 € € €3 €1 & | € 0 0
a 0 0 0 0 0 0 €3 6e, | 665 | &5 e €
a3 0 0 0 0 6e, | 66 | €3 0 0 e | 6e; | b6eg
a 0 0 0 0 6e, | 66 0 € & 0 e €3
as || 6ep| O e e 0 o 0 0 0 0 0 0
a || 66| O & & |6a; | O 0 0 0 0 0 0
a; || 6es | 6es | 6es | O 0 0 0 0 0 | o 0 0
ag || 684 | & 0 | 6&4 0 0 0 0 asz 0 0 0
ag || 665 | e O |6e| O 0 O [6agz | O 0 0 0
ap || 6es | 665 | 65 | O 0 0 | 6y 0 0 0 0 0
an O [6e;| e | 6er 0 0 0 0 0 0 0 oy
ai O [6eg | eg | 6eg| O 0 0 0 0 O | 6as | O
*orp = 3eg + 3e10 + 3611, arp = 369 + 4eyg + 3e1p, a3 = 4€g + 3ey1 + 3enn,
oy =36y +4ep + 3ep
TABLE 1: Cup productsin H®(BP, Z / 7)H:
| la | @ | & | & | a |a|a | a]a|ao]an|an]
a | 0] 0] 0|0 |e & |66 |& |6 |6 | 00
a, 0 0 0 0 0 O | 4e3 | 584 | 565 | 465 | € &
as 0 0 0 0O | 56, | 58 | €3 0 0 & | 6e; | 663
a 0 0 0 0 |3, 3| O €4 & 0 €7 e
a [[ 66| O |26 [4e1| O | B1 |44 | € |6es | 3es | 563 | 56
3 |[[ 66| O |28 |46 [ 631 | O | 3e; | 6eg | ez | 465 | 564 | 565
a; || 6e3| 3e3| 65| O | 3ey | 4de; 0 S5es | 20 | B2 | 365 | 31
ag || 684 | 264 | O |6y |6e; | €3 | 268| O | B3 | 51 | 665 | B&2
a || 6es | 25| O |6es| e | 6eg | 5e; [ 683 | O | 2e7 | 66, | 6es
a0 || 665 | 365 | 6es | O | deg | 3es | 632 | 261 | 567 | O | 3ex | ey
an || O [6e; | e |66 |2e3 |28 |4es | & | € (42| O | Ba
app || O |Geg| €3 |6Geg | 265 |28 [4er | & | €3 | 464|664 O

*B1 = 36y + 6610 + 5€11, 2 = 6€9 + €10 + 3€12, F3 = 269 + 5€11 + 3612,
Ba = €10 +4en + 3er
TABLE 2: Cup productsin H8(BP, Z / 7)"2

Therefore the diagram commutes, i.e. pgofy = guo (¢3® p3). Thisimplies pg(ag;) =
w3(a)pa(a), that is, itsalgebraic structure is preserved under the map ... Then Ker f, &~
Kerg,. We consider Kerf, = {3 nja; @ g | fu(X nija; @ ) = > njjaig = 0}. We briefly
explain how to computea basis X for Ker f,,. By inspection of Table 1, if the cup product
is zero, then it is obvious. Otherwise, we consider the elements whose image is a scalar
multipleofe,i=1...., 9. For example, incase of e, fy(may®@as+mnaz@as+nzas@as) =
nie; + 6nye; + 6nge; = (N + 6ny + Bnz)e;. To find basis elements in Kerf,, we set
(M + 6ny + 6ng)e; = 0. Then (N, Nz, ng) = (1,1.0) or (1,0, 1) over Z/7. Therefore we
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cCanleta; @ as +az ®@ as and a; ® a5 + a4 ® ag belong to X. Proceeding in a similar
manner we determine the following basis.

X = {a®@a1, a®@ay, ag®ag, aQay, R as, R as, arQa;, ag®ag, dg®ay, a10®
ap, an@ap, ap@ap, @@, g ag,a@ag, a1 @aq, a ®ap, a®
a3, pRay, a5, R8s, G3®ay, a3 ag, ag®ay, a7, yuRa, B
a7, aBs®ag, a5®ag, as a0, AsQ a1, BsQa12, s@ay, 85X ag, @ ag, A&
a10, 86 ® a11, 86 ® A, a7y ® ag. a7 ® ag, a7 ® a11, 87 @ 12, 83 ® &10, g ®
an, ag®air, @ ayo, ag@ay1, g ae, yo®an, e a, yVastaz®
a5 Qa+uPas,d QataRQa, 4O +uDas DA +6@®
a7), B @ay+6(ag@ay), ay @ag+6(as@ag), @agt+ay@ag, & Dag+6(ay®
ag). R @ag+ay@ag, a1 @ay+6(az®@ay), az@a+6(az®@ay), R ®ay +
Blar@an), a@an+ar@ay, @ ap+6(ay®ar), as@ap+as® an}.

Here |X| = 66. Thusthe dimension of Kerf, is 66.

Next we consider Kergy = {>nja @ & | gu(~ mja @ &) = X mjaig = 0. We use
the same method as X to compute abasis Y for Ker g,. Thus by inspection of Table 2, Y
consists of the following elements.

Y={a®a, & @ a,a ® &, @ &,8 @ 8,8 © 8, &7 @ a7,83 @ 8g, & @
ag.ap @ ajp, an @&, ap@ap, @&, g Q@ ag, a1 @&, a1 @ ann, a4 @
A12, @ ag, RO, R P85, R Q3. B3R, B3R a3, B3V, AR A7, U
a0, a1 @ a5 +a @ ay, ag @ as +5(ay @ an1). a4 ® as + 3(a @ an), ay @
apt+3@®@an), ag@an+5@ ®an). a1 ®@as+2(an ®an), a3 @ as +
3(aio®@a11), as @ag+6(ap®@ai1). ar @ag+4(a @ ay1). ag@ a2 +5(a10®
an). a1 @ay+ag@ap. a2 ®@ay + 4@y @ ap). a3 ® a7 +ag ® ap.as @
a11 +5(a @ a2). 8 @ ag + 6(ag ® ar2). & ® ag + 2(a1o @ a). & @ ag +
3(a10 @ ar). a4 @ ag+2(ay @ arz). @ @ ay + a0 @ a. as ® an +3(a @
ap). a1 @ag+2(ay @awn), H®@ag+3(ar@an), ay@ag+2(ay @ ar). as @
ap+ 3(57@ 5]_1) ag@aptar@an, & @apt+ag®ai. a®a +4(§8 ®
an). a3 @agp+ag@ay, a @ ag+6(ag @ an). a @ a2 +5(ag @ ay1), 8 @
a11 +3(a ® aig), a3 @ a1 +4(a ® a1o). a @ a1 +3(a ® awo). a @ ag +
3(59 ® 510). 56 ® 57 + 2(59 ® 510), 52 ® 512 +4(§7 ® a8)- a3 ® a12 + 3(57 ®
ag), @ ar +Har @ ag), a @&y +5(a7 @ ag), 3 @ ag+4(a7 @ ag), 5(as @
ag) + (a7 @ a1g) + 6(an1 @ a12). 4(as @ ag) + (ag @ ag) + 6(anr @ a)}.

Here |Y| = 68. Thusthe dimension of Ker g, is 68.

Since Ker f, and Ker g, have different dimensions, Ker f, is not isomorphic to Ker g,.
Thus our assumption leads to a contradiction. Therefore ¢g(aia;) # a(a)ps(d). This
means the algebraic structure is not preserved under the map .. This completes the
proof. ]
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