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Abstract
We carry out the extended symmetry analysis of an ultraparabolic Fokker–Planck equation with three independent
variables, which is also called the Kolmogorov equation and is singled out within the class of such Fokker–
Planck equations by its remarkable symmetry properties. In particular, its essential Lie invariance algebra is
eight-dimensional, which is the maximum dimension within the above class. We compute the complete point sym-
metry pseudogroup of the Fokker–Planck equation using the direct method, analyse its structure and single out its
essential subgroup. After listing inequivalent one- and two-dimensional subalgebras of the essential and maximal
Lie invariance algebras of this equation, we exhaustively classify its Lie reductions, carry out its peculiar generalised
reductions and relate the latter reductions to generating solutions with iterative action of Lie-symmetry operators.
As a result, we construct wide families of exact solutions of the Fokker–Planck equation, in particular, those param-
eterised by an arbitrary finite number of arbitrary solutions of the (1+1)-dimensional linear heat equation. We also
establish the point similarity of the Fokker–Planck equation to the (1+2)-dimensional Kramers equations whose
essential Lie invariance algebras are eight-dimensional, which allows us to find wide families of exact solutions of
these Kramers equations in an easy way.

1. Introduction

The Fokker–Planck and Kolmogorov equations provide powerful tools for adequately modelling a wide
range of natural processes, which involve considering fluctuations of a quantity under the action of a
random perturbation. Since the presence of a random noise is a common characteristic of many physical
fields, the Fokker–Planck equations have acquired high popularity in applied sciences. However, theo-
retical studies of these equations have aroused lively interest as well, in particular, in the field of group
analysis of differential equations.

For the Fokker–Planck and Kolmogorov equations, their Lie symmetries and other related objects
are of course the most studied in dimension 1 + 1. This study was initiated in the seminal paper [21]
of Sophus Lie himself in the course of the group analysis of the wider class of second-order linear
partial differential equations with two independent variables, including (1 + 1)-dimensional second-
order linear evolution equations. A number of papers that restate, specify or develop the above Lie’s
result have been published over the past decades, see, for example, [34] for a review of these papers
and a modern treatment of the problem. The equivalence of (1 + 1)-dimensional second-order linear
evolution equations with respect to point transformations was considered in [7, 13, 21] and further in
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[16, 18, 23]. Darboux transformations between such equations were studied, for example, in [8, 11,
22, 34]. The group classification problems for the classes of (1 + 1)-dimensional Fokker–Planck and
Kolmogorov equations and their subclasses were solved in [34] up to the general point equivalence
and in [27] with respect to the corresponding equivalence groups using the mapping method of group
classification.

The most general form of (1 + 2)-dimensional ultraparabolic Fokker–Planck equations is
ut + B(t, x, y)uy = A2(t, x, y)uxx + A1(t, x, y)ux + A0(t, x, y)u + C(t, x, y)

with A2 �= 0, Bx �= 0. (1)

We denote the entire class of these equations by F̄ . Thus, the tuple θ̄ := (B, A2, A1, A0, C) of arbitrary
elements of the class F̄ runs through the solution set of the system of the inequalities A2 �= 0 and Bx �= 0
with no restrictions on A0, A1 and C. A partial preliminary group classification of the class F̄ was carried
out in [14]. Some subclasses of the class F̄ were considered within the Lie-symmetry framework in [17,
20, 35–37, 41]. Despite the number of papers on this subject, there are still many open problems in the
symmetry analysis of the entire class F̄ , its subclasses and even particular equations from this class.

In the present paper, we carry out extended symmetry analysis of the equation
ut + xuy = uxx, (2)

which is of the simplest form within the class F̄ and corresponds to the values B = x, A2 = 1 and A1 =
A0 = C = 0 of the arbitrary elements. This equation is distinguished within the class F̄ by its remarkable
symmetry properties. In particular, its essential Lie invariance algebra gess is eight-dimensional, which
is the maximum dimension for equations from the class F̄ . Moreover, it is, up to the point equivalence,
a unique equation in F̄ whose essential Lie invariance algebra is of this dimension. That is why we
refer to (2) as the remarkable Fokker–Planck equation. The study of the equation (2) was initiated by
Kolmogorov in 1934 [19], and hence, it is often called the Kolmogorov equation as well. In particular,
he constructed its fundamental solution,1

F(t, x, y, t′, x′, y′) =
√

3H(t − t′)

2π(t − t′)2
exp

(
− (x − x′)2

4(t − t′)
− 3

(
y − y′ − 1

2
(x + x′)(t − t′)

)2

(t − t′)3

)
, (3)

where H denotes the Heaviside step function. A preliminary study of symmetry properties of (2) was
carried out in [17, 20].

The algebra gess is nonsolvable, and its structure is complicated and specific, which makes the clas-
sification of subalgebras of gess nontrivial. More specifically, this algebra is isomorphic to a semidirect
sum sl(2,R) ∈ h(2,R) of the real order-two special linear Lie algebra sl(2, R) and the real rank-two
Heisenberg algebra h(2,R), where the action of the former algebra on the latter is given by the direct
sum of the one- and four-dimensional irreducible representations of sl(2,R). Such structure has not
been studied before in the literature on symmetry analysis of differential equations with regard to clas-
sifying subalgebras. This has been an obstacle to the complete classification of Lie reductions of the
equation (2), which we successfully overcome in the present paper.

Further, using the direct method, we construct the complete point symmetry pseudogroup G of this
equation and derive a nice representation for transformations from G. This essentially simplifies the
subsequent classification of the one- and two-dimensional subalgebras of the maximal Lie invariance
algebra g of the equation (2) up to the G-equivalence, which is required for optimally accomplishing Lie
reductions of (2). We carefully analyse the structure of the pseudogroup G and modify the group opera-
tion in G by extending the domains of transformation compositions by continuity. The main advantage
of the suggested interpretation of G is that then the pseudogroup G contains a subgroup Gess, which is a
(finite-dimensional) Lie group with gess as its Lie algebra. We call the subgroup Gess the essential point
symmetry group of the equation (2). Moreover, we surprisingly find out that the pseudogroup G con-
tains only one independent, up to combining with elements from the identity component of G, discrete

1There was a misprint in the constant factor of this solution in [19], which was corrected later.
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element. As such an element, one can choose the involution that only alternates the sign of u. One more
implication of the construction of the pseudogroup G is that Kolmogorov’s fundamental solution of the
equation (2) is formally Gess-equivalent to the function u(t, x, y) = 1 − H(t).

The exhaustive classification of Lie reductions of the equation (2) on the basis of listing Gess-
inequivalent one- and two-dimensional subalgebras of its essential Lie invariance algebra gess leads to
finding wide families of its exact solutions, which are in general Gess-inequivalent to each other. The
most interesting among these families are three families parameterised by single arbitrary solutions
of the classical (1 + 1)-dimensional linear heat equation and one family parameterised by an arbitrary
solution of the (1 + 1)-dimensional linear heat equation with a particular inverse square potential. One
more family is expressed in terms of the general solutions of a one-parameter family of Kummer’s equa-
tions and thus splits into two one-parameter families. We show how to construct more general families
of solutions of the equation (2) using generalised reductions with respect to generalised symmetries
generated from elements of gess via acting by recursion operators that are counterparts of elements of
gess among first-order differential operators in total derivatives. Since the (1 + 1)-dimensional linear
heat equation with a particular inverse square potential arises in the course of a Lie reduction of the
equation (2), we exhaustively carry out the classical symmetry analysis of the (1 + 1)-dimensional lin-
ear heat equation with a general inverse square potential, including the construction of its complete
point symmetry pseudogroup by the direct method and the comprehensive classification of its Lie
reductions.

Among (1 + 2)-dimensional ultraparabolic Fokker–Planck equations of specific form, which are
called (1 + 2)-dimensional Klein–Kramers equations or just Kramers equations, we consider those
whose essential Lie invariance algebras are eight-dimensional. We map these equations to the equa-
tion (2) using point transformations and thus reduce the entire study of these equations within the
framework of symmetry analysis, including the construction of exact solutions, to the study of the
equation (2).

The structure of the paper is as follows. In Section 2, we present the maximal Lie invariance
algebra of the equation (2) and describe its key properties. Using the direct method, in Section 3,
we compute the complete point symmetry pseudogroup of the equation (2) and analyse its struc-
ture, including the decomposition of this pseudogroup and the description of its discrete elements.
Section 4 is devoted to the classification of one- and two-dimensional subalgebras of gess and of g.
These are the dimensions that are relevant to the framework of Lie reductions. The classification of
subalgebras lets us comprehensively study the codimension-one, codimension-two and codimension-
three Lie reductions of the equation (2) in Sections 5, 6 and 7, respectively, and the subsequent
construction of wide families of exact solutions of (2). In Section 8, we carry out its peculiar gen-
eralised reductions, which are associated with powers of certain Lie-symmetry operators, and show
that the corresponding families of invariant solutions can be generated by iteratively acting with Lie-
symmetry operators.2 The similarity of Kramers equations from the class F̄ with eight-dimensional
essential Lie-symmetry algebras to the equation (2) with respect to point transformations is established
explicitly in Section 9. It leads to easily finding wide families of exact solutions of such Kramers
equations. In Section 10, we discuss how to develop results of the present paper. Appendix A is
devoted to extended symmetry analysis of the (1 + 1)-dimensional linear heat equations with inverse
square potentials, including the explicit construction of their (real) exact solutions. In view of results of
Section 5, these solutions directly lead to the solutions of the equation (2). In Appendix B, we discuss
an optimised procedure of constructing hiddenly invariant solutions of a general system of differential
equations.

For readers’ convenience, the constructed exact solutions of the equation (2) are marked by the bullet
symbol •.

2A Lie-symmetry operator of a homogeneous linear differential equation L: Lu = 0 is a first-order linear differential operator
Q in total derivatives that commutes with the operator L on solutions of L or, equivalently, such that the differential function Qu
is the characteristic of an (essential) Lie symmetry of L.
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2. Lie invariance algebra

The classical infinitesimal approach results in the well-known algorithm for computing the maximal
Lie-symmetry algebras of systems of differential equations [9, 10, 25]. The maximal Lie invariance
algebra of the equation (2) is (see, e.g. [20])

g := 〈P t, D, K, P3, P2, P1, P0, I, Z( f )〉,
where

P t = ∂t, D = 2t∂t + x∂x + 3y∂y − 2u∂u, K= t2∂t + (tx + 3y)∂x + 3ty∂y − (x2+ 2t)u∂u,

P3 = 3t2∂x + t3∂y + 3(y − tx)u∂u, P2 = 2t∂x + t2∂y − xu∂u, P1 = ∂x + t∂y, P0 = ∂y,

I = u∂u, Z( f ) = f (t, x, y)∂u.

Here the parameter function f of (t, x, y) runs through the solution set of the equation (2).
The vector fields Z( f ) constitute the infinite-dimensional abelian ideal glin of g associated with

the linear superposition of solutions of (2), glin := {Z( f )}. Thus, the algebra g can be represented as
a semidirect sum, g= gess ∈ glin, where

gess = 〈P t, D, K, P3, P2, P1, P0, I〉 (4)

is an (eight-dimensional) subalgebra of g, called the essential Lie invariance algebra of (2).
Up to the skew-symmetry of the Lie bracket, the nonzero commutation relations between the basis

vector fields of gess are the following:

[P t, D] = 2P t, [P t, K] =D, [D, K] = 2K,

[P t, P3] = 3P2, [P t, P2] = 2P1, [P t, P1] =P0,

[D, P3] = 3P3, [D, P2] =P2, [D, P1] = −P1, [D, P0] = −3P0,

[K, P2] = −P3, [K, P1] = −2P2, [K, P0] = −3P1,

[P1, P2] = −I, [P0, P3] = 3I.

The algebra gess is nonsolvable. Its Levi decomposition is given by gess = f ∈ r, where the radical r
of gess coincides with the nilradical of gess and is spanned by the vector fields P3, P2, P1, P0 and I.
The Levi factor f= 〈P t,D, K〉 of gess is isomorphic to sl(2,R), the radical r of gess is isomorphic to the
rank-two Heisenberg algebra h(2,R), and the real representation of the Levi factor f on the radical r
coincides, in the basis (P3, P2, P1, P0, I), with the real representation ρ3 ⊕ ρ0 of sl(2,R). Here ρn is
the standard real irreducible representation of sl(2,R) in the (n + 1)-dimensional vector space. More
specifically,

ρn(P t)ij = (n − j)δi,j+1, ρn(D)ij = (n − 2j)δij, ρn(−K)ij = jδi+1,j,

where i, j ∈ {1, 2, . . . , n + 1}, n ∈N∪ {0}, and δkl is the Kronecker delta, that is, δkl = 1 if k = l and δkl = 0
otherwise, k, l ∈ Z. Thus, the entire algebra gess is isomorphic to the algebra L8,19 from the classification
of indecomposable Lie algebras of dimensions up to eight with nontrivial Levi decompositions, which
was carried out in [38].

Lie algebras whose Levi factors are isomorphic to the algebra sl(2,R) often arise within the field of
group analysis of differential equations as Lie invariance algebras of parabolic partial differential equa-
tions. At the same time, the action of Levi factors on the corresponding radicals is usually described in
terms of the representations ρ0, ρ1, ρ2 or their direct sums. To the best of our knowledge, algebras similar
to gess were never considered in group analysis from the point of view of their subalgebra structure.

3. Complete point symmetry pseudogroup

We start computing the complete point symmetry pseudogroup G of the equation (2) by presenting
the exhaustive description of the equivalence groupoid of the class F̄ . Then we use special properties
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of this groupoid for deriving an explicit representation for elements of G. See [4, 6, 26, 31, 33, 39]
and references therein for definitions and theoretical results on various structures constituted by point
transformations within classes of differential equations.

Theorem 1. The class F̄ is normalised. Its (usual) equivalence pseudogroup G∼
F̄ consists of the point

transformations with the components

t̃ = T(t, y), x̃ = X(t, x, y), ỹ = Y(t, y), ũ = U1(t, x, y)u + U0(t, x, y), (5a)

Ã0 = A0

Tt + BTy

− A1

Tt + BTy

U1
x

U1
+ A2

Tt + BTy

((
U1

x

U1

)2

−
(

U1
x

U1

)
x

)
+ 1

U1

U1
t + BU1

y

Tt + BTy

, (5b)

Ã1 = A1 Xx

Tt + BTy

− Xt + BXy

Tt + BTy

+ A2 Xxx − 2XxU1
x/U

1

Tt + BTy

, (5c)

Ã2 = A2 X2
x

Tt + BTy

, B̃ = Yt + BYy

Tt + BTy

, (5d)

C̃ = U1

Tt + BTy

(
C − E

U0

U1

)
, (5e)

where T, X, Y, U1 and U0 are arbitrary smooth functions of their arguments with (TtYy − TyYt)XxU1 �= 0,
and E := ∂t + B∂y − A2∂xx − A1∂x − A0.

The proof of this theorem is beyond the subject of the present paper and will be presented elsewhere.
The equation (2) corresponds to the value (x, 1, 0, 0, 0) =: θ̄0 of the arbitrary-element tuple θ̄ =

(B, A2, A1, A0, C) of the class F̄ . The vertex group Gθ̄0 := G∼
F̄ (θ̄0, θ̄0) is the set of admissible transforma-

tions of the class F̄ with θ̄0 as both their source and target, Gθ̄0 = {
(θ̄0,�, θ̄0) |� ∈ G

}
. The normalisation

of the class F̄ means that its equivalencegroupoid coincides with the action groupoidof the pseudogroup
G∼

F̄ , and thus, the latter groupoid necessarily contains the vertex group Gθ̄0 . This argument allows us to
use Theorem 1 in the course of computing the pseudogroup G.

Theorem 2. The complete point symmetry pseudogroup G of the remarkable Fokker–Planck equation
(2) consists of the transformations of the form

t̃ = αt + β

γ t + δ
, x̃ = x̂

γ t + δ
− 3γ ŷ

(γ t + δ)2
, ỹ = ŷ

(γ t + δ)3
,

ũ = σ (γ t + δ)2 exp

(
γ x̂2

γ t + δ
− 3γ 2x̂ŷ

(γ t + δ)2
+ 3γ 3ŷ2

(γ t + δ)3

)
× exp

(
3λ3(y − tx) − λ2x − (3λ2

3t
3 + 3λ3λ2t2 + λ2

2t)
)
(u + f (t, x, y)) , (6)

where x̂ := x + 3λ3t2 + 2λ2t + λ1, ŷ := y + λ3t3 + λ2t2 + λ1t + λ0; α, β, γ and δ are arbitrary constants
with αδ − βγ = 1; λ0, . . ., λ3 and σ are arbitrary constants with σ �= 0, and f is an arbitrary solution
of (2).

Proof. We should integrate the system (5) with ¯̃
θ = θ̄ = θ̄0 with respect to the parameter functions

T, X, Y and U1. The equations (5d) take the form

X = Yt + xYy

Tt + xTy

, X2
x = Tt + xTy.

In view of the first of these equations, the second equation reduces to (TtYy − TyYt)2 = (Tt + xTy)5, which
implies Ty = 0, Tt > 0 and

Y = εT3/2
t y + Y0(t),
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where ε= ±1 and Y0 is a function of t arising due to the integration with respect to y. This is why we
have X = (Yt + xYy)/Tt, and hence Xxx = 0. Then the equation (5c) simplifies to Xt + xXy = −2XxU1

x/U
1

and thus integrates to

U1 = V(t, y) exp

(
− Ttt

2Tt

x2 − 3
2TtttTt − T2

tt

8T2
t

xy − (Y0/Tt)t

2T5/2
t

x

)
,

where V is a nonvanishing smooth function of (t, y), the explicit expression for which will be derived
below. Substituting the expression for U1 into the restricted equation (5b),(

U1
x

U1

)2

−
(

U1
x

U1

)
x

+ U1
t + xU1

y

U1
= 0,

leads to an equation whose left-hand side is a quadratic polynomial in x. Collecting the coefficients of
x2, we derive the equation Tttt/Tt − 3

2
(Ttt/Tt)2 = 0, meaning that the Schwarzian derivative of T is zero.

Therefore, T is a linear fractional function of t, T = (αt + β)/(γ t + δ). Since the constants α, β, γ and δ
are defined up to a constant nonzero multiplier and Tt > 0, we can assume that αδ − βγ = 1. Then, the
result of collecting the coefficients of x in the above equation can be represented, up to an inessential
multiplier, in the form

Vy

V
= 6γ 3

(γ t + δ)3
y + (

(γ t + δ)3Y0
)

ttt
− 6γ 2

(
(γ t + δ)Y0

)
t
.

The general solution of the last equation as an equation with respect to V is

V = φ(t) exp

(
3γ 3

(γ t + δ)3
y2 + (

(γ t + δ)3Y0
)

ttt
y − 6γ 2

(
(γ t + δ)Y0

)
t
y

)
,

where φ is a nonvanishing smooth function of t. Analogously, we collect the summands without x,
substitute the above representation for V into the obtained equation, split the result with respect to y and
in addition neglect inessential multipliers. This gives the system of two equations(

(γ t + δ)3Y0
)

tttt
= 0,

φt

φ
− 2γ

γ t + δ
+ 1

4
(γ t + δ)4

((
(γ t + δ)Y0

)
tt

)2 = 0,

whose general solution can be represented as

Y0 = λ3t3 + λ2t2 + λ1t + λ0

(γ t + δ)3
,

φ = σ (γ t + δ)2 exp

(
γψ 2

t

γ t + δ
− 3γ 2ψtψ

(γ t + δ)2
+ 3γ 3ψ2

(γ t + δ)3

)
exp

(−λ2
2t − 3λ3λ2t

2 − 3λ2
3t

3
)

,

where ψ is an arbitrary at most cubic polynomial of t, ψ(t) := λ3t3 + λ2t2 + λ1t + λ0, and λ0, . . ., λ3

and σ are arbitrary constants with σ �= 0. Since the constant parameters α, β, γ and δ are still defined
up to the multiplier ±1, we can choose these parameters in such a way that ε|γ t + δ| = γ t + δ and then
neglect the parameter ε.

Finally, the equation (5e) takes the form(
U0

U1

)
t

+ x

(
U0

U1

)
y

=
(

U0

U1

)
xx

,

and thus U0 = U1 f , where f = f (t, x, y) is an arbitrary solution of (2).

If the transformations of the form (6) and their compositions are properly interpreted, then the struc-
ture of the pseudogroup G is simplified. Thus, the natural domain of a transformation � of the form
(6) is

dom�= (dom f ×Ru) \ Mγ δ ,

that is, it can be assumed to coincide with the relative complement of the set Mγ δ := {(t, x, y, u) ∈
R

4 | γ t + δ = 0} with respect to the set dom f ×Ru, where dom f is the domain of the function f .
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In view of the fact that parameters γ and δ do not vanish simultaneously, the set Mγ δ is empty if γ = 0
and is the hyperplane defined by the equation t = −δ/γ in the space R

4
t,x,y,u otherwise. We modify the

standard definition of composition in the case of transformations of the form (6). More specifically,
according to the standard definition, the domain of the composition �1 ◦�2 =: �̃ of transformations
�1 and�2 is the preimage of the domain of�1 with respect of�2. If the transformations�1 and�2 are
of the form (6), then dom �̃=�−1

2 (dom�1) = (dom f̃ ×Ru) \ (Mγ2δ2 ∪ Mγ̃ δ̃), where γ̃ = γ1α2 + δ1γ2,
δ̃= γ1β2 + δ1δ2, dom f̃ = ((π∗�2)−1dom f 1) ∩ dom f 2, π is the natural projection onto R

3
t,x,y in R

4
t,x,y,u,

and the parameters with indices 1 and 2 and tildes correspond to �1, �2 and �̃, respectively. As the
modified composition �1 ◦m �2 of transformations �1 and �2, we take the extension of �1 ◦�2 by
continuity to the set

domm �̃ := (dom f̃ ×Ru) \ Mγ̃ δ̃ ,

that is, dom(�1 ◦m �2) = domm �̃. Therefore, �1 ◦m �2 is the transformation of the form (6) with the
same parameters as in �1 ◦�2 and with its natural domain. This means that domm �̃= dom �̃ and the
extension is trivial if γ1γ2 = 0, and otherwise we redefine�1 ◦�2 on the set (dom f̃ ×Ru) ∩ Mγ2δ2 .

Now we can analyse the structure of G. The point transformations of the form

Z( f ) : t̃ = t, x̃ = x, ỹ = y, ũ = u + f (t, x, y),

where the parameter function f = f (t, x, y) is an arbitrary solution of the equation (2), are associated
with the linear superposition of solutions of this equation and thus can be considered as trivial. They
constitute the normal pseudosubgroup Glin of the pseudogroup G. The pseudogroup G splits over Glin,
G = Gess

� Glin, where Gess is the subgroup of G consisting of the transformations of the form (6) with
f = 0 and with their natural domains, and thus it is an eight-dimensional Lie group. The Lie group
structure of Gess is the main benefit of redefining the transformation composition above.3 We call the
subgroup Gess the essential point symmetry group of the equation (2).

The subgroup Gess itself splits over R, Gess = F � R. Here R and F are the normal subgroup and
the subgroup of Gess that are singled out by the constraints α = δ= 1, β = γ = 0 and λ3 = λ2 = λ1 =
λ0 = 0, σ = 1, respectively. They are isomorphic to the groups H(2,R) ×Z2 and SL(2,R), and their Lie
algebras coincide with r� h(2,R) and f� sl(2,R). Here H(2,R) denotes the rank-two real Heisenberg
group. The normal subgroups Rc and Rd of R that are isomorphic to H(2,R) and Z2 are constituted
by the elements of R with parameter values satisfying the constraints σ > 0 and λ3 = λ2 = λ1 = λ0 = 0,
σ ∈ {−1, 1}, respectively. The isomorphisms of F to SL(2, R) and of Rc to H(2,R) are established by
the correspondences

(α, β, γ , δ)αδ−βγ=1 �→
(
α β

γ δ

)
, (λ3, λ2, λ1, λ0, σ ), σ>0 �→

⎛
⎜⎜⎝

1 3λ3 −λ2 ln σ
0 1 0 λ0

0 0 1 λ1

0 0 0 1

⎞
⎟⎟⎠ .

Thus, F and Rc are connected subgroups of Gess, but Rd is not. The natural conjugacy action of the
group F on the normal subgroup R is given by (λ̃3, λ̃2, λ̃1, λ̃0, σ̃ ) = (λ3, λ2, λ1, λ0, σ ) A in the parameter-
isation (6) of G, where A = �3(α, β, γ , δ) ⊕ (1), and �3 is the standard real irreducible four-dimensional
representation of SL(2,R), which can be identified with the action of SL(2,R) on binary cubics,

�3 : (α, β, γ , δ)αδ−βγ=1 �→

⎛
⎜⎜⎝
α3 3α2β 3αβ2 β3

α2γ 2αβγ + α2δ 2αβδ+ β2γ β2δ

αγ 2 2αγ δ+ βγ 2 2βγ δ+ αδ2 βδ2

γ 3 3γ 2δ 3γ δ2 δ3

⎞
⎟⎟⎠ .

3For the standard transformation composition, we have only the representation G = Ḡess
�Glin, where Ḡess is the pseudosub-

group of G consisting of the transformations of the form (6) with f = 0 and with all admitted domains. Thus, the pseudosubgroup
Ḡess does not possess a group structure.
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Summing up, the group Gess is isomorphic to (SL(2,R)�ϕ H(2,R)) ×Z2, where the antihomomor-
phism ϕ : SL(2,R) → Aut(H(2,R)) is defined, in the chosen local coordinates, by ϕ(α, β, γ , δ) =
(λ3, λ2, λ1, λ0, σ ) �→ (λ3, λ2, λ1, λ0, σ )A.

Transformations from the one-parameter subgroups of Gess that are generated by the basis elements
of gess given in (4) are of the following form:

Pt(ε) : t̃ = t + ε, x̃ = x, ỹ = y, ũ = u,
D(ε) : t̃ = e2εt, x̃ = eεx, ỹ = e3εx, ũ = e−2εu,

K(ε) : t̃ = t

1−εt
, x̃ = x

1−εt
+ 3εy

(1−εt)2
, ỹ = y

(1−εt)3
, ũ = (1−εt)2e

εx2
1−εt + 3ε2xy

(1−εt)2 + 3ε3y2

(1−εt)3 u,

P3(ε) : t̃ = t, x̃ = x + 3εt2, ỹ = y + εt3, ũ = e3ε(y−tx)−3ε2t3u,
P2(ε) : t̃ = t, x̃ = x + 2εt, ỹ = y + εt2, ũ = e−εx+ε2tu,
P1(ε) : t̃ = t, x̃ = x + ε, ỹ = y + εt, ũ = u,
P0(ε) : t̃ = t, x̃ = x, ỹ = y + ε, ũ = u,
I(ε) : t̃ = t, x̃ = x, ỹ = y, ũ = eεu,

where ε is the group parameter. At the same time, using this basis of gess in the course of studying the
structure of the group Gess hides some of its important properties and complicates its study.

Although the pushforward of the group Gess by the natural projection of R4
t,x,y,u onto Rt coincides with

the group of linear fractional transformations of t and is thus isomorphic to the group PSL(2,R), the
subgroup F of Gess is isomorphic to the group SL(2,R), and its Iwasawa decomposition is given by the
one-parameter subgroups of Gess, respectively, generated by the vector fields P t +K, D andP t. The first
subgroup, which is associated with P t +K, consists of the point transformations

t̃ = t cos ε − sin ε

t sin ε + cos ε
, x̃ = x

t sin ε + cos ε
− 3y sin ε

(t sin ε + cos ε)2
, ỹ = y

(t sin ε + cos ε)3
,

ũ = (t sin ε + cos ε)2 exp

(
x2 sin ε

t sin ε + cos ε
− 3xy sin2 ε

(t sin ε + cos ε)2
+ 3y2 sin3 ε

(t sin ε + cos ε)3

)
u (7)

parameterised by an arbitrary constant ε, which is defined by the corresponding transformation up to a
summand 2πk, k ∈ Z.

The equation (2) is invariant with respect to the involution J simultaneously alternating the sign of
(x, y),

J : (t, x, y, u) �→ (t, −x, −y, u).

In the context of the one-parameter subgroups of Gess that are generated by the basis elements of gess

listed in (4), the involution J looks like a discrete point symmetry transformation of (2), but in fact this
is not the case. It belongs to the one-parameter subgroup of Gess generated by P t +K. More precisely, it
coincides with the transformation (7) with ε = π . The value ε = π/2 corresponds to the transformation

K′ : t̃ = −1

t
, x̃ = x

t
− 3

y

t2
, ỹ = y

t3
, ũ = t2e

x2
t − 3xy

t2
+ 3y2

t3 u,

which also deceptively looks, in the above context, like a discrete point symmetry transformation of (2)
being independent with J since the factorisation J ◦K′ =Pt(1) ◦K(1) ◦ Pt(1) is not intuitive. This is
why it is relevant to accurately describe discrete point symmetries of the equation (2).

Corollary 3. A complete list of discrete point symmetry transformations of the remarkable Fokker–
Planck equation (2) that are independent up to combining with each other and with continuous point
symmetry transformations of this equation is exhausted by the single involution I′ alternating the sign
of u,

I′ : (t, x, y, u) �→ (t, x, y, −u).
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Thus, the quotient group of the complete point symmetry pseudogroup G with respect to its identity
component is isomorphic to Z2.

Proof. It is obvious that the entire pseudosubgroup Glin is contained in the connected component
of the identity transformation in G. The same claim holds for the subgroups F and Rc in view of their
isomorphisms to the groups SL(2,R) and H(2,R), respectively. Therefore, without loss of generality, a
complete list of independent discrete point symmetry transformations of (2) can be assumed to consist
of elements of the subgroup Rd. Thus, the only discrete point symmetry transformation of (2) that is
independent in the above sense is the transformation I′.

Hereafter, the transformations Pt(ε), D(ε), K(ε), P3(ε), P2(ε), P1(ε), P0(ε), I(ε), J, K′, J′ and Z( f )
are called elementary point symmetry transformations of the equation (2).

In view of Theorem 2, the formal application of the point symmetry transformation� := I
(
ln

√
3

2π

)
◦

P0(y′) ◦P1(x′) ◦ Pt(t′) ◦K′ of the equation (2),

� : t̃ = −1

t
+ t′, x̃ = x

t
− 3

y

t2
+ x′, ỹ = y

t3
+ y′,

ũ =
√

3

2π
t2 exp

(
x2

t
− 3

xy

t2
+ 3

y2

t3
+ 3x′x − 3x′ y

t
+ 3(x′)2t

)
u, (8)

maps the function u(t, x, y) = 1 − H(t) to the fundamental solution (3) of the equation (2). Recall that H
denotes the Heaviside step function. Note that attempts to interpret this fundamental solution within the
framework of group analysis of differential equations were made in [17, 20].

4. Classification of inequivalent subalgebras

In order to carry out the Lie reductions of codimension one and two for the equation (2) in the optimal
way, we need to classify one- and two-dimensional subalgebras of gess up to the Gess-equivalence. In
the course of this classification, we use the Levi decomposition gess = f ∈ r and the fact that the Levi
factor f is isomorphic to sl(2,R). This allows us to apply the technique of classifying the subalgebras of
an algebra with a proper ideal suggested in [29]. This technique becomes simpler if the algebra under
consideration can be represented as the semidirect sum of a subalgebra and an ideal, which are f and
r for the algebra gess, respectively. An additional simplification is that an optimal list of subalgebras of
sl(2,R) is well known (see, e.g. [28, 32]). Thus, for the realisation f of sl(2,R), this list consists of the
subalgebras {0}, 〈P t〉, 〈D〉, 〈P t +K〉, 〈P t, D〉 and f itself. The subalgebras s1 and s2 of gess are definitely
Gess-inequivalent if their projections πfs1 and πfs2 are F-inequivalent, see Section 3. Here and in what
follows, πf and πr denote the natural projections of gess onto f and r according to the decomposition
gess = f� r of the vector space gess as the direct sum of its subspaces f and r. In other words, we can use
the projections πfs of the subalgebras s of gess of the same dimension for partitioning the set of these
subalgebras into subsets such that each subset contains no subalgebra being equivalent to a subalgebra
from another subset.

Let us specifically describe applying the above technique to the classification of one- and two-
dimensional subalgebras of gess up to the Gess-equivalence. We fix the dimension d of subalgebras s
to be classified, either d = 1 or d = 2, and consider the subalgebras sf of f from the above list with
dimension d′ less than or equal to d. For each of these subalgebras, we take the set of d-dimensional
subalgebras of gess with πfs= sf and construct a complete list of Gess-inequivalent subalgebras in this
set.

One usually classifies subalgebras of a Lie algebra up to their equivalence generated by the group of
inner automorphisms of this algebra, and this group is computed by summing up Lie series or solving
Cauchy problems with the adjoint action of the algebra on itself, see, for example, [25, Section 3.3].
At the same time, we already know that the algebra gess is the Lie algebra of the group Gess, and the
actions of Gess and of the group of inner automorphisms of gess on gess coincide. Moreover, recall that
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for the purpose of finding Lie invariant solutions of the equation (2) subalgebras of gess have in fact to
be classified up to the Gess-equivalence. This is why following, for example, [15] we directly compute
the action of Gess on gess by pushing forward vector fields from gess by transformations from Gess. The
nonidentity pushforwards of basis elements of gess by the elementary transformations from Gess are the
following:

Pt(ε)∗D =D − 2εP t, K(ε)∗D =D + 2εK,
Pt(ε)∗K=K − εD + ε2P t, K(ε)∗P t =P t + εD + ε2K,
Pt(ε)∗P3 =P3 − 3εP2 + 3ε2P1 − ε3P0, K(ε)∗P2 =P2 + εP3,
Pt(ε)∗P2 =P2 − 2εP1 + ε2P0, K(ε)∗P1 =P1 + 2εP2 + ε2P3,
Pt(ε)∗P1 =P1 − εP0, K(ε)∗P0 =P0 + 3εP1 + 3ε2P2 + ε3P3,

D(ε)∗P t = e2εP t, D(ε)∗P3 = e−3εP3, D(ε)∗P1 = eεP1,
D(ε)∗K = e−2εK, D(ε)∗P2 = e−εP2, D(ε)∗P0 = e3εP0,

P3(ε)∗P t =P t + 3εP2, P0(ε)∗D =D − 3εP0,
P3(ε)∗D =D + 3εP3, P0(ε)∗K =K − 3εP1,
P3(ε)∗P0 =P0 + 3εI, P0(ε)∗P3 =P3 − 3εI,

P2(ε)∗P t =P t + 2εP1 − ε2I, P1(ε)∗P t =P t + εP0,
P2(ε)∗D =D + εP2, P1(ε)∗D =D − εP1,
P2(ε)∗K=K − εP3, P1(ε)∗K=K − 2εP2 − ε2I,
P2(ε)∗P1 =P1 − εI, P1(ε)∗P2 =P2 + εI,

J∗(P3, P2, P1, P0) = (−P3, −P2, −P1, −P0),
K∗

′(P t,D, K, P3, P2, P1, P0) = (K, −D, P t, P0, −P1, P2, −P3).

The result of the classification of one- and two-dimensional subalgebras of gess up to the Gess-
equivalence is presented in the two subsequent lemmas.

Lemma 4. A complete list of Gess-inequivalent one-dimensional subalgebras of gess is exhausted by the
subalgebras

s1.1 = 〈P t +P3〉, sδ1.2 = 〈P t + δI〉, sν1.3 = 〈D + νI〉, sμ1.4 = 〈P t +K +μI〉,
sε1.5 = 〈P2 + εP0〉, s1.6 = 〈P1〉, s1.7 = 〈P0〉, s1.8 = 〈I〉,

where ε ∈ {−1, 1}, δ ∈ {−1, 0, 1}, and μ and ν are arbitrary real constants with ν � 0.

Proof. A complete set of F-inequivalent d′-dimensional subalgebras of f with d′ � 1 consists of the
subalgebras 〈P t〉, 〈D〉, 〈P t +K〉 and {0}. Therefore, without loss of generality we can consider only
one-dimensional subalgebras of gess with basis vector fields Q of the general form

Q = Q̂ + a3P3 + 3a2P2 + 3a1P1 + a0P0 + bI,

where Q̂ ∈ {P t, D, Pt +K, 0} and a0, . . ., a3 and b are real constants. We factor out the multiplier 3 in
the coefficients of P1 and P2 since then the coefficients a3, a2, a1 and a0 are changed under the action
of F in the same way as the coefficients of the real cubic binary form a3x3 + 3a2x2y + 3a1xy2 + a0y3

are changed under the standard action of the group of linear fractional transformations on such forms,
cf. [24, Example 2.22]. We need to further simplify the vector fields Q of the above form by acting with
elements of Gess on them and/or scaling them.

Let Q̂ =P t. If a3 �= 0, then we successively set a3 = 1, a2 = a1 = a0 = 0 and b = 0 using D(eε4 )∗
simultaneously with rescaling Q, P1(ε1)∗ ◦P2(ε2)∗ ◦ P3(ε3)∗ and P0(ε0)∗, with appropriate constants εi,
i = 0, . . . , 4, respectively. This gives the subalgebra s1.1. Similarly, for a3 = 0, we apply P3(ε2)∗, P2(ε1)∗
andP1(ε0)∗ with appropriate constants εi, i = 1, 2, 3, to get rid of a2, a1 and a0. Then, the action ofD(eεb )∗
with appropriate εb and rescaling Q allow us to set b ∈ {−1, 1} if b �= 0. Thus, we obtain the subalge-
bras sδ1.2.
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For Q̂ =D and Q̂ =P t +K, removing the summands with P3, P2, P1 and P0 is analogous. The
only possible further simplification is that in the case Q̂ =D, the sign of the obtained value of b can be
alternated using K′

∗ and alternating the sign of Q. This results in the collections of the subalgebras sν1.3

and sμ1.4, respectively.
Let Q̂ = 0. The classification of real binary cubics presented in the second table on page 26

in [24] implies that, up to the F-equivalence and rescaling Q, we have a3 = 0 and (3a2, 3a1, a0) ∈
{(1, ε, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0)}. If (a3, a2, a1, a0) �= (0, 0, 0, 0), then using one of the actions P3(ε)∗,
P2(ε)∗, P1(ε)∗ and P0(ε)∗ we can set b = 0; otherwise, we set b = 1 by rescaling Q. Thus, we obtain the
rest of subalgebras from the list given in the lemma’s statement.

Lemma 5. A complete list of Gess-inequivalent two-dimensional subalgebras of gess is given by

sμ2.1 = 〈P t, D +μI〉, sδ2.2 = 〈P t + δI, P0〉, s2.3 = 〈P t, P0 + I〉,
sμ2.4 = 〈D +μI, P1〉, sμ2.5 = 〈D +μI, P0〉,
s2.6 = 〈P0, P1〉, s2.7 = 〈P0, P2〉, sε2.8 = 〈P1, P3 + εP0〉,
s2.9 = 〈P t +P3, I〉, sδ2.10 = 〈P t, I〉, s2.11 = 〈D, I〉, s2.12 = 〈P t +K, I〉,
sε2.13 = 〈P2 + εP0, I〉, s2.14 = 〈P1, I〉, s2.15 = 〈P0, I〉,

where ε ∈ {−1, 1}, δ ∈ {−1, 0, 1}, and μ is an arbitrary real constant.

Proof. A complete set of F-inequivalent d′-dimensional subalgebras of f with d′ � 2 consists of the
subalgebras 〈P t, D〉, 〈P t〉, 〈D〉, 〈P t +K〉 and {0}. Therefore, without loss of generality, we can consider
only two-dimensional subalgebras of gess with basis vector fields of the general form Qi = Q̂i + Q̌i, i =
1, 2, where

(Q̂1, Q̂2) ∈ {(P t, D), (P t, 0), (D, 0), (P t +K, 0), (0, 0)
}
,

and Q̌i = ai3P3 + 3ai2P2 + 3ai1P1 + ai0P0 + biI with real constants aij and bi, i = 1, 2, j = 0, . . . , 3. We
further need to simplify Q̌i by linearly recombining the vector fields Qi and acting on them by elements
from Gess, while simultaneously maintaining the closedness of the subalgebras with respect to the Lie
bracket, [Q1, Q2] ∈ 〈Q1, Q2〉, under the condition dim〈Q1, Q2〉 = 2 and preserving Q̂i.

We separately consider each of the values of (Q̂1, Q̂2) in the above set.
(P t, D). Then according to Lemma 4, up to the Gess-equivalence, the vector field Q1 is equal to either

P t +P3 or P t + δI. The first value is not appropriate, since then [Q1, Q2] = 2P t − 3P3 + Q̃ with Q̃ ∈
〈P2, P1, P0, I〉 and thus [Q1, Q2] /∈ 〈Q1, Q2〉 for any Q̌2 ∈ r. For the second value, requiring the condition
[Q1, Q2] ∈ 〈Q1, Q2〉 implies a23 = a22 = a21 = δ= 0. Acting by P0(a20)∗ on Q2, we can set a20 = 0. Thus,
we obtain the subalgebra sμ2.1 with μ= b2.

In all the other cases, we have Q̂2 = 0. If, in addition, a2j = 0, j = 0, . . . , 3, then Q2 = I, and
thus, the basis elements Q1 and Q2 commute. The corresponding canonical forms of Q1 modulo the
Gess-equivalence are given by the basis elements of the one-dimensional algebras s1.1, . . ., s1.7 from
Lemma 4 up to neglecting the summands with I due to the possibility of linearly combining Q1 with Q2.
This results in the subalgebras s2.9, . . ., s2.15. Hence, below we assume that (a23, a22, a21, a20) �= (0, 0, 0, 0)
and, moreover, rank(aij)

i=1,2
j=0,...,3 = 2 if Q̂1 = Q̂2 = 0.

(P t, 0). The closedness of 〈Q1, Q2〉 with respect to the Lie bracket implies a23 = a22 = a21 = a13a20 = 0
and thus a13 = 0 since then a20 �= 0. Hence, Q1 =P t + b1I and Q2 =P0 + b2I.

If b2 = 0, we can rescale b1 to δ by combining D(ε)∗ with scaling the entire vector field Q1. This
results in the subalgebras sδ2.2.

Let b2 �= 0. Simultaneously acting by D(ε)∗ with the suitable value of ε, rescaling b2 and, if b2 < 0,
acting by J∗ and alternating the sign of Q2, we can set b2 = 1. Then, the pushforward P1(b1)∗ preserves
Q2, and P1(b1)∗Q1 =P t + b1Q2. After linearly combining Q1 with Q2, we obtain the subalgebras s2.3.

(D, 0). In view of Lemma 4, we can reduce Q1 toD +μI modulo the Gess-equivalence. The condition
[Q1, Q2] ∈ 〈Q1, Q2〉 and the commutation relations of D with basis elements of r imply that up to scaling
of Q2, we have

(a23, 3a22, 3a21, a20, b2) ∈ {(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0)},
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where the first and the second values are reduced by K′
∗ to the third and the fourth values, respectively.

Thus, we obtain the subalgebras sμ2.4 and sμ2.5.
(P t +K, 0). This pair is not appropriate since, from the closedness of 〈Q1, Q2〉 with respect to the

Lie bracket, we straightforwardly derive a2j = 0, j = 0, . . . , 3.
(0, 0). Using Lemma 4, from the very beginning we can set Q1 ∈ {P2 + εP0, P1, P0}. Since

rank(aij)
i=1,2
j=0,...,3 = 2 here, simultaneously with b1 = 0 we can set b2 = 0 using the suitable pushforward

P1(ε)∗.
For Q = a3P3 + 3a2P2 + 3a1P1 + a0P0 with ā := (a0, a1, a2, a3) �= (0, 0, 0, 0), we denote

Discr(Q) := a2
0a

2
3 − 6a0a1a2a3 + 4a0a

3
2 − 3a2

1a
2
2 + 4a3

1a3.

The association with cubic binary forms implies that Q ∈ {P0, P1} modulo the Gess-equivalence if and
only if Discr(Q) = 0, cf. [24, Example 2.22]. To distinguish inequivalent subalgebras in the present
classification case, we will consider lines in the space run by ā, where Discr(Q) = 0. We call such lines
singular. It is obvious that two-dimensional subalgebras in 〈P0, P1, P2, P3〉 are Gess-inequivalent if they
possess different numbers of singular lines associated with their elements or, more precisely, different
sets of multiplicities of such singular lines.

If Q1 =P0, then the condition [Q1, Q2] ∈ 〈Q1, Q2〉 implies a23 = 0, and we can set a20 = 0 at any step
by linearly combining Q2 with Q1.

The case a22 = 0 corresponds to the subalgebra s2.6. Discr(Q) = 0 for any Q ∈ s2.6, that is, the
subalgebra s2.6 possesses an infinite number of singular lines.

For a22 �= 0, we divide Q2 by a22, act by Pt(ε)∗ with ε = a21/(2a22) and reset a20 = 0, linearly com-
bining Q2 with Q1, which gives the basis of the subalgebra s2.7. For an arbitrary vector field Q =
a0P0 + 3a2P2 in s2.7, we obtain Discr(Q) = 4a0a 3

2 , and thus, the subalgebra s2.7 possesses one singular
line of multiplicity one and one singular line of multiplicity three.

If Q1 =P1, then the condition [Q1, Q2] ∈ 〈Q1, Q2〉 implies a22 = 0, and we can set a21 = 0 at any step,
linearly combining Q2 with Q1. We can assume a23 �= 0 since otherwise we again obtain the subalgebra
s2.6. Rescaling the basis element Q2, we set a23 = 1. The subalgebra 〈P1, P3〉 is mapped by K′

∗ to the
subalgebra s2.7. This is why the coefficient a20 should be nonzero as well. The action by D(ε)∗ with the
suitable value of ε allows us to set a20 = ε, that is, we derive the subalgebras sε2.8. For an arbitrary vector
field Q = 3a1P1 + a3(P3 + εP0) in sε2.8, we obtain Discr(Q) = a3(4a3

1 + a3
3). This means that each of the

subalgebras sε2.8 possesses two singular line of multiplicity one.
The consideration of the case Q1 =P2 + εP0 is the most complicated. The span 〈Q1, Q2〉 is closed

with respect to the Lie bracket if and only if a21 = −εa23. The coefficient a22 is set to zero by linearly
combining Q2 with Q1. If a23 = 0, then a21 = 0 as well, and we again obtain the subalgebra s2.7. Let then
further a23 �= 0. We scale Q2 to set a23 = 1, which leads to Q2 =P3 − 3εP1 + αP0 with α := a20. We
intend to show that depending on the value of (ε, α), the subalgebra s := 〈Q1, Q2〉 is Gess-equivalent to
either the subalgebra s2.7 or the subalgebra s2.8.

We compute that

Discr(Q) = 12εa 4
2 + 4αa3a

3
2 + 24a 2

3 a 2
2 + 12εαa 3

3 a2 + a 4
3α

2 − 4a 4
3 ε

for a nonzero vector field Q = 3a2Q1 + a3Q2 in s. If a3 = 0 and thus a2 �= 0, then Discr(Q) = 12εa 4
2 �= 0,

that is, the corresponding line is not singular. Hence, we can further set a3 �= 0 and assume without loss
of generality that a3 = 1. Thus, finding singular lines associated with the subalgebra s reduces to solving
the quartic equation Discr(Q) = 0 with respect to a2. The substitution a2 = z − εα/12 and the division of
the left-hand side by 12ε reduce this equation to its monic depressed counterpart z4 + pz2 + qz + r = 0,
where

p := − 1

24
α2 + 2ε, q := ε

216
α3 + 2

3
α, r := − 1

6912
α4 + ε

72
α2 − 1

3
.
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To find the number of (real) roots of this equation, following [3, p. 53] we compute

δ := 256r3 − 128p2r2 + 144pq2r + 16p4r − 27q4 − 4p3q2 = − 1

432
(α2 + 16ε)4,

L := 8pr − 9q2 − 2p3 = − ε

12
(α2 + 16ε)2.

Thus, there are only two cases for the number of roots of the equation Discr(Q) = 0. Note that in
both cases, this number is not zero. Therefore, as indicated above, the subalgebra s contains, modulo the
Gess-equivalence, at least one of the vector fields P0 and P1, and thus we can use the considerations of
the cases where Q1 =P0 or Q1 =P1. This is why the recognition of the corresponding representatives
among subalgebras listed in the lemma’s statement depends only on the root structure of the equation
Discr(Q) = 0.

1. If either ε= −1 and α �= ±4 or ε= 1, then δ < 0, and hence the equation Discr(Q) = 0 has two
roots of multiplicity one, which corresponds to two singular lines of multiplicity one for the subalgebra
s. Therefore, this algebra is Gess-equivalent to one of the subalgebras sε2.8.

2. If ε= −1 and α = ±4, then δ= L = 0 and p< 0, and thus, the equation Discr(Q) = 0 has one
root of multiplicity one and one root of multiplicity three, which corresponds to one singular line of
multiplicity one and one singular line of multiplicity three for the subalgebra s. Hence, this algebra is
Gess-equivalent to the subalgebra s2.7.

We can also classify one and two-dimensional subalgebras of the entire algebra g up to the G-
equivalence and show that only subalgebras of gess are essential in the course of classifying Lie reductions
of the equation (2). Thus, according to the decomposition G = Gess

� Glin (see Section 3), an arbi-
trary transformation � from G can be represented in the form �= F ◦ Z( f ), where F ∈ Gess and
Z( f ) ∈ Glin. To exhaustively describe the adjoint action of G on the algebra g, in view of the decom-
position g= gess ∈ glin it suffices to supplement the adjoint action of Gess on gess with the adjoint actions
of Gess on glin and of Glin on gess, Z( f )∗Q = Q + Q[ f ]∂u and F∗Z( f ) =Z(F∗ f ), whereas the adjoint
action of Glin on glin is trivial. Here Q is an arbitrary vector field from gess, Q[ f ] denotes the evaluation
of the characteristic Q[u] of Q at u = f , and F is an arbitrary transformation from Gess.

The classification of subalgebras of g is based on the classification of subalgebras of gess. This is
due to the fact that subalgebras s1 and s2 of g are definitely G-inequivalent if πgesss1 and πgesss2 are
Gess-inequivalent. Here πgess denotes the natural projection of g onto gess under the decomposition g=
gess � glin in the sense of vector spaces. In the course of classifying the subalgebras s of g of a fixed
(finite) dimension, we partition the set of these subalgebras into subsets such that each subset consists
of the subalgebras with the same (up to the Gess-equivalence) projection πgesss. As a result, each of these
subsets contains no subalgebra being equivalent to a subalgebra from another subset.

The classification of one- and two-dimensional subalgebras of g up to the G-equivalence is given in
the following two assertions.

Lemma 6. A complete list of G-inequivalent one-dimensional subalgebras of g consists of the
one-dimensional subalgebras of gess listed in Lemma 4 and the subalgebras of the form 〈Z( f )〉,
where the function f belongs to a fixed complete set of Gess-inequivalent nonzero solutions of the
equation (2).

Proof. Consider an arbitrary one-dimensional subalgebra s of g. Let Q be its basis element. We can
represent Q as Q = Q̂ +Z( f ) for some Q̂ ∈ gess and some solution f of the equation (2).

If Q̂ �= 0, then Lemma 4 implies that, modulo the Gess-equivalence, the vector field Q̂ can be assumed
to be the basis element of one of the subalgebras s1.1, . . ., s1.8 of gess. Then, we set f identically equal to
zero by pushing Q forward with Z(h), where h is a solution of the equation (2) that in addition satisfies
the constraint Q̂[h] + f = 0.4

4For Q̂ = I , the constraint Q̂[h] + f = 0 just means h = − f . For the other values of Q̂ and locally analytical solutions f of the
equation (2), the existence of locally analytical solutions of the system ht + xhy = hxx, Q̂[h] + f = 0 with respect to h follows from
Riquier’s theorem and the fact that Q̂ is a Lie-symmetry vector field of (2). We suppose this existence in the smooth case as well.
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If Q̂ = 0, then Q =Z( f ). It suffices to note that the G- and Gess-equivalences coincide on glin.

Lemma 7. A complete list of G-inequivalent two-dimensional subalgebras of g consists of

1. the two-dimensional subalgebras of gess listed in Lemma 5,
2. the subalgebras of the form 〈Q̂, Z( f )〉, where Q̂ is the basis element of one of the one-dimensional

subalgebras s1.1, . . ., s1.7 of gess listed in Lemma 4, and the function f belongs to a fixed com-
plete set of StGess (〈Q̂〉)-inequivalent nonzero 〈Q̂ + λI〉-invariant solutions of the equation (2) with
StGess (〈Q̂〉) denoting the stabiliser subgroup of Gess with respect to 〈Q̂〉 under the action of Gess on
gess and with λ∈ {0, 1} if Q̂ ∈ {P1, P0}, λ ∈ {−1, 0, 1} if Q̂ =P t, λ� 0 if Q̂ =P2 + εP0 and λ ∈R

otherwise,
3. the subalgebras of the form 〈I, Z( f )〉, where the function f belongs to a fixed complete set of

Gess-inequivalent nonzero solutions of the equation (2), and
4. the subalgebras of the form 〈Z( f 1),Z( f 2)〉, where the function pair ( f 1, f 2) belongs to a fixed

complete set of Gess-inequivalent (up to linearly recombining components) pairs of linearly
independent solutions of the equation (2).

Proof. Consider an arbitrary two-dimensional subalgebra s of g, and let Q1 and Q2 be its basis ele-
ments, s= 〈Q1, Q2〉 with [Q1, Q2] ∈ s. Due to the decomposition g= gess ∈ glin, each Qi, i = 1, 2, can
be represented in the form Qi = Q̂i +Z( f i), where Q̂i ∈ gess and the function f i is a solution of the
equation (2). As the principal G-invariant value in the course of classifying two-dimensional subalgebras
of g, we choose the dimension d := dim πgesss of the projection of s onto gess.

d = 2. Up to the Gess-equivalence, the pair (Q̂1, Q̂2) can be assumed to be the chosen basis of one of
the subalgebras sμ2.1, . . ., s2.15 of gess listed in Lemma 5.

For the subalgebras s2.9, . . ., s2.15, we have Q2 = I. Pushing s forward with Z(h), where h = − f 2, we
can set f 2 = 0. Then, the commutation relation [Q1, Q2] = 0 implies f 1 = 0.

For the subalgebras sμ2.1, . . ., sε2.8, let κ1 and κ2 be the constants such that [Q̂1, Q̂2] = κ1Q̂1 + κ2Q̂2.
Then, the functions f 1 and f 2 satisfy the constraint Q̂1[ f 2] − Q̂2[ f 1] = κ1 f 1 + κ2 f 2. Hence, we can set
them to be identically zero using the pushforward Z(h)∗, where h is a solution of the overdetermined
system

ht + xhy = hxx, Q̂1[h] + f 1 = 0, Q̂2[h] + f 2 = 0

with respect to h.5
In total, this results in the first family of subalgebras from the lemma’s statement.
d = 1. Without loss of generality, we can assume Q̂2 = 0 up to linearly recombining the basis elements

Q1 and Q2 and thus f 2 �= 0, whereas modulo the Gess-equivalence, the vector field Q̂1 can be assumed
to be the basis element of one of the subalgebras s1.1, . . ., s1.8 of gess that are listed in Lemma 4. Then
Lemma 4 also implies that f 1 = 0 up to the Gess-equivalence.

For the subalgebras s1.1, . . ., s1.7, we have Q̂1 /∈ 〈I〉. Following the proof of Lemma 6, we can set the
function f 1 to be identically zero. Then, the closedness of the subalgebra swith respect to the Lie bracket
implies the constraint Q̂1[ f 2] = λ f 2. In other words, the function f 2 is a 〈Q̂1 + λI〉-invariant solution
of the equation (2). Transformations from the group StGess (〈Q̂1〉) allow us to set, depending on the value
of Q̂1, the restrictions on λ that are presented in item 2 of the lemma’s statement. The transformations
from StGess (〈Q̂1〉) that preserve λ also induce an equivalence relation on the corresponding set run by f 2.

Since Q̂1 = I for the subalgebra s1.8, in the way described in the proof of Lemma 6, we can set the
function f 1 to be identically zero. Then the only commutation relation of the algebra s is [Q1, Q2] = Q2,

In fact, the proof of this existence reduces to the existence of a solution of linear inhomogeneous partial differential equation in
two independent variables, whose homogeneous counterpart coincides with a reduction of the equation (2) with respect to 〈Q̂〉.

5Similarly to the proof of Lemma 6, for locally analytical solutions f 1 and f 2 of the equation (2) that satisfy the above constraint,
the existence of locally analytical solutions of the last system follows from Riquier’s theorem and the fact that Q̂1 and Q̂2 are
Lie-symmetry vector fields of (2), and we assume this existence in the smooth case as well.
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Table 1. G-inequivalent Lie reductions of codimension one

no. u z1 z2 Reduced equation
1.1 e 3

10 t(t4−5tx+10y)w y − 1
4
t4 x − t3 z2w1 = w22 − 3z1w

1.2δ eδtw y x z2w1 = w22 − δw
1.3ν |t| 1

2 ν−1w |t|− 3
2 y |t|− 1

2 x (2z2 − 3ε′z1)w1 = 2w22 + z2ε
′w2 − (ν−2)ε′w

1.4μ
e−ψ(t,x,y,μ)

t2 + 1
w

y

(t2 + 1)
3
2

(t2 + 1)x − 3ty

(t2 + 1)
3
2

z2w1 = 3z1w2 + w22 + (μ+ z2
2)w

1.5ε |t|− 1
2 e− x2

4t w 1
3
t3 + 2εt − t−1 2y − (t + εt−1)x w1 = w22

1.6 w 1
3
t3 y − tx w1 = w22

1.7 w t x w1 = w22

Here ε′ = sgn t, ε ∈ {−1, 1}, δ ∈ {−1, 0, 1}, w = w(z1, z2) is the new unknown function of the new independent variables (z1, z2), and

ψ(t, x, y,μ) = 3t3y2 + t(2x(t2 + 1) − 3ty)2

4(t2 + 1)3
+μ arctan t.

which implies no constraint for the function f 2, and StGess (〈I〉) = Gess. Hence in this case, the param-
eter function f 2 should run through a fixed complete set of Gess-inequivalent nonzero solutions of the
equation (2).

Thus, we obtained the second and third families of subalgebras listed in the lemma’s statement.
d = 0. This case is obvious since then Q̂1 = Q̂2 = 0. In other words, the subalgebra 〈Q1, Q2〉 is of

the form 〈Z( f 1), Z( f 2)〉, where f 1 and f 2 are linearly independent solutions of the equation (2), which
should be chosen modulo the Gess-equivalence and linearly recombining.

5. Lie reductions of codimension one

The classification of Lie reductions of the equation (2) to partial differential equations with two indepen-
dent variables is based on the classification of one-dimensional subalgebras of the algebra gess, which
is given in Lemma 4. In Table 1, for each of the subalgebras listed therein, we present an associated
ansatz for u and the corresponding reduced equation. Throughout this section, the subscripts 1 and 2 of
functions depending on (z1, z2) denote derivatives with respect to z1 and z2, respectively. In this and the
next sections, we mark Lie reductions and all related objects with complex labels d.i∗, where d, i and ∗
are the dimension of the corresponding subalgebra, its number in the list of d-dimensional subalgebras
of the algebra gess, which is given in Lemma 4 for d = 1 or in Lemma 5 for d = 2, and the list of sub-
algebra parameters for a subalgebra family, respectively. We omit the superscript in the label when it is
not essential.

Each of the reduced equations 1.i presented in Table 1, i ∈ {1, 2δ, 3ν , 4μ, 5ε, 6, 7}, is a linear homo-
geneous partial differential equation in two independent variables. Hence, its maximal Lie invariance
algebra g1.i contains the infinity-dimensional abelian ideal {h(z1, z2)∂w}, which is associated with the lin-
ear superposition of solutions of reduced equation 1.i and thus assumed to be a trivial part of g1.i. Here
the parameter function h = h(z1, z2) runs through the solution set of reduced equation 1.i. Moreover,
the algebra g1.i is the semidirect sum of the above ideal and a finite-dimensional subalgebra ai called
the essential Lie invariance algebra of reduced equation 1.i, cf. Section 2. The algebras ai are the
following:

a1 = a3 = a4 = 〈w∂w〉,
a0

2 = 〈∂z1 , 3z1∂z1+ z2∂z2 , 9z2
1∂z1+ 6z1z2∂z2− (6z1 + z3

2)w∂w, w∂w〉,
aδ2 = 〈∂z1 , w∂w〉 if δ �= 0,

a5 = a6 = a7 = 〈∂z1 , ∂z2 , 2z1∂z1+ z2∂z2 , 2z1∂z2− z2w∂w,

4z2
1∂z1+ 4z1z2∂z2− (2z1 + z2

2)w∂w, w∂w〉.
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The equation (2) admits hidden symmetries with respect to a Lie reduction if the corresponding
reduced equation possesses Lie symmetries that are not induced by Lie symmetries of the original equa-
tion (2). To check which Lie symmetries of reduced equation 1.i are induced by Lie symmetries of (2),
we compute the normaliser of the subalgebra s1.i in the algebra gess:

Ngess (s1.1) = 〈P t +P3, I〉, Ngess (s0
1.2) = 〈P t, D, P0, I〉, Ngess (sδ1.2) = 〈P t, P0, I〉 if δ �= 0,

Ngess (sν1.3) = 〈D, I〉, Ngess (sμ1.4) = 〈P t +K, I〉, Ngess (sε1.5) = 〈P2, P0, P3 − 3εP1, I〉,
Ngess (s1.6) = 〈D, P3, P1, P0, I〉, Ngess (s1.7) = 〈P t, D, P2,P1, P0, I〉.

The algebra of induced Lie symmetries of reduced equation 1.i is isomorphic to the quotient algebra
Ngess (s1.i)/s1.i. Thus, all Lie symmetries of the reduced equation 1.i are induced by Lie symmetries of the
original equation (2) if and only if dim ai = dim Ngess (s1.i) − 1. Comparing the dimensions of Ngess (s1.i)
and ai, we conclude that all Lie symmetries of reduced equations 1.1, 1.3 and 1.4 are induced by Lie
symmetries of (2). The subalgebras of induced symmetries in the algebras aδ2 and a5, . . ., a7 are

ã
0
2 = 〈∂z1 , 3z1∂z1+ z2∂z2 , w∂w〉, ã

δ

2 = 〈∂z1 , w∂w〉 if δ �= 0,

ã5 = 〈∂z2 , 2z1∂z2− z2w∂w, w∂w〉,
ã6 = 〈∂z2 , 2z1∂z1+ z2∂z2 , 2z1∂z2− z2w∂w, w∂w〉,
ã7 = 〈∂z1 , ∂z2 , 2z1∂z1+ z2∂z2 , 2z1∂z2− z2w∂w, w∂w〉.

For each i ∈ {20, 5, 6, 7}, the elements of the complement ai/ãi are nontrivial hidden symmetries of
the equation (2) that are associated with reduction 1.i. See Appendix B on an optimised procedure for
constructing exact solutions using hidden symmetries.

We discuss reduced equations 1.1–1.7 and present solutions of (2) that can be found using the known
solutions of the reduced equations.

Using point transformations, we can further map reduced equations 1.1–1.4 to (1 + 1)-dimensional
linear heat equations with potentials, which are of the general form w1 = w22 + Vw, where V is an
arbitrary function of (z1, z2). These transformations and mapped equations are

1.1. z̃1 = 9
4
ε̃z1, z̃2 = |z2| 3

2 , w̃ = |z2| 1
4 w with ε̃: = sgn z2: w̃1 = w̃22 − 1

9

(
16
3
ε̃z̃1z̃

− 2
3

2 − 5
4
z̃−2

2

)
w̃;

1.2δ. z̃1 = 9
4
ε̃z1, z̃2 = |z2| 3

2 , w̃ = |z2| 1
4 w with ε̃: = sgn z2: w̃1 = w̃22 − 1

9

(
4δz̃

− 2
3

2 − 5
4
z̃−2

2

)
w̃;

1.3ν. z̃1 = 9
4
ε̃z1, z̃2 = |z2 − 3

2
ε′z1| 3

2 , w̃ = |2z2 − 3ε′z1| 1
4 e 1

8 z2(4ε
′
z2−9z1)w with ε̃ := sgn(z2 − 3

2
ε′z1):

w̃1 = w̃22 + 1
144

z̃
− 2

3
2

(
16z̃2

1 − 40(z̃
2
3
2 + 2

3
ε′z̃1)2 + 20z̃

− 4
3

2 − 32ε′ν
)

w̃;

1.4μ. z̃1 = 9
4
ε̃z1, z̃2 = |z2| 3

2 , w̃ = |z2| 1
4 e 3

2 z1z2 w with ε̃ := sgn z2:
w̃1 = w̃22 + 1

9

(
5
4
z̃−2

2 + 10z̃
2
3
2 + (4μ− 9z̃2

1)z̃
− 2

3
2

)
w̃.

The essential Lie invariance algebras of reduced equations 1.1, 1.3 and 1.4 are trivial, and thus, the
further consideration of these equations within the classical framework gives no results.

Mapped reduced equation 1.20 coincides with the linear heat equation with potential V =μz−2
2 , where

μ= 5
36

. Hence, we construct the following family of solutions of the equation (2):

• u = |x|− 1
4 θμ

(
9

4
ε̃y, |x| 3

2

)
with μ= 5

36
,

where θμ = θμ(z1, z2) is an arbitrary solution of the equation θμ1 = θ
μ

22 +μz−2
2 θ

μ, and ε̃: = sgn x. A com-
plete collection of inequivalent Lie invariant solutions of equations of such form with general μ �= 0 is
presented in Appendix A.

The essential Lie invariance algebra of reduced equation 1.2δ with δ �= 0 is induced by the subalgebra
〈P0, I〉 of gess. The subalgebras of aδ2 that are appropriate for Lie reduction of reduced equation 1.2δ are
exhausted by the subalgebras of the form 〈∂z1+ νw∂w〉, which are respectively induced by the subalgebras
〈P0 + νI〉 of gess. This is why the family of solutions of reduced equation 1.2δ that are invariant with
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Table 2. G-inequivalent Lie reductions of codimension two

no. u ω Reduced equation
2.1μ |y| 1

3 (μ−2)ϕ y−1x3 9ωϕωω + (ω+ 6)ϕω = 1
3
(μ− 2)ϕ

2.2δ eδtϕ x ϕωω = δϕ

2.3 eyϕ x ϕωω =ωϕ

2.4μ |t| 1
2μ−1ϕ |t|− 3

2 (y − tx) 2ϕωω = ε′(μ− 2)ϕ− 3ε′ωϕω
2.5μ |t| 1

2μ−1ϕ |t|− 1
2 x 2ϕωω = ε′(μ− 2)ϕ− ε′ωϕω

2.6 ϕ t ϕω = 0

2.7 e− x2
4t ϕ t 2ωϕω + ϕ= 0

2.8ε e− 3
2

(y−tx)2

2t3−ε ϕ t (2ω3 − ε)ϕω + 3ω2ϕ= 0

Here ε′ = sgn t, ϕ= ϕ(ω) is the new unknown function of the invariant independent variable ω.

respect to 〈∂z1+ νw∂w〉 gives a family of solutions of the equation (2) that is contained, up to the Gess-
equivalence, in the family of 〈P0〉-invariant solutions, see reduction 1.7.

Each of reduced equations 1.5–1.7 itself coincides with the classical (1 + 1)-dimensional linear heat
equation, which leads to the following families of solutions of the equation (2):

• u = |t|− 1
2 e− x2

4t θ (z1, z2), where z1 = 1

3
t3 + 2εt − t−1, z2 = 2y − (t + εt−1)x,

• u = θ (z1, z2), where z1 = 1

3
t3, z2 = y − tx,

• u = θ (z1, z2), where z1 = t, z2 = x.

Here θ = θ (z1, z2) is an arbitrary solution of the (1 + 1)-dimensional linear heat equation, θ1 = θ22. An
enhanced complete collection of inequivalent Lie invariant solutions of this equation was presented in
[40, Section A], following Examples 3.3 and 3.17 in [25]. These solutions exhaust, up to combining
the Gess-equivalence and linear superposition with each other, the set of known exact solutions of this
equation that are expressed in a closed form in terms of elementary and special functions.

6. Lie reductions of codimension two

Based on the list of Gess-inequivalent two-dimensional subalgebras from Lemma 5, we carry out the
exhaustive classification of codimension-two Lie reductions of the equation (2). In Table 2, for each
of these subalgebras, we present an associated ansatz for u and the corresponding reduced ordinary
differential equation.

We find (nonzero) exact solutions of the constructed reduced equations and present the associated
exact solutions of the equation (2). Hereafter, C0, C1 and C2 are arbitrary constants.

2.1. Only this codimension-two Lie reduction results in new exact solutions of (2) in comparison with
those constructed using Lie reductions with respect to one-dimensional subalgebras. The substitution
ϕ = |ω| 1

3 e− ω
9 ϕ̃(ω) maps reduced equation 2.1 to a Kummer’s equation

9ωϕ̃ωω + (12 −ω)ϕ̃ω = μ+ 1

3
ϕ̃,

whose general solution is

ϕ̃ = C1M

(
μ+ 1

3
,

4

3
,
ω

9

)
+ C2U

(
μ+ 1

3
,

4

3
,
ω

9

)
,

where M(a, b, z) and U(a, b, z) denote the standard solutions of general Kummer’s equation zϕzz +
(b − z)ϕz − aϕ = 0. After taking κ := 1

3
(μ+ 1) instead of μ as an arbitrary constant parameter, the
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corresponding family of particular solutions of the equation (2) can be represented in the form

• u = x|y|κ− 4
3 e−ω̃

(
C1M

(
κ ,

4

3
, ω̃

)
+ C2U

(
κ ,

4

3
, ω̃

))
with ω̃ := x3

9y
.

It also admits the equivalent representation

• u = x−1|y|κ− 2
3 e− ω̃

2

(
C1M 2

3 −κ , 1
6
(ω̃) + C2W 2

3 −κ , 1
6
(ω̃)
)

with ω̃ := x3

9y

in terms of the Whittaker functions Ma,b(z) and Wa,b(z), which constitute the fundamental solution set of
the Whittaker equation (16), due to a relation of these functions to Kummer’s functions,

Ma,b(z) := e− z
2 zb+ 1

2 M

(
b − a + 1

2
, 1 + 2b, z

)
,

Wa,b(z) := e− z
2 zb+ 1

2 U

(
b − a + 1

2
, 1 + 2b, z

)
.

The rest of the reductions only lead to solutions of the equation (2), each of which is Gess-equivalent
to a solution of form 1.6 or 1.7 given in Section 5. Indeed, each of the corresponding subalgebras s2.2,
. . ., s2.8 contains, up to the Gess-equivalence for the subalgebra s2.3, at least one of the vector fields P0

and P1. Nevertheless, we discuss these reductions below in order to explicitly present solutions of (2)
that are invariant with respect to two-dimensional algebras of Lie-symmetry vector fields of (2).

2.2δ. Reduced equation 2.2δ trivially integrates to

ϕ =

⎧⎪⎨
⎪⎩

C1eω + C2e−ω if δ= 1,

C1ω+ C2 if δ= 0,

C1 sin ω+ C2 cosω if δ= −1.

2.3. Reduced equation 2.3 is the Airy equation, whose general solution is ϕ = C1Ai(ω) + C2Bi(ω).
2.4, 2.5. Substituting ϕ =ωe− 3

4 ε
′ω2
ϕ̃(ω) and ϕ =ωe− 1

4 ε
′ω2
ϕ̃(ω) into reduced equations 2.4 and 2.5,

respectively, we obtain the equations

2ωϕ̃ωω + (4 − 3ε′ω2)ϕ̃ω = ε′(μ+ 4)ωϕ̃,

2ωϕ̃ωω + (4 − ε′ω2)ϕ̃ω = ε′μωϕ̃,

whose general solutions are

ϕ̃ = C1M

(
μ

6
+ 2

3
,

3

2
,

3

4
ε′ω2

)
+ C2U

(
μ

6
+ 2

3
,

3

2
,

3

4
ε′ω2

)
,

ϕ̃ = C1M

(
μ

2
,

3

2
,

1

4
ε′ω2

)
+ C2U

(
μ

2
,

3

2
,

1

4
ε′ω2

)
.

2.6–2.8. Here the reduced equations are ordinary first-order differential equations, which are trivially
integrated to

2.6. ϕ = C0, 2.7. ϕ = C0√|ω| , 2.8. ϕ = C0√|2ω3 − ε| .

Substituting the above general solutions of reduced equations 2.2–2.8 into the corresponding
ansatzes, we construct the following families of particular solutions of the equation (2), which are con-
tained (as mentioned earlier, up to the Gess-equivalence for the fourth family) in the solution families
obtained in Section 5 using Lie reductions 1.6 and 1.7:

• u = C1et+x + C2et−x, • u = C1x + C2, • u = C1e−t sin x + C2e−t cos x,

• u = C1eyAi(x) + C2eyBi(x),
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• u = |t| μ−5
2 (y − tx)e−ω̃

(
C1M

(
μ

6
+2

3
,

3

2
, ω̃

)
+ C2U

(
μ

6
+2

3
,

3

2
, ω̃

))
with ω̃ := 3(y − tx)2

4t3
,

• u = |t| μ−3
2 xe−ω̃

(
C1M

(
μ

2
,

3

2
, ω̃

)
+ C2U

(
μ

2
,

3

2
, ω̃

))
with ω̃ := x2

4t
,

• u = C0, • u = C0√|t|e
− x2

4t , • u = C0√|2t3 − ε|e
− 3

2
(y−tx)2

2t3−ε .

Considering nonzero solutions from this section up to the Gess-equivalence, we can set the constant
C0 and one of the constants C1 and C2 to one. Taking into account the linear superposition principle for
solutions of the equation (2), it suffices to present only linearly independent solutions.

7. Lie reductions to algebraic equations

As for an equation in three independent variables, the maximal codimension of Lie reductions for the
equation (2) is equal to three, and such reductions lead to algebraic equations. Let us show that these
reductions do not give new explicit solutions of the equation (2).

Any three-dimensional subalgebra of the algebra g that is appropriate for Lie reduction is G-
equivalent to a subalgebra s of gess. If the subalgebra s nontrivially intersects the radical r of gess, then
any s-invariant solution of (2) is Gess-equivalent to a solution from one of families 1.5–1.7 constructed
in Section 5. Otherwise, the natural projection of the subalgebra s onto the Levi factor f= 〈P t, D, K〉
under the Levi decomposition gess = f ∈ r is three-dimensional. Therefore, the subalgebra s is nonsolv-
able, and thus it is simple, that is, it is a Levi factor of the algebra gess. According to the Levi–Malcev
theorem, stating that any two Levi factors of a finite-dimensional Lie algebra are conjugate by an inner
automorphism generated by elements of the corresponding nilradical, the subalgebra s is Gess-equivalent
to f. An ansatz constructed using the subalgebra f

• u = C0y
− 2

3 e− x3
9y ,

where C0 plays the role of the unknown constant, identically satisfies the equation (2). Up to the
Gess-equivalence, we can set the constant C0 equal to one. This solution belongs to the family of partic-
ular solutions obtained with reduction 2.1μ in Section 6, where μ= 0 or, equivalently, κ = 1/3, since
U
(

1
3
, 4

3
, z
)= z− 1

3 .

8. Generalised reductions and generating solutions with symmetry operators

We can construct more general families of exact solutions of the equation (2) using generalised sym-
metries. Since the equation (2) is linear and homogeneous, each first-order linear differential operator
in total derivatives that is associated with an essential Lie symmetry of this equation is its recursion
operator. Thus, it is obvious that the equation (2) admits, in particular, the generalised vector fields
((P2 + εP0)nu)∂u, ((P1)nu)∂u and ((P0)nu)∂u as its generalised symmetries. Here and in what follows,

P3 := 3t2Dx + t3Dy − 3(y − tx), P2 := 2tDx + t2Dy + x, P1 := Dx + tDy, P0 := Dy

are the differential operators in total derivatives that are associated with the Lie-symmetry vector fields
−P3, −P2, −P1 and −P0 of the equation (2), and Dx and Dy denote the operators of total derivatives
with respect to x and y, respectively. The corresponding invariant solutions are constructed by means of
solving the equation (2) with the associated invariant surface condition, (P2 + εP0)nu = 0, (P1)nu = 0
or (P0)nu = 0, respectively. For n = 2, it is easy to derive the representation for such solutions in terms
of solutions of the (1 + 1)-dimensional linear heat equation,

• u = |t|− 1
2 e− x2

4t

(
(t − εt−1)θ 1

2 − x

2t
θ 1 + θ 0

)
,
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where z1 = 1

3
t3 + 2εt − t−1, z2 = 2y − (t + εt−1)x,

• u = xθ 1 − t2θ 1
2 + θ 0, where z1 = 1

3
t3, z2 = y − tx,

• u = 4yθ 1
22 + x2θ 1

2 − xθ 1 + θ 0, where z1 = t, z2 = x.

Here θ i = θ i(z1, z2) is an arbitrary solution of the (1 + 1)-dimensional linear heat equation, θ i
1 = θ i

22,
i = 0, 1. As in Section 5, the subscripts 1 and 2 of functions depending on (z1, z2) denote derivatives
with respect to z1 and z2, respectively.

In fact, for each of the above generalised symmetries, we can construct the corresponding family of
invariant solutions using algebraic tools and the structure of the algebra g, or, more specifically, of its
radical r. Since [P2 + εP0, P1] = I, [P1, P2] = −I and [P0, P3] = 3I, then

(P2 + εP0)n(P1)n−1
(
|t|− 1

2 e− x2
4t θ (z1, z2)

)
= 0,

(P1)n(P2)n−1 (θ (z1, z2))= 0,

(P0)n(P3)n−1 (θ (z1, z2))= 0 (9)

for arbitrary solutions θ = θ (z1, z2) of the (1 + 1)-dimensional linear heat equation, θ1 = θ22, whereas the
expression in the left-hand side of each equality in (9) in general becomes nonvanishing after replacing
the nth power of the first operator by its (n − 1)th power. The expressions for the variables z1 and z2

should be taken from the corresponding item in the above list. Recall that the operators P0, . . ., P3

preserve the solution set of the equation (2). Therefore, the families of its solutions that are invariant
with respect to its generalised symmetries ((P2 + εP0)nu)∂u, ((P1)nu)∂u or ((P0)nu)∂u, respectively, take
the form

• u =
n−1∑
k=0

(P1)k
(
|t|− 1

2 e− x2
4t θ k(z1, z2)

)
with z1 = 1

3
t3 + 2εt − t−1, z2 = 2y − (t + εt−1)x,

• u =
n−1∑
k=0

(P2)kθ k(z1, z2) with z1 = 1

3
t3, z2 = y − tx,

• u =
n−1∑
k=0

(P3)kθ k(z1, z2) with z1 = t, z2 = x,

where θ k = θ k(z1, z2) are arbitrary solutions of the (1 + 1)-dimensional linear heat equation, θ k
1 = θ k

22, k =
0, . . . , n − 1. Note that for n = 2, the first two families in this list have exactly the same representations
as the first two families in the previous list, and

P3θ̃ 1 + θ̃ 0 = 4yθ 1
22 + x2θ 1

2 − xθ 1 + θ 0

if θ̃ 1 = − 4
3
θ 1

1 and θ̃ 0 = θ 0 + 4t2θ 1
12 + 4txθ 1

22 + (x2 − 2t)θ 1
2 − 2tθ 1

2 − xθ 1.
Up to the Gess-equivalence, the generalised vector fields ((P2 + εP0)nu)∂u, ((P1)nu)∂u and ((P0)nu)∂u

exhaust those generalised symmetries of the equation (2) that are obtained using powers of operators
associated with vector fields from r. It is much more challenging to use vector fields from g \ r for
generalised reductions in a similar way. The question of whether operators associated with vector fields
fromg \ r can generate solutions that are Gess-inequivalent to the above solutions needs a careful analysis.

9. On Kramers equations

An important subclass of the class F̄ of (1 + 2)-dimensional ultraparabolic Fokker–Planck equations,
which are of the general form (1), is the class K of Kramers equations (more commonly called the
Klein–Kramers equations)

ut + xuy = F(y)ux + γ (xu + ux)x.
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These equations describe the evolutionof the probability density function u(t, x, y) of a Brownian particle
in the phase space (y, x) in one spatial dimension. Here, the variables t, y and x play the role of the time,
the position and the momentum, respectively, F is an arbitrary smooth function of y that is the derivative
of the external potential with respect to y, and γ is an arbitrary nonzero constant, which is related to the
friction coefficient. Up to a simple scale equivalence of Kramers equations, without loss of generality,
one can assume γ = 1. The subclass K is singled out from the class F̄ by the auxiliary differential
constraints C = 0, A0 = A1

x = A2, A0
t = A0

x = A0
y = 0 and A1

t = 0.
A preliminary group classification of the class K was presented in [37]. In particular, it was proved

that the essential Lie invariance algebra of an equation from the class K is eight-dimensional if and only
if F(y) = ky up to shifts of y, where k = − 3

4
γ 2 or k = 3

16
γ 2.

Any equation from the class F̄ with eight-dimensional essential Lie symmetry algebra is GF̄ -
equivalent to the remarkable Fokker–Planck equation (2). (We will present the proof of this fact as
well as the complete group classification of the class F̄ in a future paper.) Therefore, there exist point
transformations that map the equations

ut + xuy = γ uxx + γ

(
x − 3

4
γ y

)
ux + γ u, (10)

ut + xuy = γ uxx + γ

(
x + 3

16
γ y

)
ux + γ u (11)

to the equation (2).
Bases of the essential Lie invariance algebras gess

(10) and gess
(11) of the equations (10) and (11) consist of

the vector fields

P̂ t = e−γ t

(
1

γ
∂t − 3

2
y∂y + 1

2
(3γ y − x)∂x −

(
1

4
x2 + 3

4
γ xy + 9

16
γ 2y2 − 3

2

)
u∂u

)
,

D̂ = 2

γ
∂t + u∂u, K̂= eγ t

(
1

γ
∂t + 3

2
y∂y + 1

2
(3γ y+x)∂x −

(
3

4
x2+3

4
γ xy− 9

16
γ 2y2+1

2

)
u∂u

)
,

P̂3 = e 3
2 γ t

(
1

γ
∂y + 3

2
∂x + 3

4
(γ y − 2x)u∂u

)
, P̂2 = e 1

2 γ t

(
1

γ
∂y + 1

2
∂x

)
,

P̂1 = e− 1
2 γ t

(
1

γ
∂y − 1

2
∂x + 1

4
(3γ y + 2x)u∂u

)
, P̂0 = e− 3

2 γ t

(
1

γ
∂y − 3

2
∂x

)
, Î = u∂u

and

P̌ t = e− 1
2 γ t

(
1

γ
∂t − 3

4
y∂y + 1

8
(3γ y − 2x)∂x + u∂u

)
, Ď = 4

γ
∂t + 2u∂u,

Ǩ = e 1
2 γ t

(
4

γ
∂t + 3y∂y + 1

2
(3γ y + 2x)∂x −

(
x2 + 3

2
γ xy + 9

16
γ 2y2

)
u∂u

)
,

P̌3 = e 3
4 γ t

(
8

γ
∂y + 6∂x − 3

2
(4x + γ y)u∂u

)
, P̌2 = e 1

4 γ t

(
4

γ
∂y + ∂x −

(
x + 3

4
γ y

)
u∂u

)
,

P̌1 = e− 1
4 γ t

(
2

γ
∂y − 1

2
∂x

)
, P̌0 = e− 3

4 γ t

(
1

γ
∂y − 3

4
∂x

)
, Ǐ = u∂u,

respectively. We choose the basis elements of the algebragess
(10) (resp. gess

(11)) in such a way that the commuta-
tion relations between them coincide with those between the basis elements of the algebra gess presented
in Section 2. Thus, the fact that the algebras gess, gess

(10) and gess
(11) are isomorphic becomes obvious.

Point transformations �(10) and �(11) that, respectively, map the equations (10) and (11) to the
remarkable Fokker–Planck equation (2) are constructed using the conditions that �(10)∗V̂ = V and
�(11)∗V̌ =V for V ∈ {P t, D, K, P3, P2, P1, P0, I}. Thus, the pushforwards�(10)∗ and�(11)∗ establish the
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isomorphisms of the algebras gess
(10) and gess

(11) to the algebra gess, �(10)∗gess
(10) = gess and �(11)∗gess

(11)
= gess. As

a result, we obtain the point transformations

�(10) : t̃ = eγ t, x̃ = e 1
2 γ t

(
3

2
γ y + x

)
, ỹ = γ e 3

2 γ ty, ũ = e− 1
4 ( 3

2 γ y+x)2− 3
2 γ tu,

�(11) : t̃ = 2e 1
2 γ t, x̃ = e 1

4 γ t

(
3

4
γ y + x

)
, ỹ = γ e 3

4 γ ty, ũ = e−γ tu,

where the variables with tildes correspond to the equation (2), and the variables without tildes
correspond to the source equation (10) or (11). By direct computation, we check that indeed the transfor-
mations�(10) and�(11) respectively map the equations (10) and (11) to the equation (2). In other words,
an arbitrary solution ũ = f (t, x, y) of (2) is pulled back by�(10) and�(11) to the solutions u =�∗

(10) f and
u =�∗

(11) f of the equations (10) and (11), respectively,

u =�∗
(10) f = e 1

16 (3γ y+2x)2+ 3
2 γ tf

(
eγ t, e 1

2 γ t

(
3

2
γ y + x

)
, γ e 3

2 γ ty

)
,

u =�∗
(11) f = eγ tf

(
2e 1

2 γ t, e 1
4 γ t

(
3

4
γ y + x

)
, γ e 3

4 γ ty

)
.

Using the families of solutions of the equation (2) that have been constructed in Sections 5 and 6, we
find the following families of solutions for the equation (10):

u = e 1
16 (3γ y+2x)2+ 11

8 γ t

∣∣∣∣32γ y + x

∣∣∣∣
− 1

4

θμ

(
9

4
γ ε̃e 3

2 γ ty, e 3
4 γ t

∣∣∣∣32γ y + x

∣∣∣∣
3
2

)
with μ= 5

36
, ε̃: = sgn

(
x + 3

2
γ y

)
,

u = eγ t θ

(
1

3
e3γ t + 2εeγ t − e−γ t, e− 1

2 γ t

(
1

2
γ (e2γ t − 3ε)y − (e2γ t + ε)x

))
,

u = e 1
16 (3γ y+2x)2+ 3

2 γ t θ

(
4

3
e3γ t, e 3

2 γ t(γ y + 2x)

)
,

u = e 1
16 (3γ y+2x)2+ 3

2 γ t θ
(

4eγ t, e 1
2 γ t(3γ y + 2x)

)
,

u = e
1
2 ζ̃− xζ2

24γ y + 3
2 γ κ tζ |y|κ− 4

3

(
C1M

(
κ ,

4

3
, ζ̃

)
+ C2U

(
κ ,

4

3
, ζ̃

))

with ζ := 3γ y + 2x, ζ̃ := 1

72
(γ y)−1ζ 3.

In the same way, we can also obtain solutions of the equation (11),

u = e 15
16 γ t

∣∣∣∣34γ y + x

∣∣∣∣
− 1

4

θμ

(
9

4
γ ε̃e 3

4 γ ty, e 3
8 γ t

∣∣∣∣34γ y + x

∣∣∣∣
3
2

)
with μ= 5

36
, ε̃: = sgn

(
x + 3

4
γ y

)
,

u = e− 1
8 ( 3

4 γ y+x)2+ 3
4 γ t θ

(
8

3
e 3

2 γ t + 4εe 1
2 γ t − 1

2
e− 1

2 γ t, e− 1
4 γ t

(
1

8
γ (4eγ t − 3ε)y − 1

2
(4eγ t + ε)x

))
,

u = eγ t θ

(
32

3
e 3

2 γ t, e 3
4 γ t(γ y + 4x)

)
, u = eγ t θ

(
32e 1

2 γ t, e 1
4 γ t(3γ y + 4x)

)
,

u = e−ζ3+ 1
4 γ t(3κ+1)ζ |y|κ−1

(
C1M

(
κ ,

4

3
, ζ 3

)
+ C2U

(
κ ,

4

3
, ζ 3

))

with ζ := (9γ y)− 1
3

(
3

4
γ y + x

)
.

Recall that θμ = θμ(z1, z2) and θ = θ (z1, z2) denote arbitrary solutions of the (1 + 1)-dimensional linear
heat equation with potentialμz−2

2 and of the (1 + 1)-dimensional linear heat equation, θμ1 = θ
μ

22 +μz−2
2 θ

μ
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and θ1 = θ22, respectively. M(a, b,ω) and U(a, b,ω) are the standard solutions of Kummer’s equation
ωϕωω + (b −ω)ϕω − aϕ = 0.

Similarly to Section 8, we can also construct more general families of solutions of the equations
(10) and (11), carrying out their generalised reductions or acting by Lie-symmetry operators on known
solutions. At the same time, we can again use the transformations �(10) and �(11) just to pull back the
solutions of the equation (2) that are obtained in Section 8.

Thus, the families of solutions of the equation (10) that are invariant with respect to the generalised
symmetries ((P̂

2 + εP̂
0
)nu)∂u, ((P̂

1
)nu)∂u or ((P̂

0
)nu)∂u are, respectively, constituted by the solutions of

the form

u =
n−1∑
k=0

(P̂
1
)k
(
eγ t θ k(z1, z2)

)

with z1 = 1

3
e3γ t + 2εeγ t − e−γ t, z2 = e− 1

2 γ t

(
1

2
γ (e2γ t − 3ε)y − (e2γ t + ε)x

)
,

u =
n−1∑
k=0

(P̂
2
)k
(
e 1

16 (3γ y+2x)2+ 3
2 γ t θ k(z1, z2)

)
with z1 = 4

3
e3γ t, z2 = e 3

2 γ t(γ y + 2x),

u =
n−1∑
k=0

(P̂
3
)k
(
e 1

16 (3γ y+2x)2+ 3
2 γ t θ k(z1, z2)

)
with z1 = 4eγ t, z2 = e 1

2 γ t(3γ y + 2x).

Here and in what follows, θ k = θ k(z1, z2) are arbitrary solutions of the (1 + 1)-dimensional linear heat
equation, θ k

1 = θ k
22, k = 0, . . . , n − 1. The differential operators in total derivatives

P̂
3

:= e 3
2 γ t

(
1

γ
Dy + 3

2
Dx − 3

4
(γ y − 2x)

)
,

P̂
2

:= e 1
2 γ t

(
1

γ
Dy + 1

2
Dx

)
,

P̂
1

:= e− 1
2 γ t

(
1

γ
Dy − 1

2
Dx − 1

4
(3γ y + 2x)

)
,

P̂
0

:= e− 3
2 γ t

(
1

γ
Dy − 3

2
Dx

)

are Lie-symmetry operators of the equation (10) and are associated with the Lie-symmetry vector fields
−P̂3, −P̂2, −P̂1, −P̂0, respectively.

Analogously, the solutions of the equation (11) that are invariant with respect to the generalised
symmetries ((P̌

2 + εP̌
0
)nu)∂u, ((P̌

1
)nu)∂u or ((P̌

0
)nu)∂u are of the form

u =
n−1∑
k=0

(P̌
1
)k
(
e− 1

8 ( 3
4 γ y+x)2+ 3

4 γ t θ k(z1, z2)
)

with z1 = 8

3
e 3

2 γ t + 4εe 1
2 γ t − 1

2
e− 1

2 γ t, z2 = e− 1
4 γ t

(
1

8
γ (4eγ t − 3ε)y − 1

2
(4eγ t + ε)x

)
,

u =
n−1∑
k=0

(P̌
2
)k
(
eγ t θ k(z1, z2)

)
with z1 = 32

3
e 3

2 γ t, z2 = e 3
4 γ t(γ y + 4x),

u =
n−1∑
k=0

(P̌
3
)k
(
eγ t θ k(z1, z2)

)
with z1 = 32e 1

2 γ t, z2 = e 1
4 γ t(3γ y + 4x),
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where the differential operators in total derivatives

P̌
3

:= e 3
4 γ t

(
8

γ
Dy + 6Dx + 3

2
(4x + γ y)

)
, P̌

2
:= e 1

4 γ t

(
4

γ
Dy + Dx + x + 3

4
γ y

)
,

P̌
1

:= e− 1
4 γ t

(
2

γ
Dy − 1

2
Dx

)
, P̌

0
:= e− 3

4 γ t

(
1

γ
Dy − 3

4
Dx

)

are Lie-symmetry operators of the equation (11) and are associated with the Lie-symmetry vector fields
−P̌3, −P̌2, −P̌1, −P̌0.

Note that �(10)∗Q̂=Q and �(11)∗Q̌=Q for Q ∈ {P3, P2, P1, P0, 1}.

10. Conclusion

The remarkable ultraparabolic Fokker–Planck equation (2) had been intensively studied in the math-
ematical literature from various points of view, including the classical group analysis of differential
equations. Nevertheless, there were no exhaustive and accurate results even on its complete point sym-
metry pseudogroup and on classification of its Lie reductions, and the present paper has filled up this
gap. Moreover, some of the obtained results were unexpected and may affect the entire field of classical
group analysis of differential equations.

The complete point symmetry pseudogroup G of the equation (2) is given in Theorem 2. To simplify
the computation of this pseudogroup, we have applied the two-step version of the direct method. In the
first step, we have considered the class F̄ of (1 + 2)-dimensional ultraparabolic Fokker–Planck equations
of the general form (1), which contains the equation (2), have proven its normalisation in the usual
sense and have found its equivalence pseudogroup G∼

F̄ , see Theorem 1. Exhaustively describing the
equivalence groupoid of the class F̄ in this way, we have derived the principal constraints for point
symmetries of the equation (2). In the second step, we have in fact looked for admissible transformations
of the class F̄ that preserve the equation (2), that is, that constitute its vertex group. This has led to a
highly coupled overdetermined system of nonlinear partial differential equations for the transformation
components. We have successfully found its general solution and constructed a nice representation (6)
for elements of G. A similar splitting in the course of computing point symmetries by the direct method
was used earlier, for example, in [5], but there the equivalence groupoid of the corresponding class had
been known. In the present paper, we have first found the equivalence groupoid of a class of differential
equations in order to compute the point symmetry (pseudo)group of a single element of this class, and
this is indeed the optimal way of computing in spite of looking peculiar.

The description of G in Theorem 2 implies that its elements with f = 0 and with their natural
domains are not necessarily defined on the entire space R4

t,x,y,u. This requires considering a pseudogroup
constituted by all possible restrictions of such transformations, when the usual composition of point
transformations is taken as the group operation in G, complicates the entire analysis of the structure of
G. In Section 3, we have avoided the indicated problem by defining the multiplication of elements in
G as their composition modified with the extension of its domain by continuity. Under the suggested
formalism, the representation (6) for the elements of G has allowed us to comprehensively analyse
the structure of G. The pseudogroup G contains the abelian normal pseudosubgroup Glin, which is
associated with the linear superposition of solutions. Moreover, the pseudogroup G splits over Glin,
G = Gess

� Glin. Here Gess is a subgroup of G, which is a (finite-dimensional) Lie group and admits the
factorisation Gess = (F � Rc) × Rd, where F � SL(2,R), Rc � H(2, R) and Rd �Z2. Since SL(2,R) and
H(2,R) are connected Lie groups and Glin is a connected Lie pseudogroup, the above factorisations
directly imply Corollary 3, which states the surprising fact that the equation (2) admits a single inde-
pendent discrete point symmetry transformation. The simplest choice for such a transformation is the
involution I′ : (t, x, y, u) �→ (t, x, y, −u), which generates the group Rd.
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In addition, we have constructed the point transformation (8), which maps the function u = 1 − H(t)
to the fundamental solution of the equation (2). A similar construction arises in the Lie-symmetry
analysis of linear (1 + 1)-dimensional heat equation.

The accurate consideration of the representation of the subgroup F of G on the radical r of the algebra
gess, which coincides with the representation of SL(2,R) on the space of real binary cubic forms, has
allowed us to successfully classify Gess-inequivalent one- and two-dimensional subalgebras of gess, which
for a long time had been a stumbling block in the course of constructing inequivalent Lie invariant
solutions of the equation (2) before.

Using this classification, we have found all inequivalent Lie reductions of codimensions one and two
and constructedLie invariant solutions of the equation (2). It has been reduced to the (1 + 1)-dimensional
linear heat equation, the heat equation with an inverse quadratic potential, Kummer’s equation, the Airy
equation and first-order differential equations. The (1 + 1)-dimensional linear heat equation had been
comprehensively studied within the framework of Lie reduction. In Appendix A, we have constructed
many particular solution of linear (1 + 1)-dimensional heat equation with inverse square potential over
the real field. For each of the reduced ordinary differential equations, we have found its general solution.
It has also been shown that Lie reductions to algebraic equations, which are of codimension three, give no
new solutions in comparison with the ones constructed using Lie reductions of less codimensions. One
can further extend the constructed families of solutions, iteratively acting on them by Lie-symmetry
operators. In this way, we have obtained families of exact solutions of the equation (2) that are non-
trivially parameterised by an arbitrary finite number of arbitrary solutions of the (1 + 1)-dimensional
linear heat equation. Modulo the Gess-equivalence, these families exhaust solutions of the equation (2)
that are invariant with respect to its generalised symmetries associated with powers of operators from
〈P0, P1,P2, P3, 1〉. Mapping solutions of reduced equations to those of the original equation (2) has
led to finding wide families of its explicit closed-form solutions. Up to the Gess-equivalence, essen-
tial among these families are three families parameterised by single arbitrary solutions of the classical
(1 + 1)-dimensional linear heat equation, one family parameterised by an arbitrary solution of the
(1 + 1)-dimensional linear heat equation with a particular inverse square potential and one more fam-
ily expressed in terms of the general solutions of a one-parameter family of Kummer’s equations. We
have showed that the equation (2) admits hidden symmetries that are associated with reductions to the
(1 + 1)-dimensional linear heat equations with the zero or inverse square potentials. This is why, in
Appendix B, we have presented a general optimised algorithm for constructing hiddenly invariant
solutions.

Studying Kramers equations, which constitute the subclass K of the class F̄ , we have found nontriv-
ial point transformations that map all equations from the class K with eight-dimensional essential Lie
invariance algebras, that is, the equations (10) and (11) up to shifts of y, to the equation (2). Moreover,
the presented formulas for mapping solutions of the equation (2) to solutions of the equations (10) and
(11) give the simplest way of obtaining explicit solutions of the latter equations.

The results obtained in the paper can be extended in many directions. In particular, one can com-
pute reduction modules [12] of the equation (2) or, more promisingly, extend the consideration from
Section 8 on generalised symmetries of this equation and on generating its new solutions by acting with
Lie-symmetry differential operators. Conservation laws and potential symmetries of the equation (2)
also require a comprehensive study.

Instead of considering various properties of the equation (2), we can extend results of the present
paper by studying other linear (1 + 2)-dimensional ultraparabolic equations, including the group classi-
fication of classes of such equations, all of which are reduced by point transformations to the form (1).
We are working on completing the solution of the group classification problem for the subclass of F̄
that consists of the Fokker–Planck equations of the form ut + xuy = |x|βuxx parameterised by an arbi-
trary real constant β. This subclass contains the equation (2) and is of interest from the point of view of
applications and due to its mathematical properties. In particular, it admits a non-obvious discrete point
equivalence transformation

t̃ = y, x̃ = 1

x
, ỹ = t, ũ = u

x
, β̃ = 5 − β.
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Of course, the most prominent among the above group classification problems is the group clas-
sification of the entire class of linear (1 + 2)-dimensional ultraparabolic equations, which reduces to
the group classification of the class F̄ of the linear (1 + 2)-dimensional ultraparabolic Fokker–Planck
equations, which are of the form (1). The first step of the latter classification is the description of the
equivalence groupoid of the class F̄ by proving its normalisation in the usual sense and constructing
its usual equivalence pseudogroup, which is presented in Theorem 1. The proof of this theorem and the
complete solution of the group classification problem for the class F̄ will be a subject of another paper.
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A. Exact solutions of (1+1)-dimensional linear heat equations with inverse square potential

Lie reduction of the equation (2) with respect to the subalgebra s0
1.2 = 〈P t〉 leads to reduced equation

1.20, which is the linear heat equation with potential V =μz−2
2 , where μ= 5

36
. The linear heat equations

with general (nonzero) inverse square potentials V =μz−2
2 , where μ �= 0, constitute an important case

of Lie-symmetry extension in the class of linear second-order partial differential equations in two inde-
pendent variables. This result was obtained by Sophus Lie himself [21]. Lie invariant solutions of such
heat equations over the complex field were considered in [17]. The essential point symmetry group of
these equations was constructed as a by-product in the course of proving Theorems 18 in [27], and a
background that can be used for exhaustively classifying Lie invariant solutions of these equations over
the real field was developed in the proof of Theorems 51 therein. We revisit the above results, present
them in an enhanced and closed form and complete the study of Lie invariant solutions of linear heat
equations with (nonzero) inverse square potentials. Recall that Lie reductions of the (1+1)-dimensional
linear heat equation, which corresponds to the valueμ= 0, were comprehensively studied in [40, Section
A], following Examples 3.3 and 3.17 in [25]. Hereafter, we use notations that differ from those in the
other sections of this paper.

Consider a linear heat equation with inverse square potential,

ut = uxx + μ

x2
u, (12)
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where μ �= 0. It belongs to the class E of linear (1+1)-dimensional second-order evolution equations of
the general form

ut = A(t, x)uxx + B(t, x)ux + C(t, x)u + D(t, x) with A �= 0. (13)

Here the tuple of arbitrary elements of E is θ := (A, B, C, D) ∈ SE , where SE is the solution set of the
auxiliary system consisting of the single inequality A �= 0 with no constraints on B, C and D.

Since the equation (12) is a linear homogeneous equation, its maximal Lie invariance algebra g
contains the infinite-dimensional abelian ideal glin := {h(t, x)∂u}, where the parameter function h runs
through its solution set, cf. Section 2. This ideal is associated with the linear superposition of solutions
of (12). The algebra g splits over the ideal glin, g= gess ∈ glin, where the complement subalgebra gess is
four-dimensional,

gess =
〈
P t = ∂t, D = t∂t + 1

2
x∂x − 1

4
u∂u, K = t2∂t + tx∂x − 1

4
(x2 + 2t)u∂u, I = u∂u

〉
.

The subalgebra gess is called the essential Lie invariance algebra of (12). It is the algebra aδ=0
2 in the

notation of Section 5. Up to the skew-symmetry of the Lie bracket, the nonzero commutation relations
of this algebra are exhausted by [P t, D] =P t, [D, K] =K, [P t, K] = 2D. Therefore, the algebra gess is
isomorphic to sl(2,R) ⊕ A1.

To find the complete point symmetry pseudogroup G of the equation (12), we start with consider-
ing the equivalence groupoid of the class E , which in its turn is the natural choice for a (normalised)
superclass for the equation (12). We use the papers [27, 34] as reference points for known results on
admissible transformations of the class E .

Proposition 8. ([34]) The class E is normalised in the usual sense. Its usual equivalence pseudogroup
G∼

E consists of the transformations of the form

t̃ = T(t), x̃ = X(t, x), ũ = U1(t, x)u + U0(t, x), (14a)

Ã = X2
x

Tt

A, B̃ = Xx

Tt

(
B − 2

U1
x

U1
A

)
− Xt − XxxA

Tt

, C̃ = −U1

Tt

E
1

U1
, (14b)

D̃ = U1

Tt

(
D + E

U0

U1

)
, (14c)

where T, X, U0 and U1 are arbitrary smooth functions of their arguments with TtXxU1 �= 0, and E :=
∂t − A∂xx − B∂x − C.

The normalisation of the class E means that its equivalence groupoid coincides with the action
groupoid of the pseudogroup G∼

E .

Theorem 9. The complete point symmetry pseudogroup G of the (1+1)-dimensional linear heat
equation with inverse square potential (12) consists of the point transformations of the form

t̃ = αt + β

γ t + δ
, x̃ = x

γ t + δ
, ũ = σ

√|γ t + δ|(u + h(t, x)) exp
γ x2

4(γ t + δ)
,

where α, β, γ , δ and σ are arbitrary constants with αδ − βγ = 1 and σ �= 0, and h is an arbitrary
solution of (12).

Proof. The linear heat equation with inverse square potential (12) corresponds to the value
(1, 0,μx−2, 0) =: θμ of the arbitrary-element tuple θ = (A, B, C, D) of class E . Its vertex group Gθμ :=
G∼
E (θμ, θμ) is the set of admissible transformations of the class E with θμ as both their source and target,

Gθμ = {(θμ,�, θμ) |� ∈ G}. This argument allows us to use Proposition 8 in the course of computing
the pseudogroup G.
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We should integrate the equations (14), where both the source value θ of the arbitrary-element tuple
and its target value θ̃ coincide with θμ, with respect to the parameter functions T, X, U1 and U0. After
a simplification, the equations (14b) take the form

X2
x = Tt,

U1
x

U1
= − Xt

2Xx

,
μ

X2
= −U1

Tt

E
1

U1
, (15)

where E := ∂t − ∂xx −μx−2. The first equation in (15) implies that Tt > 0, and the first two equations in
(15) can be easily integrated to

X = ε
√

Ttx + X0(t), U1 = φ(t) exp

(
− Ttt

8Tt

x2 − ε

2

X0
t√
Tt

x

)
,

where ε := ±1 and φ is a nonvanishing smooth function of t. By substituting these expressions
for X and U1 into the third equation from (15) and splitting the obtained equation with respect to
powers of x, we derive that X0 = 0, 4Ttφt + Tttφ = 0 and Tttt/Tt − 3

2
(Ttt/Tt)2 = 0. The last equation

means that the Schwarzian derivative of T is zero. Therefore, T is a linear fractional function of t,
T = (αt + β)/(γ t + δ). Since the constant parameters α, β, γ and δ are defined up to a constant nonzero
multiplier and Tt > 0, we can assume that αδ − βγ = 1. Then, these parameters are still defined up to a
multiplier in {−1, 1}, and hence, we can choose them in such a way that ε|γ t + δ| = γ t + δ, thus neglect-
ing the parameter ε. The equation 4Ttφt + Tttφ = 0 takes the form 2(γ t + δ)φt − γφ = 0 and integrates,
in view of φ �= 0, to φ = σ

√|γ t + δ| with σ ∈R \ {0}.
Finally, the equation (14c) takes the form

(
U0

U1

)
t

=
(

U0

U1

)
xx

+ μ

x2

(
U0

U1

)
.

Therefore, U0 = U1h, where h = h(t, x) is an arbitrary solution of (12).

Accurate analysis of the structure of the pseudogroup G needs a proper interpretation of the cor-
responding group operation, which we assume to be done in the same way as that in Section 3. The
point transformations of the form t̃ = t, x̃ = x, ũ = u + h(t, x), where the parameter function h = h(t, x)
is an arbitrary solution of the equation (12), constitute the normal pseudosubgroup Glin of G, which is
associated with the linear superposition of solutions of (12), cf. Section 3. Moreover, the pseudogroup G
splits over Glin, G = Gess

�Glin, where the subgroup Gess consists of the elements of G with h = 0 and is a
four-dimensional Lie group within the framework of the above interpretation. We call this subgroup the
essential point symmetry group of the equation (12). In turn, the group Gess contains the normal subgroup
R that is constituted by the point transformations of the form t̃ = t, x̃ = x, ũ = σu with σ ∈R \ {0} and is
isomorphic to the multiplicative group R

× of the real field. The group Gess splits over R, Gess = F � R,
where the subgroup F is singled out from Gess by the constraint σ = 1 and is isomorphic to the group
SL(2,R).

Corollary 10. A complete list of discrete point symmetry transformations of the equation (12) that are
independent up to combining with each other and with continuous point symmetry transformations of
this equation is exhausted by the single involution I′ alternating the sign of u, I′ : (t, x, u) �→ (t, x, −u).
Thus, the quotient group of the complete point symmetry pseudogroup G of (12) with respect to its
identity component is isomorphic to Z2.

Proof. It is obvious that Glin and F are connected pseudosubgroup and subgroup of G, respectively.
Jointly with the splitting of G over R, this implies that elements of the required list can be selected from
the subgroup R. Factoring out the elements of the identity component of R, which is isomorphic to R

×
>0,

we obtain either the identity transformation or I′.
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Lemma 11. ([28, 32]) A complete list of Gess-inequivalent subalgebras of gess is exhausted by the
subalgebras

sδ1.1 = 〈P t + δI〉, sν1.2 = 〈D + νI〉, ν�0 , sν1.3 = 〈P t +K + 2νI〉, s1.4 = 〈I〉,
sν2.1 = 〈P t,D + νI〉, s2.2 = 〈P t, I〉, s2.3 = 〈D, I〉, s2.4 = 〈P t +K, I〉,
s3.1 = 〈P t,D, K〉, s3.1 = 〈P t, D, I〉, s4.1 = gess,

where δ ∈ {−1, 0, 1}, and ν is an arbitrary real constant satisfying indicated constraints. The first
number in the subscript of s denotes the dimension of the corresponding subalgebra.

We present the exhaustive classification of Lie invariant solutions of the equation (12) over the field
of real numbers using results from the proof of Theorem 51 in [27] for integrating the obtained reduced
equations. Hereafter, C1 and C2 are arbitrary real constants, κ := 1

2

√
1 − 4μ, κ ′ := 1

2
κ = 1

4

√
1 − 4μ, and

ν is a constant parameter.
The reduction with respect to the subalgebra sε1.1 with ε ∈ {−1, 1} results in the solution

u = eεt
√|x|Z|κ |(x),

where the cylinder function Z|κ |(x) is Zκ , Cκ , Z̃|κ | or C̃|κ | if 4μ� 1 and ε= −1, 4μ� 1 and ε= 1,
4μ> 1 and ε= −1 or 4μ> 1 and ε= 1, respectively. Here, Zκ and Cκ are linear combination of
Bessel functions and linear combination of modified Bessel functions, respectively, Zκ = C1Jκ (x) +
C2Yκ (x), Cκ = C1Iκ(x) + C2Kκ (x). The cylinder function Z̃|κ | is a linear combination of modifications
of the Hankel functions H(1)

κ and H(2)
κ ,

Z̃|κ | = C1H̃
(1)

κ (x) + C2H̃
(2)

κ (x)

= C1

2

(
e− 1

2 κπH(1)
κ (x) + e 1

2 κπH(2)
κ (x)

)
+ C2

2i

(
e− 1

2 κπH(1)
κ (x) − e 1

2 κπH(2)
κ (x)

)
,

and the cylinder function C̃|κ | is a linear combination of the modified Bessel function Kκ and the function
Ĩκ , which is a modification of the modified Bessel function Iκ (for κ �= 0),

C̃|κ | = C1Ĩκ(x) + C2Kκ (x), Ĩκ(x) := π i
2 sin(κπ)

(Iκ (x) + I−κ(x)) .

Each of the functions Zκ , Cκ , Z̃|κ | or C̃|κ | is real-valued and represents, for the corresponding values of
the parameters κ and ε, the general solution of the equation ϕωω +μω−2ϕ − εϕ = 0, which is obtained
by the Lie reduction of (12) with respect to the subalgebra 〈P t + εI〉 using the ansatz u = eεtϕ(ω) with
ω= x.

The Lie reduction of the equation (12) with respect to the subalgebra s0
1.1 leads to the ansatz u = ϕ(ω)

with ω= x and the Euler equationω2ϕωω +μϕ = 0 as the corresponding reduced equation. We integrate
this equation depending on the value of sgn(1 − 4μ) ∈ {−1, 0, 1} and obtain the following solutions
of (12):

u =√|x| (C1 cos (|κ | ln |x|) + C2 sin(|κ | ln |x|)) , u =√|x| (C1 + C2 ln |x|) ,

u =√|x|(C1|x|κ + C2|x|−κ ).
For each of the subalgebras sν1.2 and sν1.3, we first construct an associated ansatz for u, derive the corre-

sponding reduced equation, map this equation to a canonical form, which turns out to be the Whittaker
equation

ϕωω +
(

−1

4
+ a

ω
+ 1/4 − b2

ω2

)
ϕ = 0 (16)

with certain a and b, by a point transformation of the invariant independent and dependent variables,
and then use this transformation for modifying the ansatz. The general solution of the above Whittaker
equation is the general linear combination of the Whittaker functions Wa,b(z) and Ma,b(z), which are
linearly independent and whose properties are comprehensively described, for example, in [2].
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Thus, for the subalgebra sν1.2 with a fixed ν � 0, the used modified ansatz and the values of a and b
are

u = |t|ν|x|− 1
2 e− x2

8t ϕ(ω) with ω := x2

4|t| , a = −ε′ν with ε′ := sgn t, b = κ ′.

The representation of the corresponding solutions of (12) over the real field depends on the value of
sgn(1 − 4μ), either sgn(1 − 4μ)� 0 or sgn(1 − 4μ)< 0, and respectively is

u = |t|ν |x|− 1
2 e− x2

8t

(
C1M−ε′ν, κ ′

(
x2

4|t|
)

+ C2W−ε′ν, κ ′

(
x2

4|t|
))

,

u = |t|ν |x|− 1
2 e− x2

8t Re
(

(C1 − iC2)W−ε′ν, i|κ ′ |

(
x2

4|t|
))

.

We distinguish the case sgn(1 − 4μ)< 0 since then the Whittaker function W−ε′ν,κ ′(ω) is complex-
valued. However, its real and imaginaryparts are linearly independent real solutions of the corresponding
Whittaker equation.

For each of the subalgebras sν1.3, we use the modified ansatz

u = |x|− 1
2 e− 1

4
x2 t

t2+1
+2ν arctan t

ϕ(ω) with ω := ix2

2(t2 + 1)
.

The associated reduced equation is of the form (16) with a = iν and b = κ ′. Hence, the corresponding
solutions of (12) over the real field are

u = |x|− 1
2 e− 1

4
x2 t

t2+1
+2ν arctan tRe

(
(C1 − iC2)Wiν, κ ′

(
ix2

2(t2 + 1)

))
.

If κ ∈ 2N0 + 1, these solutions can be represented in terms of regular and irregular Coulomb functions,

u = |x|− 1
2 e− 1

4
x2 t

t2+1
+2ν arctan t

(
C1Fκ ′− 1

2

(
ν,

x2

4(t2 + 1)

)
+ C2Gκ ′− 1

2

(
ν,

x2

4(t2 + 1)

))
.

B. On construction and generation of new exact solutions using hidden symmetries

Let g and G be the maximal Lie invariance algebra and the point symmetry (pseudo)groupof a system of
differential equations L, and let s be a subalgebra of g that is appropriate for Lie reduction of the system
L. By L̂, ĝ and Ĝ, we denote a reduced system of L with respect to a Lie reduction ρ associated with
s, its maximal Lie invariance algebra and its point symmetry group, respectively. The system L̂ has the
same number of the dependent variables as the system L, and its number of the independent variables is
that of L reduced by dim s. Here ρ denotes an s-invariant map of maximal rank from the space whose
coordinates are the independent and dependent variables of L to the analogous space for the system L̂,
such that ρ∗L is equal to L̂ up to an nondegenerate differential-functional matrix multiplier.

Lie-symmetry vector fields of the system L from the normaliser Ng(s) of the subalgebra s in the
algebra g induce Lie-symmetry vector fields of the system L̂, which constitute a subalgebra g̃ of ĝ,
g̃= ρ∗Ng(s). Similarly, G̃ = ρ∗StG(s) is the group of induced point symmetries of the system L̂. Any
element of ĝ \ g̃ is a genuine hidden Lie-symmetry vector field of the original system L with respect
to the Lie reduction obtained with the subalgebra s, see [25, Example 3.5], [1] and the discussion in
[30, Remark 15].

Subalgebras ŝ of ĝ can used for further Lie reductions of the system L̂. The question is which sub-
algebras of ĝ may lead to solutions of L̂, whose pullbacks by ρ are hiddenly invariant solutions of the
system L, that is, they are not invariant with respect to subalgebras of g of greater dimensions than
dim s. It is obvious that this is definitely not the case for any subalgebra of ĝ each element of whose
Ĝ-orbit is contained in g̃. Moreover, if solutions f̂ 1 and f̂ 2 of the system L̂ are G̃-equivalent, then their
counterparts ρ∗ f̂ 1 and ρ∗ f̂ 2 among solutions of the system L are necessarily G-equivalent. Taking into
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account these remarks, we can formulate the following optimised procedure for constructing hiddenly
invariant solutions of L:

• Construct a complete list of Ĝ-inequivalent subalgebras of the algebra ĝ.
• From this list, exclude all such subalgebras ŝ that any element of the Ĝ-orbit of ŝ is contained in g̃.
• For each of the remaining subalgebras in the list, carry out, if possible, the Lie reduction of the

system L̂ with respect to it and find the corresponding invariant solutions of L̂.
• Extend the obtained solutions using a complete set of G̃-inequivalent transformations from Ĝ under

the left action of G̃ on Ĝ.
• Pull back by ρ the extended set of solutions.
• Make a final arrangement of the constructed set of solutions ofL, selecting, up to the G-equivalence,

only those solutions that are really hiddenly invariant.

Cite this article: Koval S. D., Bihlo A. and Popovych R. O. (2023). Extended symmetry analysis of remarkable (1+2)-
dimensional Fokker–Planck equation. European Journal of Applied Mathematics, 34, 1067–1098. https://doi.org/10.1017/
S0956792523000074
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