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Abstract
In this paper, a new approach to modeling and controlling the problems associated with a morphing unmanned
aerial vehicle (UAV) is proposed. Within the scope of the study, a dataset was created by obtaining a wide range
of aerodynamic parameters for the UAV with Ansys Fluent under variable conditions using the computational fluid
dynamics approach. For this, a large dataset was created that considered 5 different angles of attack, 14 different
swept angles, and 5 different velocities. While creating the dataset, the analyses were verified by considering studies
that have been experimentally validated in the literature. Then, an artificial intelligence-based model was created
using the dataset obtained. Metaheuristic algorithms such as the artificial bee colony algorithm, ant colony algorithm
and genetic algorithms are used to increase the modeling success of the adaptive neuro-fuzzy inference system
(ANFIS) approach. A novel modeling approach is proposed that constitutes a new decision support system for real-
time flight. According to the results obtained, all the ANFIS models based on metaheuristic algorithms were more
successful than the traditional approach, the multilinear regression model. The swept angle that meets the minimum
lift needed by the UAV for different flight conditions was estimated with the help of the designed decision support
system. Thus, the drag force is minimised while obtaining the required lift force. The performance of the UAV was
compared with the nonmorphing configuration, and the results are presented in tables and graphs.

Nomenclature

Definitions/Abbreviations

UAV unmanned aerial vehicle
ANFIS adaptive neuro-fuzzy inference system
CFD computational fluid dynamics
PSO particle swarm optimisation
ACO ant colony optimisation
GA genetic algorithm
m UAV mass
pitch propeller pitch
S wing area
rpm propeller revolution per minute
∧ wing swept angle
λ taper ratio of wing
U0 UAV velocity
Q dynamic pressure
CL0 aircraft reference lift coefficient
AR wing aspect ratio
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b span
c̄ wing mean aerodynamic chord
CD0 UAV reference drag coefficient
Preq power require
Treq thrust require
D drag force
L lift force
V velocity
CL lift coefficient
CD drag coefficient
W UAV weight
ρ air density
e Oswald number

1.0 Introduction
The flight performance of UAVs can be determined via certain key design metrics, namely maxi-
mum endurance, maximum ceiling height, path-following capability and range. These metrics can be
improved by enhanced flight control algorithms, the dimension optimisation of the geometric parameters
and the implementation of an effective battery management system. In the literature, different methods
such as variable geometry structures, adaptive controllers and hybrid battery management systems have
been reported to improve UAV flight performance [1–3].

Swept wing geometry is one of the effective configurations to improve the flight performance of
UAVs. The swept angle is defined as the angle between the leading edge of the wing and the lateral
axis of the aircraft. The swept angle has considerable influence on various parameters such as lift curve
slope, maximum lift coefficient and induced drag coefficient. It also reduces the drag force, allowing
aircraft to cruise at higher velocities. Subsonic aircraft with swept wings are capable of reaching higher
Mach numbers with the help of drag divergence. This means that the swept angle of the subsonic aircraft
wing causes drag divergence to occur at higher Mach numbers [4].

The morphing swept wing concept was recently applied to benefit from the aforementioned advan-
tages of the swept angle in different flight conditions [5–7]. In the literature, it is stated that this new
design offers several advantages: improved take-off and landing performance, reduced drag force, good
flight characteristics and increased efficiency due to an optimum lift/drag ratio during flight. However, it
also suffers from certain disadvantages, which include the complexity and cost of the connection mech-
anism, the additional weight of the control systems and the aerodynamic centre shift due to the change
in the swept angle. In morphing swept wing aircraft, the aim is to increase efficiency by using a low
swept angle at low velocities and high swept angle at high velocities [8].

Yan et al. performed simulations on an aircraft model with variable swept angles. In this study,
an adaptive sliding mode controller (SMC) was designed to overcome the difficulties in mathematical
modeling that would otherwise arise due to the morphing mechanism. The controller performance was
examined in comparison with a traditional SMC [9]. Xu et al. applied a switching controller designed
on a nonlinear aircraft model with variable swept angles that also considered actuator dynamics. The
stability of the control system was investigated using the Lyapunov stability theory, and its performance
was demonstrated in simulations [10]. Dai et al. designed four different wing configurations for an air-
craft and examined their performance under subsonic, supersonic and hypersonic flight conditions. In
their comparative study, their results revealed that better aerodynamic performance and a wider flight
velocity range can be achieved by selecting the appropriate wing configuration for different flight con-
ditions [11]. Roy and Peyada applied the ABC algorithm-based ANFIS approach to noisy data recorded
during flight to estimate the aerodynamic parameters, further pointing out that their method can be used
as a decision support system to improve the stability of the aircraft [12]. However, in these previous
studies, a model that can predict the changes in the lift and drag forces of the aircraft under variable
flight conditions (variable velocity) and geometry (variable swept angle) has not been obtained.
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Figure 1. The concept design of swept wing UAV.

In this study, a unique aircraft configuration with adjustable swept angle is designed and Clark-Y,
which is one of the most widely used aerofoil types, is taken to be the wing aerofoil. The first aim of the
study was to estimate the swept angle that would achieve the minimum lift force under different flight
conditions. Thus, it is aimed to gain from the drag force.

The second aim is to increase the range of the aircraft with low drag force at high velocities. In
addition, the runway distance required for take-off can be shortened with zero swept angle, namely in
a straight-wing configuration. To achieve the desired performance, it is necessary to make predictions
about the behaviour of the aircraft under different flight conditions. For this reason, the aerodynamic
performance of the swept wing aircraft designed in this study is evaluated at 5 different velocities along
with 5 different angles of attack and 14 different swept angles. For each case, the drag fore and lift
force are computed using computational fluid dynamics methods. The numerical results are validated
through comparison with experimental data in the literature [13, 14]. Thus, a large, validated numerical
dataset will be generated. Then, three artificial intelligence models based on metaheuristic algorithms
are developed by using the obtained data. To demonstrate the effectiveness of the artificial intelligence
models, the model performances are assessed and validated using the traditional multilinear regression
model. According to the statistical measures used in the comparative results, the genetic algorithm-based
model produces a lower estimation error than the other models, and was therefore selected to estimate
the lift and drag forces. To estimate the swept angle required to maintain the minimum lifting force and
reduce the drag force in different flight conditions, a decision support system has been developed for
the selected artificial intelligence model. The flight performance obtained using the decision support
system was compared with the nonmorphing UAV configuration in the simulation environment.

2.0 Theoretical background for cfd and optimisation methods
In this section, the design criteria for a UAV with a variable swept angle are briefly described. In Fig. 1,
the dimensions of the designed UAV are given, and the morphing mechanism used to change the swept
angle of the wing is schematically illustrated. The morphing mechanism consists of one servo motor
and two gears placed on the leading edge of each wing. In addition, the wing is supported by bearings
mounted on the fuselage, and the morphing is constrained on the horizontal plane.
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Table 1. Technical specification of the swept wing UAV

Feature Size Feature Size
Weight 2,213 gr Propeller diameter 11in
Wingspan 1,440 cm Propeller pitch 5.5 in
Body length 91 cm Propeller RPM 14,040/min
Wing area 0.203852 m2 Horizontal tail area 0.073477 m2

Wing mean aerodynamic chord 0.135 m

Figure 2. The effect of mesh element number on the lift coefficient.

The technical specifications of the designed swept UAV are presented in Table 1.

2.1 Numerical method
2.1.1 The grid independence study
Grid independence is a very important parameter, especially in the numerical analysis of computational
fluid dynamics (CFD) applications. The network structure parameters, namely the number of cells, or
the number of nodes in the analysis, greatly affect the accuracy of the solution. An increased number
of nodes or number of cells used lead to more accurate results but at the expense of increased usage of
computational resources in the analysis. For this reason, studies should be independent of the network
structure. A grid independence study was carried out to determine the optimum mesh number. With the
grid independence study, the optimum number of meshes can be solved in the shortest time [15].

Since time and central processing unit (CPU) power are significant parameters in the analysis process,
an optimisation should be performed to find the balance between the accuracy of, and the computational
cost of finding, the solution. Therefore, the optimum mesh element number is determined and given in
Fig. 2.

2.1.2 Boundary conditions
While determining the flow area, a distance of 15c̄ above and below the nose of the aircraft was deter-
mined to be the limit. On the trailing edges, a distance of 20c̄ to the outward was determined as the limit.
No-slip boundary conditions have been used on solid surfaces. Figure 3 presents the flow field boundary
conditions.
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Table 2. Mesh properties and skewness and orthogonal quality mesh metrics spectra

Minimum element size 0.00005m Skewness (max) 0.72599
Number of elements 8,015,264 Growth rate 1.12
Maximum size 0.1 m Curvature normal angle 18o

Orthogonal quality 0.2702 Mesh method Patch conforming/sweeping

Figure 3. The dimensions and boundary conditions of the computational domain.

Figure 4. Mesh inflation image.

2.1.3 Mesh properties
As seen in Fig. 4, the mesh structure created in the calculation area is intense in the regions close to the
aerofoil, while being less intense in regions that are more distal. The mesh number is optimised using
the 1.2 growing mesh size from the wing surface to the outer flow region. The reason for the application
of such a network structure is to take up less space on the computer on which the numerical analysis
is performed, and to aim to conduct the analyses in a shorter time. To monitor the flow events (flow
separation bubble, reverse flow, reattachment, turbulent flow, etc.) on the wing surface more clearly, a
boundary layer was created with the inflection parameter. Mesh properties and skewness and orthogonal
quality mesh metrics spectra are given in Table 2.

2.2 Computing approaches
The k-ω SST turbulence model blends the formulation of the Wilcox k-ω model [16] in the near-wall
region with the formulation of the k-ε model [17] in the far-field developed by Menter [18]. This model
also includes the modeling of the SST using the modified definition of turbulent viscosity. The k-ω SST
transition model solves four transport equations k, specific turbulence dissipation rate (ω), intermittency
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(γ) and transition onset momentum thickness Reynolds number (Reθ t) equations. The use of a k-ω
formulation in the inner parts of the boundary layer makes the model directly usable all the way down
to the wall through the viscous sublayer; hence, the SST k-ω model can be used as a low-re turbulence
model without the need for any extra damping functions. The SST formulation also switches to a k-ε
behaviour in the free-stream and thereby avoids the common k-ω problem that the model is too sensitive
to the inlet free-stream turbulence properties. Authors who use the SST k-ω model often credit it for
its good behaviour in adverse pressure gradients and separating flow. The SST k-ω model does produce
relatively large turbulence levels in regions with large normal strain, such as stagnation regions and
regions with strong acceleration. This tendency is much less pronounced than that with a normal k-ε
model, though.

2.3 Turbulence models used in aircraft analysis
2.3.1 SST k-ω turbulence model
The shear stress transport (SST) k-ω turbulence model, which is accepted as the turbulence model that
gives the best results in external flow aerodynamic applications or in simulations where flow separations
are important, is used together with k-ω and k-ε. Among these models, the k-ω model gives better results
in regions close to the wall, but it is inadequate in free-flow regions that are more distal. On the other
hand, the k-ε turbulence model gives good results in free-flow regions.
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The part indicated by “1” in Equation (1) is the additional term. The expression at the end of
the additional term is the inner product tensor. The expansion of the inner product tensor is given in
Equation (2).
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The SST turbulence model was preferred in the solution for the aerodynamic analysis in this study
because it aims to overcome the shortcomings of the standard k-ω model, the dependence of k and ω on
the free flow values, and can provide effective solutions for flow separations [19–21].

2.4 Prediction methods
In the literature, there are various modeling approaches used in the modeling and estimation of the
dynamical system responses [22–24]. While approaches such as regression and multilinear regression
are frequently used to model and estimate linear systems, linear approaches do not give effective results
in modeling and estimating nonlinear systems. For this reason, artificial intelligence algorithms have
recently been successfully used in the modeling of nonlinear systems [25, 26]. In this section, the
modeling approaches used in this study are briefly described.

2.4.1 Multilinear regression method
The Multilinear regression model is used in modeling of linear systems; it is used to estimate a depen-
dent variable with more than one independent variable. It is based on optimising the coefficients
of the dependent variable to estimate an independent variable, and can be expressed according to
Equation (3)

y = β + w1x1 + w2x2 + w3x3 + . . . + wnxn (3)

where y, xi, and wi express the independent variable, dependent variable, bias variable and the weight
of the independent variable, respectively. Although the multilinear regression model generally gives
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Figure 5. ANFIS structure [30].

Figure 6. The ANFIS premise process [30].

successful results in modeling linear systems, this is less the case in modeling nonlinear systems. To
address this issue, many artificial intelligence-based modeling approaches have been proposed in the
literature [27–29].

2.4.2 Adaptive neuro-fuzzy inference systems (ANFIS)
ANFIS, proposed by Jang in 1993, is a modeling approach that combines the parallel computing capa-
bilities of artificial neural networks and the heuristic computing capabilities of fuzzy logic systems.
ANFIS can often be trained without specialist knowledge to design a classical fuzzy logic system. An
input-output-based dataset is generally needed to apply the ANFIS method. The typical architecture of
ANFIS is presented in Figs 5 and 6 [30].

For simplicity, the architecture of ANFIS is presented in Fig. 5 for a two-input one-output system.
Figure 6 presents a visual representation of the theoretical model of ANFIS.

Although ANFIS is easier to design than a classical fuzzy logic system, tuning its parameters sig-
nificantly increases modeling success [31]. Various algorithms have been proposed in the literature to
determine optimum parameters. Differing from classical optimisation approaches, various metaheuristic
search algorithms have been proposed in the literature [32, 33].

In this section, the genetic algorithm, artificial colony algorithm, and ant colony algorithms used in
the training of ANFIS are briefly discussed. A genetic algorithm, inspired by the science of genetics, is
a heuristic algorithm for solving complex problems that cannot be answered with classical optimisation
techniques [34]. Genetic algorithms are frequently used in optimisation processes and their success has
been proven in the literature [35]. Particle swarm optimisation (PSO) is a heuristic algorithm inspired by
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Table 3. Optimisation parameters of the GA, ACO and PSO algorithms

GA parameters ACO parameters PSO parameters

Parameter Value Parameter Value Parameter Value
Maximum iteration 1,000 Maximum iteration 1,000 Maximum iteration 1,000
Size of population 100 Size of population 30 Size of population 40
Crossover percentage 0.7 Intensification factor 0.4 Inertia weight 1
Mutation percentage 0.5 Deviation-distance ratio 1 Inertia weight

damping rate
0.99

Gamma 0.2 c1 (Personal learning
coefficient)

1

Mutation rate 0.1 c2 (Global learning
coefficient)

2

Beta 8

Figure 7. Schematic diagram of the proposed approach.

the swarm behaviour of animals when they meet basic needs such as finding food [36]. Ant colony opti-
mization (ACO), a heuristic optimisation algorithm, was introduced in 1991 by Dorigo et al. [37]. Since
the algorithm was introduced, various versions have been developed and applied to different optimisation
problems [38, 39].

The optimisation parameters are determined by testing traditional functions such as Rastrigin, Ackley,
and Goldstein–Price functions. In this study, ACO, Genetic Algorithm (GA) and PSO parameters were
chosen by examining the literature [22, 40–43]. Optimisation parameters for metaheuristic algorithms
discussed in the study are presented in Table 3.

3.0 Decision support system design
The decision support system consists of two stages, as presented in Fig. 7. In the first stage, the lift and
drag coefficients were numerically computed via CFD methods provided by ANSYS. In CFD analy-
sis, 350 datasets, including the independent variables (velocity, swept angle and angle-of-attack) and
the dependent variables (drag and lift forces), were created using 5 velocities, 14 swept angles, and 5
angles of attack to cover all possible flight conditions. The accuracy of the numerical results has been
confirmed by the experimental results presented in Refs (13, 14). In the second stage, three nonlinear esti-
mation models were created using the PSO, GA and ACO algorithms in the ANFIS structure, where the
datasets obtained in the first stage were utilised as training datasets. In addition, a multilinear regression
model was also designed to allow for a comparative analysis to investigate the effectiveness of nonlinear
models.
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Figure 8. Variation of aerodynamic force coefficients according to different velocities and swept angles.

Figure 8 shows that lift force and drag force gradually increase with angle-of-attack at different veloc-
ities. Although the lift coefficient tends to decrease with the change in the swept angle, the increase in
the swept angle eliminates the possibility of an abrupt stall. Although the increase in the swept angle
reduces the total lift force (F) and the lift coefficient, extra lift control is needed for high velocity flight.
Drag force (D) also increases with increasing angle-of-attack, but a sudden increase occurs after the stall
angle. When the graphs are examined, the increase in the swept angle significantly reduces the variation
of the drag force with angle-of-attack. Although the increase in the swept angle causes an increase in the
drag coefficient, the use of a variable swept angle will result in a lower drag force at high velocity flight.
This means that there will be fuel savings and increased aircraft flight performance as variable swept
designs at higher velocities are exposed to reduced levels of drag. Similarly, increasing the swept angle
reduces the lift and drag force due to the reduced wing area. However, this reduces the lift force more
than the drag force, which has a negative effect on aerodynamic efficiency. The variation of aerodynamic
fines (Emax) with different velocities is given in Fig. 9.

The Clark-Y aerofoil used in the study was compared with an experimental study in the litera-
ture. It was compared with Silvestren’s design, with Re = 365,000 and AR = 7.2, and a design with
Re = 300,000 and AR = 10 [44]. The results are presented in Fig. 10. When the figure is examined, the
aerodynamic analysis shows certain similarities.

In this study, the aerofoil of the variable swept aircraft design is Clark-Y. Fuselage and wings were
analysed together to determine aerodynamic parameters. Therefore, when the angle-of-attack increases,
the hull’s contribution to the carrying force is substantial. The lift and drag forces given in the aerody-
namic parameters are for the fuselage and wing form. However, to be able to compare with the literature,
the lift and drag coefficients of the plain wing for a velocity of 30m/s were also calculated. The Clark-Y
aerofoil achieved its maximum lift coefficient at an approximately 22o angle-of-attack [14].

The 350 datasets obtained from the aerodynamic analysis were used as model input to estimate drag
and lift force. First, 250 variations of swept angle, angle-of-attack, and velocity values were selected
as independent variables to estimate the drag force. The drag force corresponding to each dataset was
defined as the dependent variable. First, a multilinear regression approach analysis, which is one of the
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Figure 9. Variation of aerodynamic fines (Emax) according to different velocities.

Figure 10. Comparison of lift coefficient variation with angle-of-attack.

conventional regression approaches frequently used in the literature, was performed. The multilinear
regression equation for drag force is presented in Equation (4).

Drag Force = −4.881 + 0.316v − 0.105
 + 0.608α (4)

To demonstrate the model’s success, 100 previously unused datasets were applied to multiple linear
regression analysis; model success was evaluated via statistical parameters. In the statistical analysis,
the R2, RMSE, and MAE values for the 250 training sets were respectively calculated as 0.694, 3.85,
and 2.794. For 100 test data, the R2, RMSE, and MAE values were respectively calculated as 0.659,
4.416, and 3.096.

To increase the model success obtained with the multilinear regression approach, ANFIS models,
based on metaheuristic algorithms that have been applied in different areas, have been proposed in the
literature. Unlike conventional ANFIS structures, the ANFIS training parameters are optimised using
the ACO, GA and PSO algorithms. Training and test responses from ACO-, GA- and PSO-based ANFIS
trainings are presented in Fig. 11.
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Table 4. Statistical results for drag

MLRM ACO GA PSO

Train Test Train Test Train Test Train Test
R2 0.694 0.659 0.699 0.662 0.957 0.928 0.997 0.983
RMSE 3.85 4.416 3.831 4.426 1.447 2.074 0.34 0.983
MAE 2.794 3.096 2.871 3.165 1.007 1.376 0.26 0.47

Figure 11. Drag prediction using the MLRM model and the ACO-/GA-/PSO-based ANFIS models.

While performing metaheuristic-based ANFIS training, 250 different variations of swept angle,
angle-of-attack and velocity values were defined as independent variables to estimate drag force. The
drag force corresponding to each dataset was defined as the dependent variable. The purpose of using
100 datasets, which were never used in the training process, for testing is to avoid memorisation of
the model and to provide a proper learning process. The statistical parameters calculated for the model
responses based on metaheuristic algorithms are presented in Table 4. When Table 4 is examined, the
PSO-based ANFIS model apparently shows the best performance with an R2 of 0.983.

Scatter plots are presented in Fig. 12 a, b, c and d that reveal the success of the models obtained
within the scope of the study. In the scatter graphs, the x-axis defines the model responses, whilst the
y-axis defines the target to be estimated. In the scatter plot, the linear line expresses the change of target
data according to target data. The markers represent the change in the target data according to the model
output. For this reason, the model’s success is measured according to the linearity of the markers. As
can be clearly seen from the scatterplots, the PSO-based ANFIS model predicted the drag force more
successfully than all other models.
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Figure 12. Scatter graphs for drag predictions (a) MLRM, (b) ACO-based ANFIS, (c) GA-based ANFIS
and (d) PSO-based ANFIS.

In the estimation of the lift force, a process similar to the one followed in the estimation of the drag
force was followed. First, 150 of the 180 datasets were used to determine the parameters of the multilinear
regression model. The model equation for the lift force is presented in Equation (5).

Lift Force = −54.805 + 4.367v − 1.691
 + 6.999α (5)

The success of the multilinear regression model in predicting the lift force was demonstrated by
evaluating 100 previously unused datasets with Equation (5). In the statistical analysis, the R2, RMSE
and MAE values for the 250 training datasets were respectively calculated as 0.723, 48.287 and 35.347.
For 100 test data, R2, RMSE and MAE values were respectively calculated as 0.706, 55.364 and 40.937.
The results of the multilinear regression model for the training and test data are presented in Fig. 13.

Estimation of lift force was calculated using metaheuristic-based ANFIS models. The model results
in which the ANFIS training parameters were optimised with the ACO, GA and PSO algorithms are
presented in Fig. 13.

While training the metaheuristic-based ANFIS models in the estimation of lift force, 250 different
variations of swept angle, angle-of-attack and velocity values were defined as independent variables, in
a similar manner to the training process for the drag force. The lift force corresponding to each data was
defined as the dependent variable. One hundred datasets that had never been used in the training process
were used for the test. The statistical parameters calculated for ANFIS based on the ACO, GA and PSO
models are presented in Table 5. When the table is examined, it is clear that the GA-based ANFIS model
has the highest performance with an R2 of 0.995.

In order to demonstrate the success of the models obtained within the scope of the study, scatter plots
of the lift force are presented in Fig. 14 a, b, c and d. When the scatter plots are examined, the results of
the PSO-based ANFIS model are clustered on the linear line. This indicates that the PSO-based ANFIS
model predicts lift force more successfully than all other models.
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Table 5. Statistical results for lift

MLRM ACO GA PSO

Train Test Train Test Train Test Train Test
R2 0.723 0.706 0.739 0.731 0.989 0.995 0.992 0.991
RMSE 48.287 55.364 47.481 53.372 9.879 7.675 8.388 10.306
MAE 35.347 40.937 36.680 40.998 6.332 6.047 4.184 6.605

Figure 13. Lift prediction using the MLRM model and the ACO-/GA-/PSO-based ANFIS models.

4.0 Swept angle estimation approach for minimum lift force
The decision support system enables us to estimate the maximum swept angle producing the minimum
lift required for the steady-level flight of the morphing UAV. In addition, it also generates the minimum
drag force. The application of the decision support system is presented in Fig. 15.

It is a well-known fact that lower required power leads to higher endurance. The endurance is inversely
proportional to the reduction in the required power, and the required power is directly related to the
minimum drag force. Thus, the minimum power (maximum endurance) condition occurs when the drag
force is at a minimum. Because the morphing mechanism’s adjustment of the swept angle of the wing
enables a decrease in drag force, endurance can be maximised.

Therefore, the endurance efficiency can be computed as follows:
The drag force coefficient is given by

CD = CD0 + CL
2

πeAR
where L = 1

2
ρV2SCL and D = 1

2
ρV2SCD (6)

By using Equation (6), the drag force can be computed as follows:

D = 1

2
ρV2SCD0 + W2

1
2
ρV2S

(
1

πeAR

)
(7)
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Figure 14. Scatter graphs for lift predictions (a) MLRM, (b) ACO-based ANFIS, (c) GA-based ANFIS
and (d) PSO-based ANFIS.

Figure 15. The application of the decision support system.

For the steady level flight, the required thrust must be equal to the drag force (Equation (7)), i.e.
Treq = D. Therefore, the required power becomes

Preq = TreqV = DV (8)

Finally, substituting Equation (7) into Equation (8) yields:

Preq = 1

2
ρV3SCD0 + W2

1
2
ρVS

(
1

πeAR

)
(9)

which is used to compute the required power.
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Table 6. Comparison of DSS and CFD results

Swept Lift Drag Drag Drag % Drag increase
Velocity AoA angle (CFD) (DSS) (CFD) (nonmorphing) reduction (min)
20.1 6.2 31.1 27.68064 2.0939 1.929792 2.475 22.028 3.42
16.3 11.3 33.9 22.751 2.0017 2.07289 2.764393 25.014 3.62
29 15.1 60.8 30.78043 3.9456 3.71646 14.03676 73.523 5.93
32.7 0.9 34.9 26.464 2.1716 2.3891 2.87925 17.023 2.13
26 8.5 50.6 30.51615 2.4641 2.35135 3.384475 30.525 3.89
19.3 6.1 28.7 24.19389 2.0339 1.834938 2.303845 20.353 3.32
18.2 5.0 20.6 23.7407 1.757 1.7344 1.9154 9.449 1.63
16.4 5.9 20 27.78287 1.8296 1.79254 1.93488 7.356 1.23
29.2 5.2 49.1 29.5387 2.3089 2.3853176 4.032304 40.844 5.13
23.8 3.0 26 26.9224 1.7234 1.9094 2.1589 11.556 1.81
27.5 2.7 49.15 27,47008 1.5948 1.643963 2.502873 34.316 6.26

In the simulation analysis, two different aircraft configurations are considered. In the first configura-
tion, the swept angle was set to zero, whereas the second configuration was built using a swept wing.
To assess the effectiveness of the proposed method, 11 datasets composed of various velocities rang-
ing from 15 to 33m/s and angles of attack ranging from 1o to 12o were randomly selected. The swept
angles that produce the optimal lift forces for these selected velocities and angles of attack are estimated
using the decision support system introduced in Section 3. The estimated lift and drag forces are then
compared with the numerical results obtained from the CFD analyses to determine the accuracy of the
estimation approach. In addition, the drag force for the aircraft configuration with non-morphing wings
was also computed in a CFD analysis. The percentage reduction in drag force was then computed when
a swept wing configuration was utilised. The comparative results are presented in Table 6.

According to the results in Table 4, the lift and drag forces obtained with the estimated swept angle are
consistent with those obtained from CDF analysis. The proposed method is able to reduce the drag force
significantly for all flight conditions. The maximum reduction is approximately 73%, which is achieved
for the flight condition given by a velocity of 29m/s and @@an angle-of-attack of 15.1o. Moreover, the
proposed DSS also improves the endurance of the morphing UAV. When a standard lipo battery is used
for the designed, electrically powered UAV, the instantaneously required current can be calculated by
considering the drag force. Endurance (min) can be calculated for battery capacity and instantaneous
current values. The results show that it can increase endurance by varying between 1.23 and 6.26 min.

5.0 Conclusion
In this study, a UAV with variable swept angles was designed and an aerodynamic analysis was carried
out for a range of flight conditions to compare the performance of the designed swept wing UAV with that
of the non-swept wing UAV. To cover the majority of the flight envelope, 5 different velocities, 5 different
angles of attack, and 14 different swept angle values were considered. The lift force and drag forces were
calculated for all possible flight conditions generated using these three different variables in the CFD
analysis. The results of the CFD analysis have been verified by experimental studies in the literature.
Then, 350 datasets were selected from the CFD analysis to be used in the training and testing processes
of the ANFIS structure. The ANFIS models were improved using certain metaheuristic algorithms, i.e.,
ABC, GA and PSO. The estimation accuracies of the ANFIS models were compared with that of the
multilinear regression model, which is a linear modeling approach. From the estimated results, it can
be revealed that PSO-based ANFIS model provides higher accuracy in terms of estimating the lift and
drag forces than the other models considered for a prescribed velocity, angle-of-attack and swept angle.
Therefore, this model was selected to estimate the swept angle required to maintain the minimum lift
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force in steady-level flight for a constant velocity and angle-of-attack. The lift and drag forces of the
simulation and CFD analysis were compared to investigate whether the estimated swept angle would be
sufficient to produce the minimum required lift force. Another comparison was then made to demonstrate
how effective the swept configuration would be in terms of reducing the drag force and increasing the
endurance. The proposed method can achieve an average reduction of 26% in drag force and an average
increase of 3.5 min endurance.
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