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Abstract

This paper introduces the concept of an almost locally connected space. Every locally connected
space is almost locally connected, and the concepts are equivalent in the class of semi-regular spaces.
Almost local connectedness is hereditary for regular open subspaces, is preserved by continuous
open maps, but not generally by quotient maps. It is productive in the presence of almost-regularity.
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1. Introduction

This paper introduces the concept of an almost locally connected space. Every
locally connected space is almost locally connected, and the concepts are
equivalent in the semi-regular spaces of Stone (1937). Almost local connected-
ness is hereditary for regular open subspaces, is preserved by continuous open
maps, but not generally by quotient maps. It is productive in the presence of
almost regularity, Singal and Arya (1969).

2. Preliminaries

In this paper all spaces are Tx and all maps are onto. A neighborhood of a
point p in a space X will mean an open set of X containing p. If A C X, the
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closure of A in Ar and the interior of A in X will be denoted by c\(A) and int(A)
respectively. If B C A C X, the closure of B and the interior of B considered as
a subspace of A will be denoted by clA(B) and int^(2?) respectively.

Recall that an open set G in X is called regular open provided G = int(cl(G)).
A regular open neighborhood of a point p in X will mean a regular open set
containing/?. A regular open cover % of a space A" is a cover of X each member
of which is a regular open set. A space X is said to be semi-regular if Ar has a
basis consisting of regular open sets. This concept is originally due to Stone
(1937). Regular spaces are semi-regular, but the converse is not true, Steen and
Seebach (1970), Example 60.

A map/: A"-» Y is almost continuous provided f~\G) is open in X whenever
G is regular open in Y. A map/: X —> Y is almost open provided/(G) is open in
Y whenever G is regular open in X, Singal and Singal (1968).

3. Almost locally connected spaces

DEFINITION 3.1. A space X is almost locally connected at p G X if given a
regular open neighborhood G of p, there is a connected neighborhood F of p
such that F C G. X is almost locally connected provided X is almost locally
connected at each of its points.

Henceforth, we shall abbreviate "almost locally connected" to a.l.c.

REMARK 3.2.(a) Since X itself is a regular open set, it is clear that each point in
an a.l.c. space is contained in a connected neighborhood.

(b) Clearly, every locally connected space is a.l.c, but Example 3.4 shows that
the converse is not true even if the space is completely Hausdorff.

The reader can supply the easy proof of the following proposition.

PROPOSITION 3.3. Let X be semi-regular. X is a.l.c. if and only if X is locally
connected.

EXAMPLE 3.4. Let R be the set of reals and let T be the topology on R
generated by the union of T,, the usual topology on R, and T2, the topology of
countable complements on R. This is Example 63 in Steen and Seebach (1970).
It is not difficult to see that (R, T) is not locally connected at any irrational.
However, the only regular open sets in (R, T) are those which are regular open in
T,. Therefore, it follows that (R, T) is a.l.c.
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THEOREM 3.5. The following statements are equivalent.
(1) X is a.I.e.
(2) Components of regular open sets in X are open in X.
(3) If G is a neighborhood of x E X, there is a connected neighborhood V of x

such that V C cl(G).

PROOF. The equivalence of (1) and (2) follows by a slight modification of the
argument for locally connected spaces and open sets.

(1) implies (3): If G is a neighborhood of x, int(cl(G)) is a regular open
neighborhood of x and so there is a connected neighborhood V of x such that
V C int(cl(G)) C cl(G).

(3) implies (1): If G is a regular open neighborhood of x, there is a connected
neighborhood V of x such that V C cl(G). Therefore, V C int(cl(C?)) = G since
G is regular open.

REMARK 3.6.(a) We may assume the set V in (3) of Theorem 3.5 is regular
open or else replace it by int(cl( V)) which is connected if V is connected.

(b) It is now obvious that a component in an a.l.c. space is open and so an
a.l.c. totally disconnected space must be discrete. Of course, this is well known
for locally connected spaces.

Unlike locally connected spaces, an open subspace of an a.l.c. space need not
be a.l.c.

EXAMPLE 3.7. Consider the open subspace of irrationals in Example 3.4. Note,
however, that this subspace is not regular open.

THEOREM 3.8. Let A be a regular open subspace of an a.l.c. space X. Then A is
a.l.c.

PROOF. Let/? e A and let B be a regular open neighborhood of p in A. We
first establish that B is a regular open neighborhood of p in X.

Now

B = m\A(c\A(B)) = vat{c\A{Bj) = int(cl(5) n A)

= int(cl(5)) n mt(A) = int(cl(5)) n A = int(cl(5)).

Note that this last equality follows since A is regular open in X and so
int(cl(5)) C int(cl(yl)) = A.

Since X is a.l.c, there is a connected neighborhood V of p in X such that
V C B. Clearly, V is a connected neighborhood of p in A. Since/; was arbitrary,
A is a.l.c.
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THEOREM 3.9. Let X be a.l.c. and p e X. Then X - {/>} is a.l.c.

PROOF. Let x G X - {/>}. We show that X - {/>} is a.l.c. at x. We will
consider cases.

Case 1. There is a neighborhood U of x such that/7 £ int(cl(t/)). Then since
int(cl( U)) is regular open in X and X is a.l.c, there is a connected neighborhood
F of x in A" such that V C int(cl((/)). Clearly, F is a connected neighborhood of
x in X — {/>}.

Gore 2. For every neighborhood U of x, p G int(cl( [/)). We will show that
X — {/?} satisfies (3) of Theorem 3.5. Let G be a neighborhood of x in X — {/?}.
Since X is Tu G is open in X, and so by Remark 3.6(a) there is a connected
regular open neighborhood V of x in X such that V C cl(G). Let Vx = V —
{p}. Then x G F, C cl(G) - {/>} which is the closure of G in X - {/»}. So, if
Vx is connected we are done.

If F, is not connected, let Vx= A \j B, where A n B = 0 and 4̂ and 5 are
non-empty and open in F, and hence in A\ Say x e A. Then by Case 2,
/7 G int(cl(^4)). Since F is regular open, it is easy to show that V = int(cl(y4)) u
int(cl(5)), and since A and B are disjoint and open in X, it follows that
int(cl(y4)) n int(cl(fi)) = 0 . But this contradicts the connectedness of F. This
completes the proof.

COROLLARY 3.10. Let X be a.l.c, locally compact, non-discrete space with a
dispersion point. Then X is uncountable.

PROOF. Suppose X is countable. Let p be the dispersion point of X. By
Theorem 3.9, X - {p} is a.l.c. and so by Remark 3.6{b), X - {p} must be
discrete. But X is not discrete, and so p must be the only non-isolated point of
X. Being countable and locally compact, X is a hemi-compact A>space. There-
fore, by Siewiec (1976), Theorem 1.2, X must be one of three easily described
examples. It is easy to check that none of these examples is a.l.c. This contradic-
tion proves the corollary.

EXAMPLE 3.11. Let Q be the rationals with the usual induced topology. Let
Q* = Q U {p} be the one point compactification of Q. This is Example 35 in
Steen and Sebach (1970). Q* is a countable locally compact, in fact compact,
nondiscrete 71, space with dispersion point p. This apparent contradiction to
Corollary 3.10 is dispelled once we note that Q* is not a.l.c. If Q* were a.l.c,
then by Theorem 3.9 and Remark 3.6(b), Q would be discrete.
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DEFINITION 3.12. A space X is almost regular if for each x G X and each

neighborhood M of x, there is a regular open neighborhood V of x such that

c l (F ) C int(cl(M)), Singal and Arya (1969).

REMARK 3.13. Every regular space is almost regular. But there exist almost

regular spaces which aren' t even semi-regular. Example 3.4 is such a space which

is also a.l.c.

THEOREM 3.14. Let X be almost regular. The following statements are equiva-
lent.

(1) X is a.l.c.
(2) Every regular open cover of X has a regular open refinement consisting of

connected sets.
(3) Every regular open cover of X has an open refinement consisting of connected

sets.

PROOF. (1) implies (2). Let <$l = {Ua) be a regular open cover of X. Let
"V = { Vp) consist of all components of all the Ua G %. By Theorem 3.5, T
consists of open sets. Let % = {\a\{c\Vp); Vp G T}. Now T clearly refines %
and since each member of % is a regular open st, % also refines tyl. Since
Vp C int(c\(Vp) C c\(Vp) for each 0, it is clear that each member of <¥ is
connected. Being the interior of a closed set, each member of ^ is a regular
open set.

(2) implies (3). This is obvious.
(3) implies (1). Let p G X and let G be a regular open neighborhood of p.

Since X is almost regular, there is by Theorem 2.2(b) of Singal and Arya (1969),
a regular open neighborhood U of p such that cl((/) C G. Now the two sets
{G, X - c\(U)} is a regular open cover of X. Note that X — cl(U) is regular
open since U is. By (3) this cover has an open refinement SC = {Hp} such that
each Hp is connected. Let Hp(p) be that member of % such that/? G Hp(p) C
G. This proves that A" is a.l.c.

DEFINITION 3.15. A map /: X—> Y is connected if /(C) is connected in Y
whenever C is connected in X, Pervin and Levine (1958).

THEOREM 3.16. Let f: X -> Y be an almost open, almost continuous connected
map. If X is a.l.c. and Y is almost regular, then Y is a.l.c.

PROOF. Since Y is almost regular, it suffices to show that Y satisfies condition
(3) of Theorem 3.14. Let % = { Ua) be a regular open cover of Y. Since / is
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almost continuous, f~\^l) = {f~l(Ua); f / o 6%}isan open cover of A". Hence
<¥ = {int(cl(/~'(£/„))); {/„€%.} is a regular open cover of X. Using the
argument of (1) implies (2) in Theorem 3.14, we can find a regular open
refinement % = {Hp} of ^ such that each member of % is connected. Since/
is almost open and connected, each f(Hp) is connected and open in Y. We need
only show that/(3C) = {f(Hp); Hp £ %} is a refinement of Gll. Since % covers
H, it is clear that f(H) covers Y. Let Hp £ %. Since % refines <¥, there is an a
such that Hp C int(cl(/~'(£/„))) c cl(/~'({/„)). By Long and Carnahan (1973)
Theorem 6, it follows that f(c\(f~l(Ua))) C cl(Ua). Therefore, f(Hp) C cl(f/a).
But since f(Hp) is open, f(Hp) c int(cl( C/a)). Since (/a is regular open, this latter
set is just Ua. This completes the proof.

LEMMA 3.17. Let f: X —• Y be an open almost continuous map. If G is regular
open in Y, then f~l(G) is regular open in X.

PROOF. Let G be regular open in Y. By the Corollary after Theorem 7 in Long
and Carnahan (1973), cl(/~'(G)) = f~\cl(G)). Hence int(cl(/-'(<?))) =
int(/-'(cl(G))). Since if is an open map, int(f~\c\(G))) C/~'(int(cl(G))). Since
G is regular open, this latter set is j u s t / " 1 ^ ) . Hence int(cl(/"'((?))) C f~\G).
The reverse inclusion is obvious since f~\G) is open in X. This proves that
f~l(G) is regular open in X.

THEOREM 3.18. Let j : X —* Y be an open almost continuous connected map. If X
is a.I.e., so is Y.

PROOF. Let G be a regular open neighborhood of y £ Y. By Lemma 3.17,
f~\G) is regular open in X. Since X is a.l.c, there is for each x Ef~\y) a
connected neighborhood N(x) of x such that N(x) Qf~\G). Let N =
U {N(x); x Gf~\y)}. Since/is a connected open map and>> e.f(N(x)) for
each x ef~\y), it is clear that f(N) is a connected neighborhood of y in Y.
Moreover, f(N) C G. This proves that Y is a.l.c.

Since an open continuous map is almost open, almost continuous and con-
nected, the following corollary follows from Theorm 3.18.

COROLLARY 3.19. Let f: X —> Y be an open continuous map. If X is a.l.c. so is
Y.

Unlike local connectedness, a.l.c. is not preserved by continuous closed maps
and so not by quotient maps.
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EXAMPLE 3.20. Consider the space (R, T) of Example 3.4. Let R/Q denote the
quotient space obtained from (R, T) by identifying the set Q of rationals to a
point. Since Q is closed in (R, T), the space R/Q is T, and he quotient map/?:
(R, T) -> R/Q is a closed map.

We contend that R/Q is not a.l.c. We will use brackets to denote a point in
R/Q and [Q] will denote the "big" point in R/Q. Let z be any irrational. It
suffices to show that R/ Q is not a.l.c. at [z]. Let a and b be any rationals such
that a < z <b and let G = {[*]; x G (a, b), x irrational}. It is not difficult to
see that G is a regular open neighborhood of [z] in R/Q such that [Q] & G.
Now if R/Q were a.l.c, there would exist a connected neighborhood Wof [z] in
R/Q such that ^ C G. Let /i = p\R - Q, the restriction top to R - Q. Then A
is a homeomorphism of /? — Q onto i?/(? — [(?]. This is an exercise in
Dugundji (1966), p. 125. Therefore, h~\W) would be a connected open subset
of irrationals in (R, T). This is not possible since T, C T.

We have the following product theorem for a.l.c. spaces.

THEOREM 3.21. Let {Xa; a G (£•} be a family of spaces. Then Tl{Xa; a G &} is
a.l.c. if and only if each Xa is a.l.c. and all but at most finitely many Xa are
connected.

PROOF. Suppose II{Xa; a G &} is a.l.c. Since projection maps are continuous
and open maps, each Xa is a.l.c. by Corollary 3.19. By Remark 3.2(a), all but at
most finitely many Xa are connected.

Conversely, let G be a neighborhood of x in I^A^; « £ £ } . Using the
notation in Dugundji (1966), p. 98, we will let U = < Uai, . .., U^ > denote a
basic open set in U{Xa; a & &} such that x G U C G. Since each X is a.l.c,
there exist Va%, . . . , V^ connected and open in Xai, . . . , X^ respectively such
that Xa< G K, "and V^ c cl( UJ for / = 1, . . . , k.

Let % be the finite subset of & such that if /?, G "35, then Xo is not connected.
For each /^ G $ , let Vp be a connected neighborhood of Xa, in Xa (Remark
3.2(a)). Let V = <Ka_, / . . , V^, Vfii, . . . , V^}. Clearly, V is a connected
neighborhood of x in n{A"M; a G ( £ } . Moreover, it is easy to check that
V C cl(G). By Theorem 3.5, we are done.

REMARK 3.22. The space (R, r) in Example 3.20 is not compact. This raises the
following questions. If / : X -> Y is continuous with X compact (and 71,) and
a.l.c. is Y a.l.c? Or, is the property a.l.c. preserved by perfect maps? Note that
the closed map/? in Example 3.20 is not perfect sincep~x([Q]) is not compact in
(R, T).
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Finally, the author would like to thank the referee for some helpful comments.
In the original version of this paper, Theorem 3.9 was proved for T2 spaces and
we asked if this theorem held for Tt spaces. The referee answered this question
affirmatively and supplied the proof of Case 2. He also pointed out the
equivalence of (1) and (3) of Theorem 3.5. This allowed the author to remove the
hypothesis that each X be almost regular in the original version of the product
Theorem 3.21.
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