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Abstract 

Strong system equivalence is defined for polynomial realizations of a rational matrix. It is 
shown that any polynomial realization is strongly system equivalent to a generalized 
state-space realization, and two generalized state-space realizations are strongly system 
equivalent if and only if they are constant system equivalent. 

1. Introduction 

The important concept of (strict) system equivalence of polynomial realizations in 
linear systems theory was introduced by Rosenbrock [11] and has been further 
studied by Fuhrmann [6], Pernebo [10] and Rosenbrock [12]. Coppel [3] has 
shown that the theory of polynomial realizations may be extended to realizations 
over an arbitrary principal ideal domain and has pointed out in [4] that system 
equivalence may also be defined in this more general setting. The present work 
gives a significant application of this generalization within systems theory itself. 

It is a commonplace in complex analysis that rational functions should be 
studied not only in the finite plane but also "at infinity". Since the transfer 
matrix of a (finite-dimensional, time-invariant) linear system is a matrix of 
rational functions, it is natural to study also the behaviour of the system at 
infinity. Indeed, it is essential if one is interested in impulsive, or distributional, 
solutions. This point of view has been most extensively pursued by Verghese [14]. 
(Less complete accounts have appeared in [15-19]. Some other works in this area 
are [1], [2], [13].) Verghese defines strong controllability to mean controllability in 
the ordinary sense together with "controllability at infinity", and likewise strong 
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[21 Strong system equivalence (I) 195

observability, and derives a number of basic properties. He defines also a concept
of strong equivalence for generalized state-space systems, but leaves it as an open
problem to define an appropriate concept of strong system equivalence for
arbitrary polynomial realizations. This is the problem that will be considered
here.

We define a notion of system equivalence at infinity, and in Propositions 1 and 2
show that it can be expressed in ways analogous to the definitions by Fuhrmann
and Rosenbrock of ordinary system equivalence. We also define strong system
equivalence to mean ordinary system equivalence together with system equiva-
lence at infinity, and show that it preserves strong controllability and strong
observability. In Theorem 1 we show that any polynomial realization is strongly
system equivalent to a generalized state-space realization, and in Theorem 2 that
two generalized state-space realizations are strongly system equivalent if and only
if they are constant system equivalent. Here constant system equivalence is a
convenient reformulation of Verghese's strong equivalence. The paper also con-
tains several other results concerning the behaviour at infinity of linear systems.

A generalized state-space realization is a linearisation of a matrix of rational
functions. Our theory of strong system equivalence makes it possible to replace an
arbitrary polynomial realization by a linearisation which is intrinsically connected
with it and shares its essential properties.

2. System equivalence at infinity

Let K be an arbitrary field and let K(s) denote the field of rational functions
with coefficients from K. For example, K may be the field of real numbers, the
field of complex numbers, or the field with two elements: 0 and 1. A rational
function r(s) in K(s) has the form r(s) = p(s)/q(s), where p(s) and q(s) are
coprime polynomials. The rational function r(s) is said to be causal if the degree
of p(s) does not exceed the degree of q(s) and strictly causal if the degree of p(s)
is actually less than the degree of q(s). The set H of all causal rational functions
is a principal ideal domain; in fact the proper ideals in H are s'lH, s~2H,
s'3H, Since this principal ideal domain is the valuation ring of the field K(s)
associated with the degree valuation, or valuation at infinity, it is natural to
suspect that it is the appropriate setting for studying the behaviour at infinity of a
linear system. This suspicion is confirmed by the results we will establish. [The
use of polynomial matrices to study system equivalence at infinity on the other
hand raises the difficulty that the individual polynomial matrices in a polynomial
realization all have a pole structure at infinity, and it is necessary to disentangle
some of this structure if one wants to talk about the structure at infinity of the
whole realization.]
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196 B. D. O. Anderson, W. A. Coppel and D. J. Cullen [3]

A p X m matrix of rational functions will be said to be causal if its entries are
all causal, and strictly causal if its entries are all strictly causal. An m X m matrix
of rational functions will be said to be bicausal if it is causal and has a causal
inverse. Similarly an m X m matrix of polynomials will be said to be bipolynomial
if it has a polynomial inverse.

A causal realization of a p X m rational matrix R is a representation of the form

w h e r e 3T, °U, ~V, i f sue n X n, n X m , p X n , p X m c a u s a l m a t r i c e s a n d ^ " i s
non-singular. The positive integer n may vary from one realization to another.
The realization is (causally) controllable if the causal matrices ^"and W are left
coprime, and (causally) observable if the causal matrices ^ and 'f are right
coprime. The realization is (causally) irreducible if it is both controllable and
observable. Two causal realizations

1 1 1 1 2 2 2 2 V /

of the same rational matrix are said to be (causally) system equivalent if there exist
bicausal matrices Jt', ^Tand causal matrices S,', ^such that

M 0
7 0 0
0
0

0 0

0
(3)

where the adjoined unit matrices may be of any compatible dimensions. Other-
wise stated, the causal realizations (2) are system equivalent if and only if there
exist causal matrices^, J/~, 3.', ^ w i t h ^ a n d ^~2 kf* coprime, and ^Tand 9~x right
coprime, such that

r i\[rx *rx\ [r2 >r2JLo i\ K)

By replacing "causal" by "polynomial" throughout, we recover the usual
definitions of polynomial systems theory. The properties of causal realizations
which are completely analogous to those of polynomial realizations will be used
without special comment below.

To define system equivalence at infinity of polynomial realizations, we cannot
simply operate with causal matrices in the above way on their Rosenbrock system
matrices. Two preliminary steps are required. First the polynomial realization is
replaced by a normalised one for which U and V are constant matrices and
W = 0. (This procedure was also used by Verghese.) Secondly we associate with
this normalized realization a causal realization. Two polynomial realizations will
then be defined to be system equivalent at infinity, if their associated causal
realizations are causally system equivalent. Subsequently we will show that this
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[41 Strong system equivalence (I) 197

definition can be given forms similar to the definitions of ordinary system
equivalence due to Fuhrmann and Rosenbrock.

Now let the/? X m rational matrix R have the polynomial realization

R = w+ VT'lU.

With this realization we associate not only Rosenbrock's system matrix

'-T U]
V W\

but also the extended system matrix

P =

It is easily verified that Q is

Q'1

Q =

-T
V

0

non-singular,

= 0
VT-1

u
w
Im

with

0
0

-/_

0

-',
0

inverse

T-ly

Im
1R

Hence

where

R=

'=[° 0 I,].

Let Q 1 have the irreducible causal realization

(5)

(6)

(7)

(8)

(9)

(10)

Then R has the induced causal realization

The following definitions are basic for the present work.

DEFINITION 1. Two polynomial realizations

R=W1 + VJC1^ =W2+ V2T2~
lU2 (11)

of a rational matrix R are said to be system equivalent at infinity if the correspond-

ing induced causal realizations are causally system equivalent.

This definition does not depend on the choice of irreducible causal realization
of Q'1. For any two irreducible causal realizations of Q'1 are causally system
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198 B. D. O. Anderson, W. A. Coppel and D. J. Cullen is]

equivalent, and a simple calculation then shows that the corresponding induced
causal realizations of R are also causally system equivalent.

DEFINITION 2. Two polynomial realizations (11) of a rational matrix R are said
to be strongly system equivalent if they are both (polynomially) system equivalent
and system equivalent at infinity.

The object of this paper is to show that these definitions adequately solve the
problem of Verghese, mentioned in the Introduction. We show first that the
polynomial realizations (5) and (9) are strongly system equivalent.

LEMMA 1. Let R be a p X m rational matrix with the polynomial realization (5).
Then the polynomial realization (9), where Q is the extended system matrix (7) and
8) and #'are defined by (10), is strongly system equivalent to the given realization (5).

PROOF. The realizations are system equivalent, since

0 0
0 7
-7 0
0 -1

I
0

u
w

ol
0
0
1J

T -U 0 0
-V -W I 0

- /
0

0 /
/ oj

7 0 0
0 / 0

0
0

0 0 -T U
0 0 W 0

0
-V

-I 0 I
-W I 0
0 0 0
0 0 7

(12)

Let

-Q 3d 0
# 0 -/„

0 0

be the extended system matrix of the realization (9). If Q l has the irreducible
causal realization Q'1 = y~x°U, then Q~x has the irreducible causal realization

G " 1 -

We wish to show that the induced causal realizations

<$
0

0
0

0

-1

0

0

0

0

0 '
0
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[6] Strong system equivalence (I) 199

where 38 and <€ are defined analogously to 38 and #, are causally system
equivalent. But, since

y

-<€

0
0

-°U38
0

^n,

0

0
h
0
/

0
0

h
0

-sr

this follows by a similar computation to that in the first part of the proof.
The remaining results of this section characterize system equivalence at infinity

directly in terms of the given polynomial realizations, without reference to
induced causal realizations.

PROPOSITION 1. Two polynomial realizations

R=Wl+ V^'% = W2 + V2T{XU2 (11)

of a rational matrix R, with extended system matrices Qx and Q2, are system
equivalent at infinity if and only if there exist causal rational matrices Jt', JT, HE, <&
such that \J(Q2\ has a causal right inverse, [^] has a causal left inverse, and

(13)
.ar i\\ vx o

where the common value of both sides is causal.

PROOF. Let

0 10 / '

be irreducible causal realizations. If the realizations (11) are system equivalent at
infinity there exist causal matrices Jt', Jf, SC, ®J, such that J( and 9~2 are left
coprime, ̂ Tand &~x are right coprime, and

If we set

r2 o JLo
2r2

(15)

then (13) holds. Since ̂  and °llx are left coprime, there exist causal matrices J^,
<&l such that

+ qt-fii = /.
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On the other hand, since J( and 3~2 are left coprime, there exist causal matrices
J^2, ^2 such that

Jl 3f2

Then

where

Thus [JtQ2] has a causal right inverse, and similarly [-Q] has a causal left inverse.
Conversely, suppose there exist causal matrices^, JV, !%', ^with the properties

in the statement of the Proposition. If we defined, J/~, 3,\ ^ b y (15), then (14)
holds. Moreover J( = JCM^1 is causal, since JtQx is causal and the realization
<2i = ^{^x is irreducible. Similarly^, J/", and ^are causal. There exist causal
matrices J*\ ^such \ha\J(&+ Q2&= I. Thus £>2^is causal, and hence ^ =
for some causal ^ . Then

which shows that Jt and ST2 are left coprime. Similarly J/~ and 3~x are right
coprime. Consequently, the realizations (11) are system equivalent at infinity.

Proposition 1 characterizes system equivalence at infinity in the manner of
Fuhrman's definition of ordinary system equivalence. We will now characterize
system equivalence at infinity in the manner of Rosenbrock's definition of system
equivalence.

PROPOSITION 2. Two polynomial realizations (11) of a rational matrix R are
system equivalent at infinity if and only if there exist causal matrices Jt', Jf, 3,', 'S/
with Jt and JV'non-singular such that

(i)

r j
Y3CJt I

o
/
0

0

0
-Qi
<$x

0

0
=

/ 0
0 -Q2

0 %

0

0 0 / J

where Qt, 38, and <SI are defined as in (7) and (10),

(ii)
/ 0 1 is causal for some causal @ if and only if

[ ° ~Qi J ^ = yjtfor some causal # ,

https://doi.org/10.1017/S0334270000004860 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004860


Strong system equivalence (I) 201

(iii)

/ 0
0 -Q2

is causal for some causal 3? if and only if

3e= Jftf for some causal J f .

PROOF. Again, let
>-l _ ar-^c

be irreducible causal realizations. If the given polynomial realizations (11) are
system equivalent at infinity there exist bicausal matrices Jt, Jf and causal
matrices SC, S^such that

J( 0
X I

I 0
o -srx
o vx

0
v3Sl

0

I
0

0

0
-3T2

v2r2

0
@2

0

r

io i

If we set

si I 0 0 1 -7Z

o -r.
JV,

(16)

(17)

, Jf, HE, ^are causal, with M and ^Tnon-singular, and (i) holds. Moreover

0
and / 0

0 -Q:

are causal. Since the causal realization
-UJ

0
0 (18)/ 0 1_ [/ 0

[o -GXJ ~ [o %
is irreducible, @[r

0 _°Q] causal for some causal (^implies 9= ^ [ Q -%t\ f°r some
causal ^ ! and hence ^ = ^^#, where 'S = ^ i ^ " 1 is causal. This proves (ii), and
the proof of (iii) is analogous.

Conversely, suppose that there exist causal Jt', J/"', 3C, <3/ with Jt and JV
non-singular such that (ii)-(iii) hold. If we defined, JP, 3C, ^by (17), then (16)
holds. Furthermore, since the realization (18) is irreducible, (ii) implies that Jf is
bicausal. Similarly, (iii) implies that J/"v$, bicausal. Then ^and ^are causal, and
(16) shows that the polynomial realizations (11) are system equivalent at infinity.

It is readily seen that if (i) holds, condition (ii) in the statement of Proposition 2
is equivalent to requiring the causal matrix J([{, _gj to have the same zero
structure at infinity as the polynomial matrix Gi. and condition (iii) is equivalent
to requiring ['0 - g j ^ t o have the same zero structure at infinity as Q2- Our
original derivation of these results was in precisely the reverse order to that
adopted here. By mapping the point at infinity to a finite point at which Gi a n d
Q2 were non-singular, and by imposing natural requirements at this finite point
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202 B. D. O. Anderson, W. A. Coppel and D. J. Cullen 19]

for a suitable definition of system equivalence at infinity, we were led to the
conditions of Proposition 2 in the form just stated.

A simpler result in the style of Rosenbrock is the following

PROPOSITION 3. Two polynomial realizations (11) of a rational matrix R are
system equivalent at infinity if there exist bicausal matrices Jt', Jf and causal
w,**-;™^ or ail u *L~*

J( 0
.X I

PROOF. We have

/

0

0

0
- 7 \

vx

0 "
u l =

7 0 0
0 -T2 U2

0 W,

where

0

0
/
0

0
0
/_.

jr
0
0

<&
I
0

0
0
/.

are bicausal rational matrices. Let Q{1 and Q21 have the irreducible causal
realizations

1 *s \ u\i

The induced causal realizations
2 U2-

R = <gx • 3T{1 • °UX38X, R=C61- T^x • <%

are respectively causally system equivalent to the realizations

Moreover, since

[0

s\ 0 0

the first is causally system equivalent to the realization

R-[o ^ ]
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[io] Strong system equivalence (I) 203

But the causal realizations

/ 0 1 [/ Ol"1 \I 0

o e ^ J " L° ^ J lo *u2
7 ? \ ! O l Tr-x\~l «\J 0 I ^-!

are both irreducible and hence causally system equivalent. It follows that the
original two induced causal realizations of R are also causally system equivalent.

Proposition 3 provides a sufficient condition for system equivalence at infinity.
However, this condition is not also necessary. For example, the zero matrix has
the polynomial realization

0 = 0 + 0-(.y/n)~
1 0

for any positive integer n. The corresponding extended system matrix Q has a
causal inverse, and the induced causal realizations R = ^Q'lSS for two different
values n = ny, n2 are easily seen to be causally system equivalent. But the
condition of Proposition 3 is not satisfied, since there do not exist bicausal
matrices^, ^Tsuch that

This example illustrates the fact that, although system equivalence at infinity
preserves the zero structure at infinity of Q, it need not preserve its pole structure
at infinity.

Finally we relate realizations of a non-singular matrix to realizations of its
inverse. The following result extends a well-known property of ordinary system
equivalence to system equivalence at infinity.

LEMMA 2. Let R be a non-singular m X m rational matrix. Then the polynomial
realizations

R=WX+ VjT^Ui = W2 + V2T2-
lU2 (11)

are system equivalent at infinity if and only if the polynomial realizations

are system equivalent at infinity.

PROOF. It is sufficient to establish the lemma for the modified realizations
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204 B. D. O. Anderson, W. A. Coppel and D. J. Cullen [ i n

whose extended system matrices are

7. \Qi - * .
Q,= 0

Suppose first that the realizations (11) are system equivalent at infinity. If Q^1

has the irreducible causal realization Qx
l = S\~1<if1 then Qx

r has the irreducible
causal realization

_i _ i - ' i " * i " " i
fir1-

0

o M o ' / ,
Similarly for Q^ = ^"2^2 X a n^ fij1- By hypothesis there exist causal matrices
Jt', JV, X, ^with^#, ^ left coprime and Jf, 3~x right coprime such that

o o•Jlo A
Then the induced causal realizations of R~x are causally system equivalent, since

J(
-X
0

0
/
0

o"
0
/ .

- • ^ 1

- » 1

0

0
J

0
/

0 0

^ 2 0
0
/ 0

JT cy o
0 / 0
0 0 /

Conversely, suppose the realizations of R l are system equivalent at infinity.
Applying what we have already proved to R'1, we see that the realizations

are system equivalent at infinity. Hence, by Lemma 1, the realizations (11) are
also system equivalent at infinity.

Lemma 2 continues to hold if "system equivalence at infinity" is replaced by
"strong system equivalence", since it also holds for ordinary system equivalence.

3. Controllability and observability at infinity

A polynomial realization

R = w+ VT-lU (5)

will be said to be controllable at infinity {observable at infinity) if the correspond-
ing induced causal realization is controllable (observable). It will be said to be
irreducible at infinity if it is both controllable at infinity and observable at infinity.
These definitions are independent of the choice of irreducible causal realization of
Q~l. Also, if two polynomial realizations are system equivalent at infinity and one
is controllable (observable) at infinity, then so is the other. It follows at once from
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1121 Strong system equivalence (I) 205

the corresponding result for causal realizations that if two polynomial realizations
of the same rational matrix are irreducible at infinity then they are system
equivalent at infinity.

A polynomial realization (5) will be said to be strongly controllable if it is
controllable, i.e., the polynomial matrices T and U are left coprime, and also
controllable at infinity. Similarly it will be said to be strongly observable if it is
observable, i.e., the polynomial matrices T and V are right coprime, and also
observable at infinity. It will be said to be strongly irreducible if it is both
irreducible and irreducible at infinity, i.e., if it is both strongly controllable and
strongly observable. If two polynomial realizations are strongly system equivalent
and one is strongly controllable (observable), then so is the other. Conversely, two
strongly irreducible polynomial realizations of the same rational matrix are
necessarily strongly system equivalent.

The next result shows that these definitions are equivalent to those of Verghese
[14].

PROPOSITION 4. The polynomial realization (5) is controllable at infinity if and
only if the polynomial matrix

-T
V

U 0
W -l

has a causal right inverse, and it is observable at infinity if and only if the polynomial
matrix

-T
V

. 0

u'
W
I .

(20)

has a causal left inverse.

PROOF. It is sufficient to establish the controllability criterion, since the
observability criterion follows by taking transposes. Let Q'1 have the irreducible
causal realization Q'1 = i^^~'1 and suppose first that the matrix (19) has a
causal right inverse &v If J*"= [J^ 0] then <$'= QS^is a causal matrix of the
form

0
/

Since &= Q *^is causal we can write ^ = T<giox some causal matrix ^. Since

it follows that the causal matrices 5"and 28 are left coprime. Thus the induced
causal realization R = "g'yy-1 • @ is causally controllable and the given poly-
nomial realization is controllable at infinity.
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Suppose on the other hand that the given polynomial realization is controllable

at infinity. T h e n there exist causal m a t r i c e s ^ , X s u c h that

Since STjtif^ Qi^yP, this shows that the matrix [Q 3d] has a causal right inverse.
It follows at once that the matrix (19) has a causal right inverse.

Proposition 4 is the key result of this section. There arc however further
insights which can be derived, and these are contained in the next three proposi-
tions.

The following simple result appears to have been overlooked by Verghese.

P R O P O S I T I O N 5. If the rational matrix R is causal then the polynomial realization

(5) is irreducible at infinity if and only if T'1, T~lU and VT~l are causal.

P R O O F . T h e sufficiency of the condition follows immediately from Proposition

4 and the expression (8) for Q'1. Conversely, suppose R is causal and the

realization (5) is irreducible at infinity. Since the realization is controllable at

infinity, the mat r ix (19) has a causal right inverse

It follows that

^i = T

and hence that

R<3X - VT-1 - ^ = 0.

Thus VT'1 is causal. Similarly, since the matrix (20) has a causal left inverse,
T~1U is causal. It now follows from the equation displayed above that T~l is
causal.

Another immediate consequence of Proposition 4 is

PROPOSITION 6. Let R be a non-singular m X m rational matrix with the
polynomial realization (5). Then the polynomial realization

of R 1 is controllable (observable) at infinity if and only if the given realization of R
is controllable (observable) at infinity.
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Strong system equivalence (I) 207

If the p X m rational matrix R has rank r, then there exist bicausal rational
matrices <2r, Vsuch that

where the diagonal matrix D = [sd\...,sdr] and dx > • • • > dr. This is the
Smith-McMillan form of R at infinity. We can write

D= [R + ,R0,R_],

where the diagonal matrices R+, Ro and R_ contain respectively the positive, zero
and negative powers of s in D. It follows directly from the general theory of
realizations over a principal ideal domain [3, Theorems 12 and 13], that if the
polynomial realization (5) is irreducible at infinity, and if P and Q are the
corresponding system matrix and extended system matrix, then

R+= Or!, R.= P.. (21)

These results were originally derived by Verghese [14, Theorem 3.9] by a more
special argument.

The McMillan degree S(R) of a rational matrix R is defined, over the complex
field, to be the total polar degree of R. Over an arbitrary field it may be defined
in the following way. Let v(R) denote the degree of the least common denomina-
tor of all minors of R, and let v^R) denote the maximum non-negative degree of
any minor of R. (We include the "empty" minor, which has the value 1.) Then

If R has Smith-McMillan form (ej/^/j,. ..,er/\pr), then v(R) is the degree of the
polynomial \f/1 • • • \pr. If R has Smith-McMillan form at infinity {sdl,.. .,sdr),
then v^iR) is the sum of all positive exponents dk.

The following result is essentially contained in Verghese [14], but it is not
explicitly formulated there.

PROPOSITION 7. Let the rational matrix R have the polynomial realization (5) and
let Q be the corresponding extended system matrix. Then

with equality if and only if the realization is strongly irreducible.

PROOF. By ordinary realization theory [3], v(R) is at most equal to the degree
of the polynomial det Q, with equality if and only if the given realization is
irreducible. Similarly it follows from (21) that vK(R) is at most equal to the
degree of the polynomial det Q'}, with equality if and only if the given realization
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208 B. D. O. Anderson, W. A. Coppel and D. J. Cullen

is irreducible at infinity. Hence

; 5(det0)-8(det0_)

[ i s J

with equality if and only if the given realization is strongly irreducible.

4. Matrix fraction realizations

Matrix fraction realizations, i.e., polynomial realizations of the form

R = W\ (22)

have received particular attention in the literature. Such a realization is neces-
sarily strongly controllable, and it is tempting to conjecture that any strongly
controllable realization (5) is strongly system equivalent to some realization (22).
Unfortunately this is false. For example, the strongly controllable scalar realiza-
tions

j + ( - l ) - r 1 -(s2 - 1) = 0 + 1 • s-1 • 1

are system equivalent. However, they are not strongly system equivalent, since the
Smith-McMillan forms at infinity of the corresponding extended system matrices
are {s2,l, s'1} and {5,1,1}, which do not have the same zero structure. Never-
theless it is possible to say when two polynomial realizations of the form (22) are
strongly system equivalent. The main result of this section now follows:

PROPOSITION 8. Two polynomial realizations

R = VlT-i = y2T2-i ( 2 3 )

of a rational matrix R are system equivalent at infinity if and only if the matrices

-1

(24)

where Z = T{XT2, have causal left inverses.

PROOF. Suppose first that the realizations (23) are system equivalent at infinity.
Then there exist causal matrices^, Jf, SC, ^such that

\ j/ nlf-2i ^ i l \-Qi ®T\\ AT <a/\
[sr iil^! o J [ c#1 o JL o iy
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Corresponding to the partitions (7) of Qx and Q2, write

Then

is causal and a straightforward calculation shows that J^is a left inverse of the
first matrix (24). Since system equivalence at infinity is a symmetric relation, it
follows that also the second matrix (24) has a causal left inverse.

Suppose next that the two matrices (24) have causal left inverses

& = f ̂  ftf" $r 1 and *&= F 3̂  ^ ^ 1

respectively. We may assume that

z] \z-1

are also causal. In fact, by transforming to Smith-McMillan form at infinity, it is
readily seen that if a rational matrix R has a causal left inverse then it has a
causal left inverse^ such that Rjf is also causal. If we set

Jt =

T — Tl 12 ^ 2

then

V23F2

Jt 0
0 /

0

0

JT-- I
0

0
/

][•o Lo
and the common value of both sides is causal. Moreover [Jt Q2] has a causal
right inverse, since

0 0"
0 0
- / 0

Jt
7
0
0

0
0
0

o'
0
/

+ Q2 0
0

and [£] has a causal left inverse, since

0
0

0
0 0.

Therefore, by Proposition 1, the realizations (23) are system equivalent at infinity.
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C O R O L L A R Y . For a causal matrix R, the polynomial realizations (23) are system

equivalent at infinity if and only if the matrices

Z i T-7-i'

where Z = T{lT2, have causal left inverses.

It is easily seen that Proposition 8 can be reformulated in the following way:
the polynomial realizations (23) are system equivalent at infinity if and only if, for
every causal matrix 9Esuch that R2C is causal, T{1 is causal if and only if T{X2Eis
causal.

In fact, suppose the realizations (23) are system equivalent at infinity. Then

there exist causal m a t r i c e s ^ , ^ " 2 > ^i s u c n h

Multiplying on the right by T{X3C, it follows at once that 3C, Rfrand Tf^causal
imply T-f^causal. Similarly X, R3?and r^^causal imply T{^causal. Thus the
condition is necessary.

Conversely, suppose the condition is satisfied. If

are irreducible causal realizations, it follows that 2£= 3~2^3'-i must be bicausal. On
the other hand, since the realizations are irreducible, there exist causal matrices
&, 'S,^ such that

Then

<3V2

Thus the first matrix (24) has a causal left inverse, and similarly also the second
matrix (24).

System equivalence at infinity of the realizations (23) does not imply that
Z = T{XT2 is a bicausal matrix. For example, the realizations of zero with system
matrices

1 1 ] \s 1
o o r Lo o

are system equivalent at infinity.
On the other hand it is well-known, see [9, page 564], that the realizations (23)

are system equivalent if and only if Z = T{lT2 is a bipolynomial matrix.
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Otherwise expressed, the realizations (23) are system equivalent if and only if, for
every polynomial matrix X, T{XX is polynomial if and only if T{XX is poly-
nomial. Combining these conditions with the conditions for system equivalence at
infinity, we obtain necessary and sufficient conditions for the strong system
equivalence of the realizations (23).

5. Generalized state-space realizations

A generalized state-space realization of a rational matrix R is defined to be a
polynomial realization of the special form

R = D + C{sE - A)'XB,

where A,...,E are constant matrices. In this section we show that generalized
state-space realizations play an analogous role with respect to strong system
equivalence to that played by ordinary state-space realizations with respect to
ordinary system equivalence.

There are two main results to obtain. First, any polynomial realization is
strongly system equivalent to a generalized state-space realization and second,
any two generalized state-space realizations are strongly system equivalent if and
only if they are constant system equivalent (in a sense made precise later). Both
results are of course extensions to strong system equivalence of important,
long-standing results of linear systems theory.

The preliminary work for both theorems requires us to consider polynomial
transfer matrices, which are excluded in the conventional theory. These results
can then be combined with known results on proper (that is causal) rational
matrices to give the main results for arbitrary, proper or improper, rational
transfer matrices. We begin with:

PROPOSITION 9. Any p X m polynomial matrix P(s) has a strongly irreducible
polynomial realization of the form

P(s) = C(I-sJY1B, (25)

where J, B, C are constant matrices andJ is nilpotent.

PROOF. Since s'xP(s'1) is a strictly causal rational matrix, it admits a minimal
state-space realization
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where A, B, C are constant matrices. There exists an invertible constant matrix S
such that

i

A2

where Ax is nilpotent and A2 is non-singular. Then

F(s) = C(I - sA)~lB

\I-SA1 0 I"1

\
= CS[ 0 I-sA2

= CX{I - sAj'B, + C2(I - sA.Y'B,,

where Bx, B2, Cx, C2 are constant matrices. The first term on the right is a
polynomial matrix, since if A" = 0 then

( / - s A x Y l = / + s A x + ••• + s " - ^ - 1 .

The second term on the right is a strictly causal rational matrix, since

{I - sA2y
l =-A?{sl - A?)'1.

Since P(s) is a polynomial matrix, it follows that

C2(I- sA2)~*B2 = 0.

Since the original realization of s^Pis'1) was assumed minimal, this is possible
only if the second term does not in fact appear. That is, A = / is itself nilpotent
and (25) holds. The realization (25) is certainly irreducible, since / — sJ is
bipolynomial. On the other hand, [si — J B] has a polynomial right inverse,
since (J, B) is controllable. Then [s~xI — J B] has a causal right inverse and, a
fortiori, [I - sJ B] has a causal right inverse. Similarly ['"^ ] has a causal left
inverse. It follows from Proposition 4 that the realization (25) is irreducible at
infinity. This completes the proof.

Proposition 9 is stated without proof by Verghese [14, page 184]. In the proof
of Theorem 1 we will also use the following

LEMMA 3. Let the rational matrix R have a polynomial realization

R = D+ CT^B

with B, C, D constant matrices, which is irreducible at infinity. If

is a irreducible causal realization, then

R= D + C~T- 9~-x • B

is also an irreducible causal realization.
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PROOF. By Proposition 4 there exist causal matrices J^ , ^ such that

Since T&x is causal and the realization T = 3~Y"X is irreducible, we can write
8FX = VOfi for some causal^. Then

rjfx + B<$x = I,

which shows that the causal realization of R is controllable. Similarly there exist
causal matrices J^, ^2 such that

SF2T + &2C = I

and hence
<$2cv= V- SF^er.

But there exist causal matrices J^, ^3 such that

It follows that

which shows that the causal realization of R is observable.

THEOREM 1. Any polynomial realization

R= W+ VT'lU (5)

of a rational matrix R is strongly system equivalent to a generalized state-space

realization.

PROOF. We suppose again that R is ap X m matrix and T an n X n matrix. By
Proposition 9 the extended system matrix Q, defined by (7), admits a strongly
irreducible polynomial realization

where / , B, C are constant matrices and / is nilpotent. Therefore, by Proposition
6, the polynomial realization

where / = « + / > + m and
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is irreducible at infinity (and even strongly irreducible). Thus R = <%Q~x38\yd& the
generalized state-space realization

(26)

We will show that this realization is strongly system equivalent to the given
realization (5).

Since sJ — I is bipolynomial and

C(sJ
I
—

0
I)-1

0
/
0

0

0
/ .

=

\sJ - I

-c
L o
/ 0
0 -Q
0 #

-E
0

o'
38
0

0"
38
0 .

sJ - I
0

. 0

-B
I
0

0
0
/

the realization (26) is system equivalent to the realization R = WQ x<% and hence
also to the realization (5). It remains to show that the two realizations are system
equivalent at infinity.

Let L'1 have the irreducible causal realization L'1 = i^S''1. Then, by Lemma
3, Q'1 has the irreducible causal realization

The extended system matrix

sJ - I -B 0
-C 0 ^

0
0

0 - /„0 tf
0 0 /„ 0

of the generalized state-space realization (26) has the irreducible causal realization

G =

38 0
o -/„

where

> = [Op. n + m + q Ip\'

r o
o im

0 0

- ro.

-1

The corresponding induced causal realizations

R = x
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and

R =
r0
0

0
In,

0

0
0

/.

38 0
0 -/„

where

are causally system equivalent, since

0

0

1+1

0

0

Ip

0

Ip

In,
0

-!%

0

0

0

0

-Ip

r

0

0

In,

0

0
0

-Si
0

'In,
0

0

Ip

0
0

0
Ip

0

0

0

-g-

0
0

0

o"
0

0

0

-ii+i
0

0

0

0

0

Ip

0

0

/„
0

0
_/

Thus the original polynomial realization (5) and the generalized state-space
realization (26) are system equivalent at infinity.

The procedure for constructing the generalized state-space realization (26) was
given by Verghese [14, p. 209]. He recognised that (26) ought to be strongly
system equivalent to the given realization (5), even though he lacked a general
definition of strong system equivalence.

Our next objective is to obtain necessary and sufficient conditions for the
strong system equivalence of two generalized state-space realizations. We first
prove a division rule for the ring of causal rational functions.

LEMMA 4. Lets/(s) be a causal p X m matrix and J a constant nilpotent p X p
matrix. Then there exists a unique causal matrix 38{s} and constant matrix C such
that

- J)3S{s) + C. (27)

PROOF. Lets/(s) have the formal power series expansion

s?(s) = Ao + A^s'1 + A2s'2 + •••.

If 38{s) = Bo + B^-1 + B2s-2 + ••• and C satisfy (27), then

36{s) = (si + s2J + • • • + spJp-l)(-C + Ao + A^s'
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Equating coefficients of s, we get

[23]

Jp'1A
p_1.

Equating coefficients of 1, s'1,... we now obtain in succession Bo, Bv Thus
3S{s) and C are uniquely determined.

Conversely, if we define C in this way then

JC = JA
0

JlA1

= J"~2A0

+

It follows that the rational matrix

38(s) = {s-lI-j

is causal.
Clearly, there is an analogous result to Lemma 4 with right division, instead of

left division, by s~lI — J. These results will now be used to study strong system
equivalence for generalized state-space realizations of a polynomial matrix.

PROPOSITION 10. Let P(s) be a polynomial matrix with the generalized state-space
realizations

P(s) = D1 + C1(sJ1 - I) B1 = D2+ C2(sJ2 - I) B (28)

where Jx and J2 are nilpotent. If there exist causal matrices Jt', Jf, 9C, ty such that
I — sJ2] has a causal right inverse, [ ,_^j ] has a causal left inverse and

3C Dx

Jf <&'

A 0

then there exists an invertible constant matrix Mo and constant matrices Xo, Yo such
that

/
0

0

0
I-sJ,

c.

0
Bl =

/

0

0

0
I-sJ2

c2

0
B2

D2

Mn

PROOF. By Lemma 4 we can write

^ = (/ - sJ2)J(x + Mlt

where J£x is strictly causal and Mx is a constant matrix. Then

JT=J(X{I- sJj +NU
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where N1 = ( / - sJ2)~
1Ml(I - sJx) is both polynomial and causal, and hence a

constant matrix. Moreover (/ — sJ2)Nl = MX(I - sJx) gives

NX = MX, J2NX = MXJX.

Similarly from.^.B1 = (/ - sJ2W + B2 we obtain

where Yx = <3f — J(XBX is a constant matrix, and from #"(/ — sJx) + Cx = C2JV

we obtain

C2NX = Xx(l - sJ,) + Clt

where Xx = ?£ — C2Jt\ is a constant matrix. Finally, equating constant terms in
3CBX + Dx = C2<2/+ D2 we obtain

A ^ + Dx = C2YX + D2.

By hypothesis there exist causal matrices <}U, 'f such that

and hence

where Hr= ~T+ Jt-ft. We can write

where °llx is strictly causal and Ux is a constant matrix. It follows that

where H^ = T^"+ A/^ ! is a constant matrix. Similarly there exist constant
matrices Ult Wx such that

UlNl + Wl(I-sJ1) = I.

Equating coefficients of s, we obtain

J2WX = 0, WXJX = 0.

It follows that, for any constant matrix Lx,

Lx Wx 0

Wx Mx 0

C Vt/ Y I
2WX Ax 1

0 0
0 I - sJx Bx

0 Cx Dx

7 0 0
0 I - sJ2 B2

0 D,

Lx Wx WXBX

Wx Mx Yx

0 0 /
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Since [Wx Mx] has full row rank and [J£j] has full column rank we can choose Lx

so that the constant matrix

Mo =
Lx Wx

Wx Mx

is invertible. The result follows.
We will say that two generalized staie-space realizations

R = Dx + Cx(sEx - AX)'1BX = D2 + C2(sE2 - A2)'
1B2 (29)

of an arbitrary rational matrix R are constant system equivalent if there exist
invertible constant matrices Mo, NQ and constant matrices Xo, Yo such that

Mo
0

*i - sEx

0 I
0

0

A2

0
— sE2

C2

0
B2

D2
0

(30)

It is not difficult to see that this is the same as the concept of strong equivalence
for generalized state-space realizations which Verghese [14, p. 161] defined in a
less direct way.

THEOREM 2. Two generalized state-space realizations (29) of a rational matrix R
are strongly system equivalent if and only if they are constant system equivalent.

PROOF. Suppose first that (30) holds. Then the realizations (29) are certainly
system equivalent and, by Proposition 3, they are also system equivalent at
infinity.

Conversely, suppose that the realizations (29) are strongly system equivalent. It
is well-known, see, for example, Gantmacher [7, Vol. II, p. 28], that for any
non-singular pencil sE — A there exist invertible constant matrices L, K such that

T-I 0
0 si — A .

where / is nilpotent. Consequently, we may assume from the outset that the two
given realizations have system matrices of the form

I - sJ, 0 B,

0 A,- si B,

C, C, D,

where/, is nilpotent (/' = 1,2). Then

Cx{sI-AxY
lBx = C2(

since each side is the strictly causal part of R.
A2)~%. (31)
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Since the realizations (29) are system equivalent, there exist polynomial matrices
M, N, X, Y such that

M 0
X I

where M and

I - sJx 0 B1

0 A1- si B1

I - sJ2 0 B2

0 A2- si B2

C2 C2 D2

N Y

o iY

A2 — sE2 —

are left coprime, and N and

are right coprime. Let

\I - sJ2 0

[ 0 A2 - si

\l-sJ, 0

I 0 A\ - si

• M n M i 2M = u 12 I v =
m2l M22 N21 N22Y

i,

be corresponding partitions. Then it follows that

M olMi-*7 Bi
X l\[ Q 0

where M = Af22, iV = N22, and

\A2-sI B2UN y
0 LO /

X=X2-C2(l-sJ2y
lMn,

Moreover M = M22 and A2 - si are left coprime polynomial matrices, since M
and A 2 — sE2 are left coprime and

Similarly, JV = N22 and A1 - si are right coprime polynomial matrices, since iV
and Al — sEx are right coprime and

Thus the state-space realizations (31) are system equivalent. By a basic property
of state-space realizations, see for example [9, p. 562], this implies that there is an
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invertible constant matrix S such that

s o
0 I

A2- si

0
*2 rs o
o io 7 j -

127]

(32)

On the other hand, since the realizations (29) are system equivalent at infinity,
there exist by Proposition 1 causal matrices^, JV, %, ^such that \Jt Q2] has a
causal right inverse, [•£] has a causal left inverse, and

(33)9C I\\ <$x 0

Corresponding to the partitions

- sJ, 0

0

B, 0

A, - si B, 0

C C D -T

0 0 7 0

0 0 IV

(' = 1,2),

put

Jt = • ^ 2 2 - ^ 2 3 " ^ 2 4

• ^ 32 • ^ 3 3 " ^ 3 4

*/?Z ^j ^w ^2 */" 43 */'^ 44 JTAX Jfn

^ 2 3

• ^ 3 3

•^24

^ 3 4

x4],

Then it follows from (33) by a straightforward calculation that

f 0]\l-sJx Bx-\ Jl-sJ2 Bqjf
r l\[ Cx Dx\ [ C2 D2\[o IY

where

X= -Xx +J?n - D2JtAl + C2(sl - A2)'
X{M2X - B2J?4l),

9= <&, + JTU + JTUDX +{jru + Jir^c^si - AJ'%.

Moreover \J( I — sJ2] has a causal right inverse, since

[7 0 0 -B2]Q2 = [I - sJ2 0 0 0]

and

[7 0 0 -7> 2 ]^ = ^ [ 7 0 0 -Bx] -(l-sJ2)[0 SC2 ^
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where
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•^3 = - ^ 1 4 .

i ? 4 = <&x - &

are causal. Similarly [7_^ ] has a causal left inverse. It follows from Proposition
10 that there exist constant matrices Mo, A ,̂ Yo with Mo invertible such that

Mn
0 0 0 0

Mn (34)

Combining (32) and (34), we obtain the theorem.

REMARKS. The proof of Theorem 2 shows that two generalized state-space
realizations

R(s) = C^sl - Al)'
1B1 + C^iJj - I)~1B1 + Dx

= C2(sl - A^Bj + C2(sJ2 - I)~XB2 + D2

of a rational matrix R(s) are strongly system equivalent (i.e. constant system
equivalent) if and only if the realizations

C^sl - A1)'
lB1 = C2(sl - A2)'

lB2

of its strictly causal part are system equivalent (i.e. similar) and the realizations

C^sJ, - IY'B, + D, = C2(sJ2 - iylB2 + D2

of its polynomial part are system equivalent at infinity (i.e. constant system
equivalent). In conjunction with Proposition 3, this proves that the hypothesis of
Proposition 10 is satisfied if and only if the realizations (28) are system equivalent
at infinity. This also follows more directly from Proposition 1 of [5]. Finally we
note that in Proposition 10 the matrices Xo and Yo cannot always be taken to be
zero. A simple example is provided by the scalar realizations of the zero matrix

0 = 0 + 1 -(-I)"1 -0 + 0 - ( - I ) ' 1 • 1.

6. Conclusion

The results which have been established provide an adequate theory of strong
system equivalence and linearisation of polynomial realizations, in the sense of
the Introduction. The only drawback is aesthetic. There are some massive
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matrices and tedious calculations. It has been shown in [8] and [4] that ordinary
system equivalence can be abstractly characterised as an isomorphism of modules.
A module-theoretic approach to strong system equivalence has also been devel-
oped and will be given in the continuation of this paper by Coppel and Cullen [5].
Although the treatment there in part supersedes the present one, we have chosen
not to discard altogether our own order of discovery, since some may still prefer
matrices to iiiouuics.
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