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Abstract

The conditional tail expectation in risk analysis describes the expected amount of risk that
can be experienced given that a potential risk exceeds a threshold value, and provides an
important measure of right-tail risk. In this paper, we study the convolution and extreme
values of dependent risks that follow a multivariate phase-type distribution, and derive
explicit formulae for several conditional tail expectations of the convolution and extreme
values for such dependent risks. Utilizing the underlying Markovian property of these
distributions, our method not only provides structural insight, but also yields some new
distributional properties of multivariate phase-type distributions.
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1. Introduction

Let risk X be a nonnegative random variable with cumulative distribution function F ,
where X may refer to a claim for an insurance company or a loss on an investment portfolio.
The conditional expectation of X given that X > t , denoted by CTEX(t) = E(X | X > t), is
called the conditional tail expectation (CTE) of X at t . Observe that

CTEX(t) = t + E(X − t | X > t),

where the random variable (X − t | X > t) is known as the residual lifetime in reliability
(Shaked and Shanthikumar (1994)) and the excess loss or excess risk in insurance and finance
(Embrechts et al. (1997)). Since (d/dt)(t + E(X − t | X > t)) ≥ 0 for any continuous risk
X (see Shaked and Shanthikumar (1994, p. 45)), the CTE function CTEX(t) is increasing in
t, t ≥ 0.

The CTE is an important measure of right-tail risk which is frequently encountered
in the fields of insurance and financial investment. It is known that the CTE for continuous risks
satisfies all the desirable properties of a coherent risk measure (Artzner et al. (1999)) and that
it provides a more conservative measure of risk than the value-at-risk at the same confidence
level (Landsman and Valdez (2003)). Hence, the CTE is preferable in many applications, and
has recently received increased attention in the insurance and finance literature.
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Multivariate phase-type distributions 811

To analyze dependent risks, several CTE measures emerge, and the most popular ones are
the CTEs of the total risk and extreme risks. Let X = (X1, . . . , Xn) be a risk vector, where
Xi denotes risk (claim or loss) in subportfolio i for i = 1, . . . , n. Then S = X1 + · · · + Xn

is the aggregate risk or the total risk in the portfolio consisting of the n subportfolios, and
X(1) = min{X1, . . . , Xn} and X(n) = max{X1, . . . , Xn} are extreme risks in the portfolio.
In the risk analysis of such a portfolio, we are not only interested in the CTE of each risk Xi ,
but also in the CTEs of the statistics S, X(1), and X(n), which are respectively denoted by

CTES(t) = E(S | S > t),

CTEX(1)
(t) = E(X(1) | X(1) > t), (1.1)

CTEX(n)
(t) = E(X(n) | X(n) > t). (1.2)

The risk measures related to these statistics also include, among others,

CTEXi | S(t) = E(Xi | S > t), (1.3)

CTEXi | X(1)
(t) = E(Xi | X(1) > t), (1.4)

CTEXi | X(n)
(t) = E(Xi | X(n) > t), (1.5)

for i = 1, 2, . . . , n.
All these risk measures have useful interpretations in insurance, finance, and other fields.

For instance, CTEXi | S(t) represents the contribution of the ith risk Xi to the aggregate risk S,
since CTES(t) = ∑n

i=1 CTEXi | S(t). The CTEs E(X(1) | X(1) > t) and E(X(n) | X(n) > t)

respectively describe the expected minimal and maximal risk in all the subportfolios, given that
the minimal or maximal risk exceeds some threshold t . More interestingly, E(Xi | X(1) > t)

represents the average contribution of the ith risk given that all the risks exceed some value t ,
whereas E(Xi | X(n) > t) represents the average contribution of the ith risk given that at least
one risk exceeds a certain value t . Besides their interpretations in risk analysis, the CTEs in
(1.1)–(1.5) also have interpretations in life insurance. For instance, in a group life insurance,
let Xi , 1 ≤ i ≤ n, be the lifetime of the ith member in a group that consists of the n members.
Then X(1) is the joint-life status and X(n) is the last-survivor status (Bowers et al. (1997)).
As such, E(Xi | X(1) > t) is the expected lifetime of member i given that all members are
alive at time t , and E(Xi | X(n) > t) is the expected lifetime of member i given that at least
one member is still alive at time t .

Landsman and Valdez (2003) obtained explicit formulae for CTES(t) and CTEXi | S(t) for
the multivariate elliptical distributions, which include distributions such as the multivariate
normal, stable, Student t , etc. The focus of this paper is to derive explicit formulae for various
CTEs, such as CTES(t), CTEX(1)

(t), CTEX(n)
(t), E(X(n) | X(1) > t), and E(X(n) | Xi > t),

i = 1, 2, . . . , n, for the multivariate phase-type distributions.
Univariate phase-type distributions (see Section 2 for the definition) have been widely used in

queueing and reliability modeling (Asmussen (2003), Neuts (1981)), and in risk management
and finance (Asmussen (2000), Rolski et al. (1999)). Multivariate phase-type distributions
were introduced and studied in Assaf et al. (1984). The multivariate phase-type distributions
include, as special cases, many well-known multivariate distributions, such as the Marshall–
Olkin distribution (Marshall and Olkin (1967)), and retain many desirable properties similar
to those in the univariate case. For example, the set of n-dimensional phase-type distributions
is dense in the set of all distributions on [0, ∞)n and, hence, any nonnegative n-dimensional
distribution can be approximated by n-dimensional phase-type distributions. Furthermore,
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Kulkarni (1989) showed that the sum of random variables that have a multivariate phase-type
distribution follows a (univariate) phase-type distribution.

Owing to their complex structure, however, the applications of multivariate phase-type
distributions have been limited. Cai and Li (2005) employed Kulkarni’s method and derived
the explicit phase-type representation for the convolution, and applied the multivariate phase-
type distributions to ruin theory in a multidimensional risk model. In this paper, we further
utilize the underlying Markovian structure to explore the right-tail distributional properties of
phase-type distributions that are relevant to explicit calculations of the CTE risk measures. Our
method yields, in a unified fashion, explicit expressions for most of the above-mentioned CTE
functions for phase-type distributions, and also gives some new distributional properties for
multivariate phase-type distributions.

The paper is organized as follows. After giving a brief introduction to phase-type distribu-
tions, in Section 2 we discuss the CTE for univariate phase-type distributions. In Section 3,
we detail various CTE measures that involve the multivariate phase-type distributions.
In Section 4, we conclude the paper with some illustrative examples. Throughout the paper,
we denote by X =st Y the fact that two random variables X and Y are identically distributed.
The vector e denotes a column vector of 1s of appropriate dimension, and the vector 0 denotes
a row vector of 0s of appropriate dimension. Note that the entries of all the probability vectors
(subvectors) and matrices are indexed according to the state space of a Markov chain.

2. The CTE for univariate phase-type distributions

A nonnegative random variable X, or its distribution function F , is said to be of phase type
(PH) with representation (α, A, d) if X is the time to absorption into the absorbing state 0 in a
finite Markov chain {X(t), t ≥ 0} with state space {0, 1, . . . , d}, initial distribution β = (0, α),
and infinitesimal generator

Q =
[

0 0
−Ae A

]
,

where subgenerator A is a d×d nonsingular matrix and α = (α1, . . . , αd). Thus, a nonnegative
random variable X is of phase type with representation (α, A, d) if X = inf{t ≥ 0 : X(t) = 0},
where {X(t), t ≥ 0} is the underlying Markov chain for X.

Let F̄ (x) = 1 − F(x) denote the survival function. Then the random variable X is of phase
type with representation (α, A, d) if and only if

F̄ (x) = Pr{X(x) ∈ {1, . . . , d}} = αexAe, x ≥ 0. (2.1)

Thus,

EXk =
∫ ∞

0
xk dF(x) = (−1)kk! αA−ke, k = 1, 2, . . . . (2.2)

See, for example, Rolski et al. (1999) for details.
The CTE for a univariate phase-type distribution has an explicit expression, which follows

from the following proposition.

Proposition 2.1. If X has a PH distribution with representation (α, A, d) then, for any t > 0,
the excess risk (X − t | X > t) has a PH distribution with representation (αt , A, d), where

αt = αetA

αetAe
. (2.3)
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Proof. The survival function of (X − t | X > t) is given by

Pr{X − t > x | X > t} = Pr{X > t + x | X > t} = F̄ (t + x)

F̄ (t)
.

It follows from (2.1) that

Pr{X − t > x | X > t} = αe(t+x)Ae

αetAe
= αte

xAe.

Hence, (X − t | X > t) has a PH distribution with representation (αt , A, d).

Corollary 2.1. If random variable X has a PH distribution with representation (α, A, d) then,
for any t > 0,

CTEX(t) = t − αA−1etAe

αetAe
. (2.4)

Proof. It follows from Proposition 2.1 and (2.2) that

CTEX(t) = t + E(X − t | X > t) = t − αtA
−1e = t − αetAA−1e

αetAe
= t − αA−1etAe

αetAe
,

where the last equality holds due to the fact that A−1etA = etAA−1.

As one immediate application of Corollary 2.1, we can obtain an explicit expression for the
conditional expectation E(X | X ≤ t), as follows.

Proposition 2.2. If X has a PH distribution with representation (α, A, d) then, for any t > 0,

E(X | X ≤ t) = −αA−1e − tαetAe + αA−1etAe

1 − αetAe
, (2.5)

E(t − X | X ≤ t) = t + αA−1(I − etA)e

1 − αetAe
, (2.6)

where I is the d × d identity matrix.

Proof. Equation (2.5) follows from

E(X) = E(X | X > t) Pr{X > t} + E(X | X ≤ t) Pr{X ≤ t},
E(X) = −αA−1e, Pr{X ≤ t} = 1 − αetAe, Pr{X > t} = αetAe, and (2.4). Equation (2.6) is
then obtained from E(t − X | X ≤ t) = t − E(X | X ≤ t) and (2.5).

The conditional expectation E(X | X ≤ t) will be used later in the paper. In risk analysis,
E(t − X | X ≤ t) describes the surplus beyond the risk that has been experienced. It is called
the expected inactivity time in reliability theory.

3. The CTE for multivariate phase-type distributions

Let {X(t), t ≥ 0} be a right-continuous, continuous-time Markov chain on a finite
state space E with generator Q. Let Ei , i = 1, . . . , n, be n nonempty, stochastically closed
subsets of E such that

⋂n
i=1 Ei is a proper subset of E . (A subset of the state space is said

to be stochastically closed if, once the process {X(t), t ≥ 0} enters it, it never leaves.)
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We assume that absorption into
⋂n

i=1 Ei is certain. Since we are interested in the process
only until it is absorbed into

⋂n
i=1 Ei , we may assume, without loss of generality, that

⋂n
i=1 Ei

consists of one state, which we shall denote by �. Thus, without loss of generality, we may
write E = ⋃n

i=1 Ei ∪ E0 for some subset E0 ⊂ E with E0 ∩ Ej = ∅ for 1 ≤ j ≤ n. The states
in E are enumerated in such a way that � is the first element of E . Thus, the generator of the
chain has the form

Q =
[

0 0
−Ae A

]
, (3.1)

where subgenerator A is a d×d nonsingular matrix (as before), and d = |E |−1. Let β = (0, α)

be an initial probability vector on E such that β(�) = 0.
We define

Xi = inf{t ≥ 0 : X(t) ∈ Ei}, i = 1, . . . , n. (3.2)

As in Assaf et al. (1984), for simplicity we shall assume that Pr{X1 > 0, . . . , Xn > 0} = 1,
which means that the underlying Markov chain {X(t), t ≥ 0} starts within E0 almost surely.
The joint distribution of (X1, . . . , Xn) is called a multivariate phase-type (MPH) distribution
with representation (α, A, E , E1, . . . , En), and (X1, . . . , Xn) is called a phase-type random
vector.

When n = 1, the distribution of (3.2) reduces to the univariate PH distribution introduced
in Neuts (1981) (see our Section 2). Examples of MPH distributions include, among many
others, the well-known Marshall–Olkin distribution (Marshall and Olkin (1967)). The MPH
distributions, their properties, and some related applications in reliability theory were discussed
in Assaf et al. (1984). As in the univariate case, those MPH distributions (and their densities,
Laplace transforms, and moments) can be written in closed form. The set of n-dimensional
MPH distributions is dense in the set of all distributions on [0, ∞)n. It was also shown in Assaf
et al. (1984) and in Kulkarni (1989) that MPH distributions are closed under marginalization,
finite mixture, convolution, and the formation of coherent systems.

The sum S = X1 + · · · + Xn and the extreme values X(1) = min{X1, . . . , Xn} and
X(n) = max{X1, . . . , Xn} are all of phase type if (X1, . . . , Xn) has a multivariate phase-type
distribution. Thus, Corollary 2.1 will yield explicit expressions for the CTEs of S, X(1), and X(n)

if we can find the phase-type representations of S, X(1), and X(n). In the following subsections,
we will discuss these representations. We will also discuss the phase-type representation for
the random vector (X(1), Xi, X(n)), i = 1, 2, . . . , n, and then obtain the related CTEs.

3.1. The CTE of sums

Cai and Li (2005) derived an explicit representation for the convolution distribution of
S = X1 + · · · + Xn. To state this result, we partition the state space as follows:

�n
∅

= E0, �n−1
i = Ei \

⋃
k 	=i

(Ei ∩ Ek), i = 1, . . . , n,

�n−2
ij = (Ei ∩ Ej ) \

⋃
k 	=i,
k 	=j

(Ei ∩ Ej ∩ Ek), i 	= j,

and so on.
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For any D ⊆ {1, . . . , n}, we also define

�
n−|D |
D =

(⋂
i∈D

Ei

)
\

⋃
k 	∈D

( ⋂
i∈D

Ei ∩ Ek

)
, . . . , �0

12···n = {�},

where | · | denotes set cardinality.

In other words, �
n−|D |
D contains the states only in Ei for all i ∈ D , but not in any other

Ej , j /∈ D . Note that these ‘�’s form a partition of E . For each state i ∈ E , define

k(i) = |{j : i /∈ Ej , 1 ≤ j ≤ n}|.

For example, k(i) = n for all i ∈ �n
∅

, k(i) = 0 for all i ∈ �0
12···n, and, in general, k(i) = n−|D |

for all i ∈ �
n−|D |
D .

Lemma 3.1. (Cai and Li (2005).) Let (X1, . . . , Xn) be a phase-type vector whose distribution
has representation (α, A, E , E1, . . . , En), where A = (ai,j ). Then

∑n
i=1 Xi has a phase-type

distribution with representation (α, T , |E | − 1), where T = (ti,j ) is given by

ti,j = ai,j

k(i)
; (3.3)

that is, ti,j = ai,j /m if i ∈ �m
D , for some D ⊂ {1, . . . , n}.

Theorem 3.1. Let (X1, . . . , Xn) be a phase-type vector whose distribution has representation
(α, A, E , E1, . . . , En). Then the CTE of S = X1 + · · · + Xn is given, for any t > 0, by

CTES(t) = t − αT −1etT e

αetT e
, (3.4)

where T is defined by (3.3).

Proof. Equation (3.4) follows from the phase-type representation (α, T , |E | − 1) of S in
Lemma 3.1 and (2.4).

3.2. The CTE of order statistics

Let F̄ (x1, . . . , xn) and F(x1, . . . , xn) respectively denote the joint survival and distribution
functions of a phase-type random vector (X1, . . . , Xn). Then (see Assaf et al. (1984)), for
x1 ≥ x2 ≥ · · · ≥ xn ≥ 0, we have

F̄ (x1, . . . , xn) = Pr{X1 > x1, . . . , Xn > xn}
= αexnAgne(xn−1−xn)Agn−1 · · · e(x1−x2)Ag1e, (3.5)

F(x1, . . . , xn) = Pr{X1 ≤ x1, . . . , Xn ≤ xn}
= βexnQhne(xn−1−xn)Qhn−1 · · · e(x1−x2)Qh1e, (3.6)

where, for k = 1, . . . , n, gk is defined as a diagonal d × d matrix whose ith diagonal element,
for i = 1, . . . , d, equals 1 if i ∈ E \ Ek and equals 0 otherwise, and hk is defined as a diagonal
(d + 1) × (d + 1) matrix whose ith diagonal element, for i = 1, . . . , d + 1, equals 1 if i ∈ Ek

and equals 0 otherwise.
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For the matrix A in (3.1), we now introduce two Markov chains. Let E \ {�} = S ∪ S∗,
where S ∩ S∗ = ∅. The matrix Q in (3.1) can be partitioned as follows:

Q =
⎡
⎣ 0 0 0

−(ASe + ASS∗e) AS ASS∗
−(AS∗Se + AS∗e) AS∗S AS∗

⎤
⎦ . (3.7)

Here AS and AS∗ are the submatrices of A gained by removing the sth row and the sth column
of A for all s /∈ S and s /∈ S∗, respectively, and ASS∗ and AS∗S are the submatrices of A gained
by removing the sth row and the s∗th column of A for all s ∈ S∗, s∗ ∈ S and s ∈ S, s∗ ∈ S∗,
respectively. In particular, we have AE\{�} = A.

(I) The matrix

QS =
[

0 0
−ASe AS

]

is the generator of a Markov chain with state space S∪{�} and absorbing state �. This Markov
chain combines all the states of Q in S∗ into the absorbing state �.

(II) Let A[S] = AS + D(ASS∗), where D(ASS∗) is the diagonal matrix whose sth diagonal
entry is the sth entry of ASS∗e. The matrix

Q[S] =
[

0 0
−A[S]e A[S]

]
(3.8)

is the generator of another Markov chain with state space S ∪ {�} and absorbing state �.
This Markov chain removes all the transition rates of Q from E \ {�} to S∗.

For any d-dimensional probability vector α and any subset S ⊆ E \{�}, we denote by αS the
|S|-dimensional subvector of α gained by removing its sth entry for all s /∈ S. The vector I (S)

(not to be confused with the identity matrix I ) denotes the column vector whose sth entry equals
1 if s ∈ S and equals 0 otherwise. Furthermore, for any S ⊆ E \ {�}, we write αt (S) for the
following |S|-dimensional row vector:

αt (S) = αSetAS

αSetAS e
. (3.9)

Note that αt (E \ {�}) = αt , where αt is given by (2.3).
For any phase-type random vector (X1, . . . , Xn), Assaf et al. (1984) showed that the

extreme values X(1) = min{X1, . . . , Xn} and X(n) = max{X1, . . . , Xn} are also of phase
type. Their representations can be obtained from (3.5) and (3.6).

Lemma 3.2. Let (X1, . . . , Xn) be of phase type with representation (α, A, E , E1, . . . , En).
Then

(i) X(1) is of phase type with representation (αE0/αE0e, AE0 , |E0|), where AE0 is defined as
in (3.7), and

(ii) X(n) is of phase type with representation (α, A, |E | − 1).

Proof. By (3.5), the survival function of X(1) is given, for x ≥ 0, by

F̄X(1)
(x) = Pr{X(1) > x} = F̄ (x, . . . , x) = αexAgn · · · g1e.
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Note that gn · · · g1e = I (E0). Since the Ei , 1 ≤ i ≤ n, are all stochastically closed, we have

F̄X(1)
(x) = αexAI (E0) = αE0

αE0e
exAE0 e,

which implies that X(1) is of phase type with representation (αE0/αE0e, AE0 , |E0|).
Similarly, by (3.6), the distribution function of X(n) is given, for x ≥ 0, by

FX(n)
(x) = Pr{X(n) ≤ x} = F(x, . . . , x) = βexQhn · · · h1e = βexQI ({�}) = 1 − αexAe.

Thus, X(n) is of phase type with representation (α, A, |E | − 1).
In fact, X(1) is the exit time of {X(t), t ≥ 0} from E0 and X(n) is the exit time of

{X(t), t ≥ 0} from E \ {�}; thus, X(1) and X(n) are of phase type with representations given
in Lemma 3.2. In general, the kth order statistic X(k) is the exit time of {X(t), t ≥ 0} from
E \ ⋃

i1,i2,...,ik
(
⋂k

j=1 Eij ) and, thus, is also of phase type. Hence, we obtain the following
lemma.

Lemma 3.3. Let X(k), 1 ≤ k ≤ n, be the kth smallest component of (X1, . . . , Xn), which is of
phase type with representation (α, A, E , E1, . . . , En). Then

(i) (X(1), . . . , X(n)) is of phase type with representation (α, A, E , O1, . . . ,On), where
Ok = ⋃

i1,i2,...,ik
(
⋂k

j=1 Eij ), 1 ≤ k ≤ n.

(ii) X(k) is of phase type with representation (αE\Ok
/αE\Ok

e, AE\Ok
, |E \ Ok|), 1 ≤ k ≤ n.

Lemmas 3.2 and 3.3 and (2.4) immediately yield the CTEs of the extreme values X(1) and
X(n), as follows.

Theorem 3.2. Let (X1, . . . , Xn) be of phase type with representation (α, A, E , E1, . . . , En).

(i) The excess loss (X(1) − t | X(1) > t) of a subportfolio with the least risk is of phase type
with representation (αt (E0), AE0 , |E0|), and the CTE of X(1) is given by

CTEX(1)
(t) = t − αt (E0)A

−1
E0

e. (3.10)

(ii) The excess loss (X(n) − t | X(n) > t) of the riskiest subportfolio is of phase type with
representation (αt , A, |E | − 1), and the CTE of X(n) is given by

CTEX(n)
(t) = t − αtA

−1e, where αt = αetA

αetAe
. (3.11)

(iii) In general, the excess loss (X(k) − t | X(k) > t) of the (n− k +1)th riskiest subportfolio is
of phase type with representation (αt (E \ Ok), AE\Ok

, |E \ Ok|), and the CTE of X(k) is given
by

CTEX(k)
(t) = t − αt (E \ Ok)A

−1
E\Ok

e,

with Ok = ⋃
i1,i2,...,ik

(
⋂k

j=1 Eij ), 1 ≤ k ≤ n, as above.
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3.3. CTEs involving different subportfolios

The Markovian method also leads to expressions for CTEs among different subportfolios.
Hereafter, in a slight abuse of notation, for any d-dimensional probability vector α and any
subset S ⊆ E \ {�}, we denote by (0, αS) the d-dimensional vector whose sth entry equals
the sth entry of α if s ∈ S, and equals 0 otherwise. For example, (0, αt (S)) denotes the
d-dimensional vector whose sth entry is the sth entry of αt (S) (see (3.9)) if s ∈ S, and vanishes
otherwise.

Theorem 3.3. If (X1, . . . , Xn) is of phase type with representation (α, A, E , E1, . . . , En), then
the random vector ((X1 − t, . . . , Xn − t) | X(1) > t) is of phase type with representation
((0, αt (E0)), A, E , E1, . . . , En).

Proof. Let {X(t), t ≥ 0} be the underlying Markov chain for (X1, . . . , Xn). Then

{X(1) > t} = {X1 > t, . . . , Xn > t} = {X(t) ∈ E0}.
It follows from the Markov property that

((X1 − t, . . . , Xn − t) | X(1) > t)

= ((X1 − t, . . . , Xn − t) | X(t) ∈ E0)

=st (inf{s > 0 : X∗(s) ∈ E1}, . . . , inf{s > 0 : X∗(s) ∈ En}),
where {X∗(s), s ≥ 0} is a Markov chain with the same state space and generator as {X(t),

t ≥ 0}, but with the initial probability vector (0, αt (E0)) and

αt (E0) = 1

Pr{X(t) ∈ E0} (Pr{X(t) = i}, i ∈ E0) = αE0 etAE0

αE0 etAE0 e
.

Thus, the random vector ((X1 − t, . . . , Xn − t) | X(1) > t) is of phase type with representation
((0, αt (E0)), A, E , E1, . . . , En).

Hence, any marginal distribution of ((X1 − t, . . . , Xn − t) | X(1) > t) is also of phase type,
and the risk contribution from the ith subportfolio, given that all the risks exceed a threshold
value, can be calculated.

Corollary 3.1. Let (X1, . . . , Xn) be of phase type with representation (α, A, E , E1, . . . , En).
Then the excess loss (Xi − t | X(1) > t) is of phase type with representation

((0, αt (E0)), AE\Ei
, |E | − |Ei |)

and
CTEXi | X(1)

(t) = t − (0, αt (E0))A
−1
E\Ei

e. (3.12)

Proof. By Theorem 3.3, ((X1 − t, . . . , Xn − t) | X(1) > t) has a phase-type representation
((0, αt (E0)), A, E , E1, . . . , En). Hence, (Xi − t | X(1) > t) has a phase-type representation
((0, αt (E0)), AE\Ei

, |E | − |Ei |). Thus, (3.12) follows from (2.4).

In fact, from a direct calculation, we have

CTEXi | X(1)
(t) = E(Xi | X(1) > t) = t +

∫ ∞
t

F̄ (t, . . . , t, x, t, . . . , t) dx

F̄ (t, t, . . . , t)
,
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where, in the integrand, the ith argument of F̄ takes the value x. The random vector

(Xi, X1, . . . , Xi−1, Xi+1, . . . , Xn)

has an MPH distribution with representation

(α, A, E , Ei , E1, . . . , Ei−1, Ei+1, . . . , En).

Therefore, by (3.5),

F̄ (t, . . . , t, x, t, . . . , t) = Pr{Xi > x, X1 > t, . . . , Xi−1 > t, Xi+1 > t, . . . , Xn > t}

= αetA
n∏

k=1, k 	=i

gke(x−t)Agie, for x > t.

Hence, for any i, 1 ≤ i ≤ n, we obtain

CTEXi | X(1)
(t) = t + αetA

∏n
k=1, k 	=i gk[

∫ ∞
t

e(x−t)A dx]gie

αetA
∏n

k=1 gke

= t − αetA
∏n

k=1, k 	=i gkA
−1gie

αetA
∏n

k=1 gke
. (3.13)

Expression (3.13) provides another formula for CTEXi | X(1)
(t).

Note that (3.13) yields the same result as that of Corollary 3.1, due to the fact that

αetA
∏n

k=1, k 	=i gkA
−1gie

αetA
∏n

k=1 gke
= (0, (αE0/αE0e)e

tAE0 )A−1gie

(αE0/αE0e)e
tAE0 e

= (0, αE0 etAE0 )A−1
E\Ei

e

αE0 etAE0 e

= (0, αt (E0))A
−1
E\Ei

e.

To develop a general scheme, we derive expressions for E(Xi | Xk > t), i, k = 1, . . . , n,
where (X1, . . . , Xn) is of phase type with representation (α, A, E , E1, . . . , En), and the under-
lying Markov chain {X(t), t ≥ 0}.

Let qk = Pr{Xk > t}. Since Ek is stochastically closed, we have

qk = Pr{X(t) ∈ E \ Ek} = αetAI (E \ Ek) = αE\Ek

αE\Ek
e

etAE\Ek e.

Also, for any x ≥ 0, we have

Pr{Xi > x | Xk > t} = 1

qk

Pr{Xi > x, Xk > t}

= 1

qk

Pr{Xi > x, X(t) ∈ (E \ (Ei ∪ Ek)) ∪ (Ei \ (Ei ∩ Ek))}
= p1,k Pr{Xi > x | X(t) ∈ E \ (Ei ∪ Ek)}

+ p2,k Pr{Xi > x | X(t) ∈ Ei \ (Ei ∩ Ek)},
where

p1,k = Pr{X(t) ∈ E \ (Ei ∪ Ek)}
qk

and p2,k = Pr{X(t) ∈ Ei \ (Ei ∩ Ek)}
qk

.
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Clearly p1,k + p2,k = 1. Thus,

E(Xi | Xk > t)

= p1,k E(Xi | X(t) ∈ E \ (Ei ∪ Ek)) + p2,k E(Xi | X(t) ∈ Ei \ (Ei ∩ Ek)). (3.14)

Since

Pr{X(t) ∈ E \ (Ei ∪ Ek)} = αE\(Ei∪Ek)

αE\(Ei∪Ek)e
exp(tAE\(Ei∪Ek))e,

Pr{X(t) ∈ Ei \ (Ei ∩ Ek)} = αetAI (Ei \ (Ei ∩ Ek)),

we have

p1,k =
(

αE\Ek
e

αE\(Ei∪Ek)e

)(
αE\(Ei∪Ek) exp(tAE\(Ei∪Ek))e

αE\Ek
etAE\Ek e

)
, (3.15)

p2,k = αetAI (Ei \ (Ei ∩ Ek))

αetAI (E \ Ek)
. (3.16)

To calculate the two conditional expectations in (3.14), we need the following lemma.

Lemma 3.4. Let (X1, . . . , Xn) have an MPH distribution with representation (α, A, E , E1,

. . . , En).

(i) For any i and k, if Pr{X(t) ∈ E \ (Ei ∪ Ek)} > 0 then

E(Xi | X(t) ∈ E \ (Ei ∪ Ek)) = t − (0, αt (E \ (Ei ∪ Ek)))A
−1
E\Ei

e.

(ii) For any i and k, i 	= k, if Pr{X(t) ∈ Ei \ (Ei ∩ Ek)} > 0 then

E(Xi | X(t) ∈ Ei \ (Ei ∩ Ek))

= −(0, α̃)A−1
[E\Ek]e − t (0, α̃)etA[E\Ek ]e + (0, α̃)A−1

[E\Ek]e
tA[E\Ek ]e

1 − (0, α̃)etA[E\Ek ]e
, (3.17)

where α̃ = αE\(Ei∪Ek)/αE\(Ei∪Ek)e.

Proof. We first calculate E(Xi | X(t) ∈ E \ (Ei ∪Ek)). It follows from the Markov property
that

E(Xi | X(t) ∈ E \ (Ei ∪ Ek)) = t + E(inf{s > 0 : X∗(s) = �}),
where {X∗(t), t ≥ 0} is a Markov chain with state space (E \ Ei ) ∪ {�}, subgenerator AE\Ei

,
and initial probability vector (0, αt (E \ (Ei ∪ Ek))) with

αt (E \ (Ei ∪ Ek)) = (Pr{X(t) = j}, j ∈ E \ (Ei ∪ Ek))

Pr{X(t) ∈ E \ (Ei ∪ Ek)} = αE\(Ei∪Ek) exp(tAE\(Ei∪Ek))

αE\(Ei∪Ek) exp(tAE\(Ei∪Ek))e
.

Since inf{s > 0 : X∗(s) = �} is of phase type, we have

E(Xi | X(t) ∈ E \ (Ei ∪ Ek)) = t − (0, αt (E \ (Ei ∪ Ek)))A
−1
E\Ei

e.

To calculate E(Xi | X(t) ∈ Ei \ (Ei ∩ Ek)), consider

{X(t) ∈ Ei \ (Ei ∩ Ek)} = {Xi ≤ t < Xk}.
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We now define a new Markov chain {X̃(t), t ≥ 0} with state space E \ Ek , as follows.
The set of absorbing states is Ei \ (Ei ∩ Ek), the initial probability vector of {X̃(t), t ≥ 0}
is (0, α̃), where α̃ = αE\(Ei∪Ek)/αE\(Ei∪Ek)e, and the generator of {X̃(t), t ≥ 0} is given by
A[E\Ek] (see (3.8)). Let

X̃i = inf{s > 0 : X̃(s) ∈ Ei \ (Ei ∩ Ek)},
which has a phase-type distribution. Then, from (2.5),

E(Xi | X(t) ∈ Ei \ (Ei ∩ Ek)) = E(X̃i | X̃i ≤ t)

= −(0, α̃)A−1
[E\Ek]e−t (0, α̃)etA[E\Ek ]e+(0, α̃)A−1

[E\Ek]e
tA[E\Ek ]e

1 − (0, α̃)etA[E\Ek ]e
.

Thus, (3.17) holds.

Observe that if Ei ⊆ Ek , then Xi ≥ Xk almost surely. It follows from (3.14) that

E(Xi | Xk > t) = E(Xi | X(t) ∈ E \ Ek) if Ei ⊆ Ek. (3.18)

Thus, Lemma 3.4(i) implies that (Xi − t | Xk > t) is of phase type with representation
((0, αt (E \ Ek)), AE\Ei

, |E \ Ei |). This leads to the following corollaries.

Corollary 3.2. Let (X1, . . . , Xn) have an MPH distribution with representation (α, A, E , E1,

. . . , En). Let X(k), 1 ≤ k ≤ n, be the kth order statistic of (X1, . . . , Xn).

(i) For any i and k, k ≤ i, (X(i) − t | X(k) > t) is of phase type with representation

((0, αt (E \ Ok)), AE\Oi
, |E \ Oi |),

and
E(X(i) | X(k) > t) = t − (0, αt (E \ Ok))A

−1
E\Oi

e.

(ii) In particular, (X(n) − t | X(1) > t) is of phase type with representation

((0, αt (E0)), A, |E | − 1),

and
E(X(n) | X(1) > t) = t − (0, αt (E0))A

−1e. (3.19)

Proof. It follows from Lemma 3.3 that (X(k), X(i)) is of phase type with representation
(α, A, E , Ok, Oi ). Since X(i) ≥ X(k), the corollary follows from Lemma 3.4(i), AE\{�} = A,
and |E \ {�}| = |E | − 1.

Corollary 3.3. Let (X1, . . . , Xn) have an MPH distribution with representation (α, A, E , E1,

. . . , En). Then (X(n) − t | Xi > t) is of phase type with representation ((0, αt (E \ Ei )), A,

|E | − 1), and
E(X(n) | Xi > t) = t − (0, αt (E \ Ei ))A

−1e. (3.20)

Proof. If (X1, . . . , Xn) is MPH distributed with representation (α, A, E1, . . . , En), then
(Xi, X(n)) is of phase type with representation (α, A, E , Ei , {�}). The results of the corollary
then follow from (3.18), Lemma 3.4, and the fact that X(n) ≥ Xi almost surely for any i.

The expression for E(Xi | X(n) > t) is cumbersome, but can be obtained from (3.14), (3.15),
(3.16), and Lemma 3.4.
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4. The CTE of Marshall–Olkin distributions

In this section, we illustrate our results using the multivariate Marshall–Olkin distribution,
and also show some interesting effects on the CTEs of choosing different model parameters.

Let {ES, S ⊆ {1, . . . , n}} be a sequence of independent, exponentially distributed random
variables, with ES having mean 1/λS . Let

Xj = min{ES : S � j}, j = 1, . . . , n.

The joint distribution of (X1, . . . , Xn) is called the Marshall–Olkin distribution with parameters
{λS, S ⊆ {1, . . . , n}} (Marshall and Olkin (1967)). In the reliability context, X1, . . . , Xn can be
viewed as the lifetimes of n components operating in a random shock environment, where a fatal
shock governed by a Poisson process {NS(t), t ≥ 0} with rate λS destroys all the components
with indices in S ⊆ {1, . . . , n} simultaneously. Assuming that these Poisson shock arrival
processes are independent, we then have

Xj = inf{t : NS(t) ≥ 1, S � j}, j = 1, . . . , n. (4.1)

Let {MS(t), t ≥ 0}, S ⊆ {1, . . . , n}, be independent Markov chains with absorbing state �S ,
each representing the exponential distribution with parameter λS . It follows from (4.1) that
(X1, . . . , Xn) is of phase type, and has the underlying Markov chain, on the product space
of these independent Markov chains, with absorbing classes Ej = {(eS) : eS = �S for some
S � j}, 1 ≤ j ≤ n. It is also easy to verify that the marginal distribution of the j th component
of the Marshall–Olkin-distributed random vector is exponential with mean 1/

∑
{S : S�j} λS .

To calculate the CTEs, we need to simplify the underlying Markov chain for the Marshall–
Olkin distribution and obtain its phase-type representation. Let {X(t), t ≥ 0} be a Markov chain
with state space E = {S : S ⊆ {1, . . . , n}} = {�, e1, . . . , ed}, starting at ∅ almost surely. The
index set {1, . . . , n} is the absorbing state �, E0 = {∅}, and Ej = {S : S � j}, j = 1, . . . , n.

It follows from (4.1) that its subgenerator is given by A = (ai,j ), where

ai,j =
∑

{L : L⊆S∗, L∪S=S∗}
λL if ei = S, ej = S∗, and S ⊂ S∗,

ai,i =
∑

{L : L⊆S}
λL − � if ei = S and � =

∑
S

λS,

and the other entries of A vanish. Using the results in Sections 2–3 and these parameters,
we can calculate the CTEs. To illustrate the results, we consider the bivariate case.

Example 4.1. In the Marshall–Olkin distribution, let n = 2, let E = {12, 2, 1, ∅}, and let
Ej = {12, j}, j = 1, 2, where 12 is the absorbing state�. Furthermore, let the initial probability
vector be (0, α) with α = (0, 0, 1). Then the subgenerator A for the two-dimensional Marshall–
Olkin distribution is given by

A =
⎡
⎣−λ12 − λ1 0 0

0 −λ12 − λ2 0
λ2 λ1 −� + λ∅

⎤
⎦ ,

where � = λ12 + λ2 + λ1 + λ∅.
To study the effect of dependence on the CTEs, we calculate CTES(t), CTEX(1)

(t), and
CTEX(n)

(t), respectively, under several different sets of model parameters. The analytic forms
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Table 1: Effects of dependence on the CTEs of S, X(1), and X(n).

CTES(t) CTEX(1)
(t) CTEX(n)

(t)

t Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

2 2.4667 2.5381 2.8 2.2 2.25 2.4 2.4007 2.4038 2.4
4 4.4364 4.5113 4.8 4.2 4.25 4.4 4.4000 4.4002 4.4
6 6.4250 6.5039 6.8 6.2 6.25 6.4 6.4000 6.4000 6.4
8 8.4191 8.5014 8.8 8.2 8.25 8.4 8.4000 8.4000 8.4

10 10.4154 10.5005 10.8 10.2 10.25 10.4 10.4000 10.4000 10.4

of CTES(t), CTEX(1)
(t), and CTEX(n)

(t) in the following three cases, and the numerical values
in Table 1, were easily produced from (3.4), (3.10), and (3.11) using MATHEMATICA®. The
first column of Table 1 lists several values of t , and the next several columns list values of these
CTEs in the following three cases.

Case 1: λ12 = 0, λ1 = λ2 = 2.5, λ∅ = 0. In this case, X1 and X2 are independent, and

CTES(t) = 0.4 + t + 0.16

0.4 + t
,

CTEX(1)
(t) = 0.2 + t,

CTEX(n)
(t) = 0.8 + 2t − (0.2 + t)e−2.5t

2 − e−2.5t
.

Case 2: λ12 = 1, λ1 = λ2 = 1.5, λ∅ = 1. In this case, X1 and X2 are positively dependent,
and

CTES(t) = 1 + 2t − (0.6 + 1.5t)e−0.5t

2 − 1.5e−0.5t
,

CTEX(1)
(t) = 0.25 + t,

CTEX(n)
(t) = 0.8 + 2t − (0.25 + t)e−1.5t

2 − e−1.5t
.

Case 3: λ12 = 2.5, λ1 = λ2 = 0, λ∅ = 2.5. This is the comonotone case in which X1 = X2
and, so, the vector (X1, X2) has the strongest positive dependence. In this case,

CTES(t) = 0.8 + t, CTEX(1)
(t) = CTEX(n)

(t) = 0.4 + t.

In all the three cases, (X1, X2) has the same marginal distributions; that is, X1 and X2 have
the exponential distributions with means 1/(λ12 +λ1) and 1/(λ12 +λ2), respectively. The only
difference among them is in the correlation between X1 and X2. It can be easily verified directly
that the correlation coefficient of (X1, X2) in Case 1 is smaller than that in Case 2, which in
turn is smaller than that in Case 3. In fact, it follows from Proposition 5.5 of Li and Xu (2000)
that the random vector in Case 1 is less dependent than that in Case 2, which in turn is less
dependent than that in Case 3, all in supermodular dependence order.

Table 1 shows that CTES(t) becomes larger as the correlation grows. The effect of de-
pendence on CTEX(1)

(t) is the same as it is on CTES(t). However, the effect of dependence
on CTEX(n)

(t) is different from its effect on CTES(t) and CTEX(1)
(t). Indeed, CTEX(n)

(t) is
neither increasing nor decreasing as the correlation grows.
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Table 2: Effects of dependence and different conditions on the maximal risk.

E(X(n) | X(1) > t) E(X(n) | X1 > t) E(X(n) | X(n) > t)

t Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

2 2.6 2.55 2.4 2.4014 2.4075 2.4 2.4007 2.4038 2.4
4 4.6 4.55 4.4 4.4000 4.4004 4.4 4.4000 4.4002 4.4
6 6.6 6.55 6.4 6.4000 6.4000 6.4 6.4000 6.4000 6.4
8 8.6 8.55 8.4 8.4000 8.4000 8.4 8.4000 8.4000 8.4

10 10.6 10.55 10.4 10.4000 10.4000 10.4 10.4000 10.4000 10.4

Example 4.2. We now calculate E(X(n) | X(1) > t), E(X(n) | X1 > t), and CTEX(n)
(t) =

E(X(n) | X(n) > t) under the same sets of model parameters used in Example 4.1.
The analytic forms of E(X(n) | X(1) > t), E(X(n) | X1 > t), and E(X(n) | X(n) > t) in the

following three cases, and the numerical values in Table 2, were easily produced from (3.19),
(3.20), and (3.11) using MATHEMATICA. The first column of Table 2 lists several values of t ,
and the next several columns list values of the conditional expectations in the following three
cases (corresponding to those in Example 4.1).

Case 1: λ12 = 0, λ1 = λ2 = 2.5, λ∅ = 0. In this case,

E(X(n) | X(1) > t) = 0.6 + t,

E(X(n) | X1 > t) = 0.4 + t + 0.2e−2.5t ,

E(X(n) | X(n) > t) = 0.8 + 2t − (0.2 + t)e−2.5t

2 − e−2.5t
.

Case 2: λ12 = 1, λ1 = λ2 = 1.5, λ∅ = 1. In this case,

E(X(n) | X(1) > t) = 0.55 + t,

E(X(n) | X1 > t) = 0.4 + t + 0.15e−1.5t ,

E(X(n) | X(n) > t) = 0.8 + 2t − (0.25 + t)e−1.5t

2 − e−1.5t
.

Case 3: λ12 = 2.5, λ1 = λ2 = 0, λ∅ = 2.5. In this case,

E(X(n) | X(1) > t) = E(X(n) | X1 > t) = E(X(n) | X(n) > t) = 0.4 + t.

Table 2 shows that E(X(n) | X(1) > t) ≥ E(X(n) | X1 > t) ≥ E(X(n) | X(n) > t) for
all values of t in all three cases. However, neither E(X(n) | X1 > t) nor E(X(n) | X(n) > t)

exhibits any monotonicity property as the correlation grows.

5. Concluding remarks

Using the Markovian method, we have derived explicit expressions for various conditional
tail expectations for multivariate phase-type distributions in a unified fashion. These CTEs
can be used, for example, to measure some right-tail risks in a financial portfolio consisting of
several stochastically dependent subportfolios. We have focused on the total risk, the minimal
risk, and the maximal risk of the portfolio and, as we have illustrated in the numerical examples,
our CTE formulae for these risks can be easily implemented.
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Some CTE function values in our numerical examples increase as the correlation among
the subportfolios grows. This demonstrates that merely increasing the correlation, while fixing
the marginal risk for each subportfolio, would add more risk to the entire portfolio. In fact,
since the minimum statistic X(1) of a Marshall–Olkin-distributed random vector (X1, . . . , Xn)

has an exponential distribution, it is easy to verify directly that the CTE of X(1) is increasing
as (X1, . . . , Xn) becomes more dependent, in the sense of supermodular dependence order.
However, whether or not a given CTE risk measure exhibits monotonicity as the correlation
among the subportfolios grows remains an open and important question that needs further study.

Another problem that we have not addressed in this paper is the explicit expression for the
CTE of (Xi | ∑n

i=1 Xi > t), which is of interest in the risk allocation study of the total risk.
Using the Markovian method, we can obtain the expression for the CTE of (Xi | ∑n

i=1 Xi > t),
but it is too cumbersome to have any value in practical terms. Alternatively, some kind
of recursive algorithm defined on the underlying Markov structure would offer a promising
computational approach.
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