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Medical Image Perception
E h s a n   S a m e i  a n d  E l i z a b e t h  A .  K r u p i n s k i

1.1  PROMINENCE OF MEDICAL IMAGE 
PERCEPTION IN MEDICINE

Medical images form a core portion of all the information a 
clinician utilizes to render diagnostic, treatment, and manage-
ment decisions while a patient is under her/​his care. The goal 
of this chapter is to provide a broad picture of the importance 
of medical image perception from a general healthcare enter-
prise perspective. Here we treat perception not only in terms 
of visual perception, though that is currently by far the most 
prominent method to interpret medical images, but also compu-
tational perception, where images are “read” and “understood” 
by computational algorithms.

Medical imaging has been primarily ascribed to the 
subspecialty of radiology, with about two billion radiological 
imaging exams performed worldwide every year. The images 
include a variety of exam types such as single-​projection X-​
ray projections used in musculoskeletal, chest, and mammog-
raphy applications; dynamic X-​ray exams such as fluoroscopy, 
three-​dimensional computed tomography (CT) and magnetic 
resonance imaging (MRI) exams; nuclear medicine emission 
images, and ultrasound. With the advent of digital imaging, 
multidetector CT, and protocol diversification in MRI, the 
number of radiology examinations has been increasing. The 
range of image types is also expanding rapidly with newer 
modalities of tomosynthesis (Dobbins et al., 2017; Gilbert et al., 
2016), hyperspectral (Guolan and Fei, 2014) and molecular 
imaging (Fei and Schuster, 2017; Liang et al., 2017) all being 
used for numerous applications from identifying lesion margins 
during surgical removal to identifying cancer cells in the blood.

While imaging is the central technology behind the subspecialty 
of radiology, imaging today is playing an expanding and chan-
ging role beyond radiology and embraces other subspecialties 
including cardiology, radiation oncology, pathology, and oph-
thalmology, to name a few. Pathology used to be limited to the 
glass slide specimen “images” rendered by the microscope for 
the pathologist to view. With the advent of digital slide scanners 
in recent years and the preponderance of evidence supporting its 
feasibility, acceptance, equivalence to light microscopy, and cost 
efficiency (Bashshur et  al., 2017), virtual slides are becoming 
more prevalent not only in telepathology applications but in 
everyday reading (Kaplan and Rao, 2016; Weinstein et al., 2001). 
Clinical use is likely to accelerate with the recent approval by the 
US Food and Drug Administration (FDA) for marketing of whole 
slide imaging for review and interpretation of digital surgical 
pathology slides prepared from biopsied tissue (FDA, 2017). 

In many medical school and pathology residency programs 
(Christensen et al., 2017; Wilbur, 2016), students are no longer 
required to purchase a microscope and box of glass specimen 
slides. They are simply purchasing a CD with directories of vir-
tual slides to view as soft-​copy images and learn from.

Ophthalmology has relied on images for years (mainly as 
35-​mm film prints or slides) for evaluating conditions such as 
diabetic retinopathy. With the advent of digital images and high-​
performance color displays, screening raters are increasingly 
using soft-​copy images (Tan et  al., 2017). Although most of 
the original applications were in diabetic retinopathy detection, 
teleophthalmology has expanded to include glaucoma, emer-
gency eye care, and numerous other retinal diseases (Sim et al., 
2016). Telemedicine in general has opened up an entirely new 
area in which medical images are being acquired, transferred, 
and stored to diagnose and treat patients (Krupinski et  al., 
2002). Specialties such as teledermatology, teleophthalmology, 
telewound/​burn care, and telepodiatry are all using images on a 
regular basis for store-​and-​forward telemedicine applications. 
Real-​time applications such as telepsychiatry, teleneurology, 
and telerheumatology similarly rely on video images for diag-
nostic and treatment decisions. In every case, issues that digital 
radiology has addressed for years are being addressed in these 
newer image-​based clinical scenarios. For example, the devel-
opment of standards for image acquisition and presentation 
(American Telemedicine Association Ocular Telehealth Special 
Interest Group, 2004; Badano et al., 2015; McKoy et al., 2016; 
Pantanowitz et al., 2014; Theurer et al., 2017) and the impact 
of image quality on diagnostic decisions are key research and 
clinical implementation topics.

There are a number of ways to examine the pervasiveness 
of medical imaging. One approach used a few years ago is to 
examine the amount of money spent each year on healthcare 
and then portion out the amount devoted to medical imaging 
(Beam et  al., 2006). Relying on 2004 data from the Centers 
for Medicare and Medicaid Services, approximately 16% 
of the gross domestic product (GDP) or $1.6T is allotted to 
national healthcare expenditures (​www.cms.hhs.gov/​home/​
rsds.asp). Medicare expenditures represent 17% of national 
healthcare expenditures, of which Part B (43%) accounts for the 
nonfacility or physician-​related expenditures. Approximately 
8% of Part B (or nearly $10B) constitutes physician-​based 
imaging procedures. Imaging also accounts for over 40% of all 
hospital procedures reported in the discharge report, according 
to the Agency for Healthcare Research and Quality (​www.
ahrq.gov/​data/​hcup/​). If, based on Medicaid Part B spending,   
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one conservatively assumes that imaging procedures comprise 
only 8% of non-​Medicaid Part B health spending, medical 
imaging in the USA is estimated to amount to $56B ($10B/​
17%/​43%) or 0.5% of GDP. More recent studies (America’s 
Health Insurance Plans (AHIP), 2008; Glabman, 2005; 
Medicare Payment Advisory Commission (MEDPAC), 2014) 
place the cost of imaging in the USA at over $100B annually, 
despite recent trends toward stabilization of utilization (Dodoo 
et al., 2013; Lee et al., 2013).

Imaging technologies are extremely varied. Medical images 
can be grayscale or color, high-​resolution and low-​resolution, 
two-​dimensional or multidimensional, hard-​copy or soft-​copy, 
uncompressed or compressed (lossy or lossless), acquired with 
everything from sophisticated dedicated imaging devices to off-​
the-​shelf digital cameras. With the pervasiveness of imaging 
in modern medicine, there has been significant attention and 
interest in the technological aspects of imaging operations ran-
ging from hardware features to software functionalities. What 
is less appreciated is the perceptual act underlying the interpret-
ation of these images (Krupinski, 2016; Manning et al., 2005; 
Wolfe, 2016). In order to impact patient care, an image must 
be perceived and interpreted (i.e., understood in the context of 
patient care) (Figure 1.1). If one assumes each of the one billion 
imaging examinations performed worldwide annually involves 
an average of four individual images per exam, one could com-
pute, that on the average, 120 medical image perception events 
take place every second! This astounding frequency speaks 
further of the pervasiveness of medical image perception in 
healthcare enterprise.

The need for interpretation of medical images comes 
from the fact that medical images are not self-​explanatory. 
In popular culture, a picture is “worth a thousand words,” 
reflecting the power and utility of images. Ironically, however, 
the interpretation of a medical image involves summarizing a 
multidimensional image into a few words, which is not neces-
sarily an easy task (Bracamonte et al., 2017; Ware et al., 2017). 
That is necessary because medical images, like other complex 
and sometimes ambiguous images (Figure 1.2), by themselves 
do not deliver the certainty that they promise. This lack of cer-
tainty, which necessitates interpretation, stems from the nature 
of medical imaging. Visual interpretation is impacted by psy-
chophysical processes involved, while computational inter-
pretation is likewise impacted by image-​processing methods. 
Medical images involve variety, where anatomical structures 
can camouflage a feature of clinical interest. That feature 
can have very low prevalence (in the case of screening), 
which impacts the psychology and processes of interpretation 
(Fanshawe et al., 2016; Littlefair et al., 2016). Added to those 
complexities, there are notable variations from case to case 
and a multiplicity of compounding abnormalities and related 
factors that the interpreter or the computational operator needs 
to accommodate for.

There are clearly a significant number of images interpreted 
in a variety of clinical specialties. As such, diagnostic accuracy 
cannot be defined independently of the interpretation, and any 
limitations or suboptimality in terms of how images are used 
can have a measurable impact on the diagnostic and therapeutic 
clinical decisions that they enable. Given a one-​to-​one link 

between an image and its interpretation, imaging technology 
alone can offer little in terms of patient care if the image is 
misinterpreted. The complexities of image interpretation can 
lead to interpretation errors. Clinicians do make mistakes in the 
interpretation of image data (Berlin, 2005, 2007; Waite et al., 
2017a, 2017b). Estimates in radiology alone suggest that in 
some areas there may be up to a 30% miss rate (omission errors) 
and an equally high false-​positive rate. Errors can also occur 
in the recognition of an abnormality (e.g., whether a lesion is 
benign or malignant). Such errors can have significant impact 
on patient care due to delays or misdiagnoses. Other sources 
of error include satisfaction of search, cognitive bias, preva-
lence effects, presence of and information in a clinical history, 
fatigue, workload, level of training or experience, distractions 
and interruptions, and even ergonomic considerations (Waite 
et al., 2017a, 2017b). What is less well appreciated is the prom-
inent contribution of the inherent limitations of human percep-
tion to these errors. Image perception is the most prominent 
yet least appreciated source of error in diagnostic imaging. The 
prominence of imaging reading errors in malpractice litigation 
is an example of this ignorance.

The likelihood of error in the interpretation of those images 
emphasizes the need to understand how the clinician interacts 
with the information in an image during the interpretation pro-
cess. Such an understanding enables us to determine how we 

Figure 1.1  As a fundamentally visual discipline, medical imaging 
requires psychophysical interpretation of the images to draw “meaning” 
from the viewing information and understand their clinical relevance.

Figure 1.2  Detecting a subtle abnormality is somewhat similar in 
difficulty to identifying the dog in a popular visual illusion.
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can further improve decision making. That brings us to the 
science of medical image perception. Error is one reason to 
study medical image perception.

1.2  THE SCIENCE OF MEDICAL IMAGE  
VISUAL PERCEPTION

First and foremost, it is important to understand the nature and 
causes of interpretation error. For that objective, one needs to 
distinguish between errors that are visual in nature (estimated 
to amount to about 55% of the errors) because the clinician 
does an incomplete search of the image data (Giger et  al., 
1988; Waite et  al., 2017a, 2017b) and those of a cognitive 
nature (45%), where an abnormality is recognized but the clin-
ician makes a decision-​making error in calling the case nega-
tive (Kundel et al., 1978). Visual errors are further subdivided 
into error where the clinician fails to look at the territory of 
the lesion (30%) (Kundel, 1975; Kundel et al., 1978) and those 
when he/​she does not fixate on the territory for an adequate 
amount of time to extract the relevant lesion features (25%) 
(Carmody et al., 1980).

Contributing to interpretation errors are a host of psycho-
physical processes. Camouflaging of the abnormality by normal 
body features (so-​called anatomical noise) is one of the main 
contributors to interpretation error. Masking of subtle lesions by 
normal anatomical structure is estimated to affect lesion detection 
threshold by an order of magnitude (Samei et al., 1997). Visual 
search is another important process, necessitated by the limited 
angular extent of the high-​fidelity foveal vision of the human eye 
(Van der Gijp et al., 2017; Wolfe et al., 2016). Preceded by a global 
impression or gist, visual search involves moving the eye around 
the image scene to closely examine the image details (Nodine 
and Kundel, 1987). Studies on visual search have highlighted 
the prominent role of peripheral vision during the interpretation 
where there is an interplay between foveal and peripheral vision 
as the observer scans the scene (Kundel, 1975). As a result there 
are characteristic dwell times associated with correct and incor-
rect decisions that are influenced by the task and idiosyncratic 
observer search patterns (Kundel et  al., 1989). Satisfaction of 
search is yet another contributing factor to errors where, once an 
abnormal pattern is recognized, it takes additional diligence on 
the part of the clinician to look for other possible abnormalities 
within an image (Berbaum et al., 1989; Smith, 1967; Tuddenham, 
1962, 1963). Studies have explored the impact of expertise and 
prior knowledge in that behavior, as well as the use of tools such 
as systematic search patterns and checklists to alleviate (Berbaum 
et al., 2016; Kok, 2016).

Image quality is yet another topic of interest. While intui-
tively recognized, image quality has been more elusive to char-
acterize in such a way that it would directly relate to diagnostic 
accuracy (or its converse, diagnostic error). In that regard, it 
is important to understand how best to assess image quality 
and its impact on perception in order to optimize it and min-
imize error (Krupinski and Jiang, 2008). Studies have focused 
on the impact of image acquisition, imaging hardware, image 
processing, image display, and reading environment on image 
quality and diagnostic accuracy.

Ergonomic aspects of interpreting medical images also play 
a role in the perception process. There is a need to understand 
the impact of ergonomic and presentation factors to minimize 
error (Krupinski and Kallergi, 2007; Krupinski et  al., 2017; 
Ratwani et  al., 2016). Topics include determining the causes 
of fatigue and how that can be minimized, the contribution of 
fatigue to error (Krupinski et  al., 2017; Rohatgi et  al., 2015; 
Waite et  al., 2017a, 2017b), the environmental distractions 
(Balint et al., 2014; Williams and Drew, 2017), the impact of 
viewing interface, especially with soft-​copy images, and the 
impact of the color tint of the image.

Though we hope and aim for consistent and correct clin-
ical decisions on every case, that aim is hard to achieve. The 
likelihood of two clinicians rendering two different inter-
pretation of an image is unsettlingly high. The expertise of 
the clinician plays an important role in that respect (Van der 
Gijp et al., 2017). Medical expertise is the ability to efficiently 
use contextual medical knowledge toward accurate and con-
sistent diagnosis. Medical imaging expertise further involves 
perceptual and cognitive analysis of image features and 
manifests itself in a rich structured knowledge of normalcy and 
“perturbations” from the normal, an efficient hypothesis-​driven 
search strategy, and an ability to generalize visual findings to 
idealized patterns. Achieving such expertise requires talent fur-
ther honed by motivated effortful study, preferably supervised, 
and dedicated work, where accuracy is roughly proportional to 
the logarithm of number of cases read annually (Nodine and 
Mello-​Thoms, 2000). Topics of interest in that line of inves-
tigation include the impact of clinician’s experience, age, and 
visual acuity on accuracy, toward better training and utilization 
of medical imaging clinicians.

Considering the impact of image perception on diagnostic 
accuracy, it is often necessary to test various imaging tech-
nologies and methods in terms of the associated impact on 
image perception. Such studies require the use of experienced 
clinicians, which is an expensive undertaking. Thus, there is 
a great need for accurate computational models/​programs that 
could model visual perception and predict human perform-
ance. A host of such perception models have been developed 
over years, including the ideal human observer model, 
nonprewhitening models, channelized models, and visual dis-
crimination models (Abbey and Bochud, 2000). These models 
naturally require a reasonably accurate understanding of the 
image interpretation process. As our knowledge in that regard 
is limited, so is the accuracy of these models. As such, their 
use often requires certain assumptions, verifications of their 
accuracy and relevance in pilot experimentations, and certain 
calibrations (e.g., adding internal noise to make the model 
predictions fit the human results). Nonetheless, these models 
have demonstrated valuable, though limited, utility in many 
applications, and their advancement continues to shed light on 
the image interpretation process.

Surprisingly, mathematical models are not the only ones 
being used to try to understand how humans visually pro-
cess medical images. Key insights into this human behav-
ioral tasks were reported using pigeons (Columba livia), 
which share many visual system properties with humans. 
The birds had a remarkable ability to distinguish benign 
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from malignant human breast histopathology and, even more 
importantly, were able to generalize what they had learned 
when confronted with novel image sets. Their accuracy, like 
that of humans, was affected by the presence or absence 
of color as well as by degrees of image compression, but 
could be ameliorated with further training. In radiology, 
the birds were quite capable of detecting cancer-​relevant 
microcalcifications on mammogram images. However, when 
given the more difficult task with mammographic masses 
the pigeons proved to be capable only of image memor-
ization and were unable to successfully generalize when 
shown novel examples. The birds’ successes and difficulties 
suggested that pigeons are well suited to help understand 
human medical image perception (Levenson et al., 2015).

By and large, image interpretation is currently a human task. 
However, increasingly, artificial intelligence tools are being 
used to aid the human in the interpretation process or all together 
replace the human (Brink et al., 2017; Jha and Topol, 2016). 
The most common technology currently used is computer-​
aided diagnosis (CAD), computer algorithms that examine the 
image content for certain abnormal features of clinical interest 
and then prompt the clinician for a closer examination of those 
features (Al Mohammad et al., 2017; Doi, 2007; Pande et al., 
2016). CAD is becoming an important tool for interpreting 
medical images considering the exponential growth of imaging 
and shortage of specialized expertise. There is currently a need 
to understand the impact of CAD on accuracy. Issues in that 
regard include how best to integrate the human and the machine 
in such a way that the strength of both can be fully utilized 
toward improved diagnosis. An experienced clinician might 
ignore the CAD prompts or be distracted by them if the system 
indicates too many false positives. However, an inexperienced 
clinician might overly depend on CAD, initiating unneces-
sary follow-​up procedures or dismissing an abnormality that 
might not have been picked up by the CAD algorithm. Such 
patterns might also change over time as a clinician gets used 
to a system, and such “getting used to” might not necessarily 
lead to improved diagnosis or efficiency. Thus, there is a need 
to understand the impact of CAD on the clinician’s psychology, 
expertise, efficiency, and specialization paradigms.

Fundamental to most topics noted above is a need to measure 
diagnostic accuracy (Metz, 2006; Obuchowski, 2005; Wagner 
et al., 2007). There are a number of simple measures of per-
formance such as fraction correct, sensitivity, or specificity. 
However, such simple measures do not adequately reflect 
accuracy as they can be dependent on disease prevalence or 
the criterion level applied by the clinician (e.g., a clinician 
who calls all cases abnormal will have a perfect sensitivity but 
poor specificity, and vice versa). Seeking an overall perform-
ance measure independent of disease prevalence and criterion, 
receiver operating characteristic (ROC) analysis has served as 
the current gold standard for measuring diagnostic accuracy. 
However, ROC analysis has a number of limitations, including 
being primarily limited to single tasks, nonbinary confidence 
ratings, and location-​independent decisions. In recent years, a 
number of variants and advancements of the ROC methodology 
have been developed, a welcome expansion which has shown 
continued advancement.

1.3  WHY A CLINICIAN SHOULD CARE ABOUT 
MEDICAL IMAGE PERCEPTION

Medical image perception is a mature science which continues 
to be advanced by expert scientists. In this age of overspecial-
ization in which specialized “territories” are left to the experts, 
one may ask why a clinician involved with medical images 
needs to care about medical image perception. It is needless 
to say that no one expects a clinician to also be a medical per-
ception scientist. However, knowledge of perception issues and 
concerns can provide vital advantages in the work of a clin-
ician involved with medical images. Those advantages can be 
grouped into five categories.

	1.	 Patient care: Understanding perceptual issues could help 
a clinician to improve his/​her performance. Knowledge of 
key perceptual factors such as satisfaction of search, the 
relevance of prolonged dwell time, search strategies, and 
psychological impacts of decision aids (such as CAD) can 
directly impact the way he/​she interprets medical images. 
It further enforces a greater care about the way the images 
are created, a greater appreciation for image quality and its 
relevance in terms of accuracy and efficiency, an appreci-
ation for proper ergonomic design of working environment 
and fatigue factors, and higher confidence in the use of new 
display technologies.

	2.	 Science: Being better informed about key perceptual factors 
enables proper design of projects involving medical images, 
ability to better answer perceptual questions that inevit-
ably arise in the review of imaging-​related papers and grant 
applications, and proficiency to review such papers and 
grants.

	3.	 Teaching and learning: Knowledge of perceptual factors 
can help a clinician be a better teacher in communicating 
his/​her expertise to trainees. Similarly he/​she would be able 
to better hone in his/​her perceptual skills.

	4.	 Consumer: Understanding the importance of perceptual 
factors enables a clinician to be a better shopper of med-
ical image-​related products and services. For example, he/​
she will be more mindful of image quality performance 
aspects of acquisition and display devices, and the import-
ance of graphical user interface of the picture archiving and 
communications system (PACS) workstations.

	5.	 Profession: Awareness of image perception issues enables 
a clinician to better educate patients, other medical 
professionals, and the public about the statistical nature of 
medical image interpretation, and to play a more effective 
role in related malpractice litigations.

1.4  ABOUT THIS BOOK

As outlined above, medical image perception is a frequent clin-
ical task and a notable component of modern medicine. With 
perceptual error as one of the major sources of medical decision 
errors, our knowledge of perceptual issues gives us resources to 
better control and minimize these errors and to educate future 
medical imaging clinicians and scientists. This book aims to 
provide a comprehensive reflection of medical perception 
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issues and concepts within one single volume. Chapters in this 
text deal with a variety of perceptual issues in great detail.

In this second edition, we have retained the core chapters 
that summarize the history of medical image perception, as 
well as those that cover foundational methodologies for image 
perception research. Most chapters have been updated by the 
original authors to reflect advances in their specific topic areas. 
Some of the more outdated chapters have been replaced by 
new ones that better reflect either state-​of-​the-​art technologies 
being used today in clinical settings, and/​or newer assessment 
methods, tools, and techniques. A number of new chapters have 
also been added that address new topics in medical imaging 
that have either developed or matured since the first edition, 
thus warranting inclusion.

The first part of the book retains chapters by four prominent 
scientists (Harold Kundel, MD, Calvin F. Nodine, PhD, Arthur 
Burgess, PhD, Robert Wagner, PhD), reflecting on historical 
developments of the field and its theoretical foundations. Each 
of these authors is considered today a “father” of medical 
image perception, from different but related perspectives. Their 
pioneering research has been paramount in shaping the field of 
medical image perception as we know it today. A new chapter 
has been added discussing the overall context of medical image 
perception.

The second part of the book includes chapters discussing 
the science of medical image perception. Main topics include 
visual and cognitive factors, satisfaction of search, and the role 
of expertise. A new chapter on the role of subsecond and periph-
eral vision/​perception in image interpretation has been added.

Part III focuses on perception metrology with chapters focused 
on the logistical aspects of designing perception experiments, ROC 
methodology, and its variants. A new chapter has been added on 
the impact of memory effects for images in the context of running 
observer studies and another on three-​ and four-​dimensional 
models. The part includes discussion of perceptual observer 
models and their implementation as well as an assessment of the 
overall value and limitations of such models.

A new part (IV) has been added describing perception in 
the context of multisource imaging and data and two inter-
national programs designed to assess clinical performance of 
mammographers over time and in comparison to their peers for 
overall quality assessment.

Part V focuses on computational perception and CAD issues 
with topics ranging from the design of CAD studies and per-
ceptual impact of CAD to perceptual factors associated with 
the use of CAD in interpreting chest, breast, and volumetric 
images. A  new chapter has been added on the evaluation of 
CAD, and another one on the overall process of images as a 
source of quantitative information.

The final part (VI) on applied perception offers chapters 
dealing with specific optimization and use considerations from 
a perceptual standpoint. New and revised chapters offer topics 
on display optimization, reading environment and ergonomic 
design of workplaces for radiologists, image perception in 
pathology, and perceptual basis for developing human search-​
based training and computer-​based training methods. The 
book ends with a chapter summarizing image perception from 
the perspective of a practicing radiologist and a final chapter 

outlining future possible directions for medical image percep-
tion science.

We hope readers benefit from this new edition, to learn from 
its content and to find inspiration from its diverse topics that 
still need more comprehension, innovation, and application to 
advance the value and utility of medical images in medicine. 
We eagerly anticipate that the insights and methods described 
in these pages can lead to a positive impact on patient care and 
human health, which shall remain the main objective of health 
science and healthcare.
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