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The dominant mode instability in hypersonic boundary-layer transition is the so-called
second-mode instability, which has a peculiar nature strongly coupled with thermoacoustic
phenomena. In linear stability theory, the unstable wave is associated with one of the two
eigenvalues that originate from the acoustic branches, referred to as slow and fast modes.
Interestingly, the unstable mode (slow or fast) reaches its maximum amplification as the
other mode (fast or slow) attains a minimum. The phase velocity of the two modes is then
very close, and this phenomenon is called synchronization. The aim of the present study
is to unravel the physical mechanism that explains the second-mode growth. To that aim,
second-order nonlinear equations are written for the disturbances given by linear stability.
In this framework, entropy, kinetic energy and temperature energy budgets are obtained up
to second order. The budgets are scrutinized for various Mach numbers and for adiabatic
and cold-wall thermal conditions. Perturbation entropy budgets clearly show the process
is a reversible one. An energy exchange between kinetic energy and temperature energy
of the weakly nonlinear modes is driven by pressure–dilatation terms. As underlined in
previous studies, the unstable mode experiences an alternate heating and cooling near the
wall, which is shown to be a rather nonlinear process. The change in fluctuating thermal
energy in the form of a dilatational wave is sustained by pumping disturbance kinetic
energy through the pressure–dilatation term, the direction of the conversion being driven
by the relative phase between pressure and dilatation. This process is similar for the slow
and fast modes, the unstable mode being amplified and the other being damped. No change
in the process has been noted at the location of the synchronization, suggesting that the
modes have the same nature but evolve independently.
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1. Introduction

There has been a renewed interest in the understanding of supersonic and hypersonic
boundary-layer aerodynamics, which is critical for the development of new generations
of high-speed-flight vehicles.

1.1. Role of pressure and dilatation in hypersonic transition
For high-speed flows, the nature of pressure changes. Whereas it has an elliptic character
in the incompressible regime and only serves to enforce a divergence-free velocity field,
pressure exhibits a wave behaviour for compressible flows. This leads to a dilatational
velocity component that changes the pressure–velocity interactions and affects profoundly
the boundary-layer instabilities. At moderate supersonic Mach numbers, the parallel linear
stability theory (LST) predicts the emergence of a first mode, which is the continuation of
the viscous Tollmien–Schlichting mode. Using Lagrangian invariants, Liang et al. (2023)
showed that the obliqueness results from the coupling of the spanwise and streamwise
vorticity components. The appearance of obliqueness is accompanied by the enhancement
of Reynolds shear stress (Chen, Guo & Wen 2023b). As the Mach number M is further
increased, the velocity profile weighted by the density exhibits a generalized inflection
point at a distance from the wall that increases as the Mach number increases (Lees &
Lin 1946), and the first mode survives and becomes an inviscid instability. When the
phase velocity becomes supersonic relative to the mean flow, typically for M > 4, a new
region of instability appears in a higher frequency range than the first-mode instability.
It corresponds to the so-called second mode that can have a high growth rate (Stetson &
Kimmel 1992), except in the case of wall heating. The properties of this second mode
are driven by the wave character of the pressure. This inviscid mode is associated with
acoustic trapping of energy near the wall (Mack 1984; Fedorov 2011; Zhong & Wang
2012), associated with pressure–dilatation effects.

A peculiarity of hypersonic boundary layers is the possibility of multiple higher
modes, which was first brought to light by Mack (1963, 1984). Similar multiple solutions
were found independently by Gill (1965) for ‘top-hat’ jets and wakes. Morkovin (1987)
explained these higher modes as sound waves reflected back and forth between the wall and
the sonic line. That is why higher modes are sometimes referred to as acoustic instabilities.

Kuehl (2018) showed that the region between the wall and the sonic line behaves like an
acoustic impedance well. While viscous Reynolds stress drives the Tollmien–Schlichting
instability and its extension at supersonic speeds (first mode), Kuehl (2018) defined a
thermoacoustic Reynolds stress that is the driving mechanism of second-mode instability.
This thermacoustic interpretation also predicts the strengthening of the second mode due
to wall cooling.

To shed light on the physical mechanisms at the origin of the second mode,
Unnikrishnan & Gaitonde (2019) used the fluid-thermodynamic decomposition into
vortical, acoustic and thermal components, initially proposed by Doak (1971, 1989) and
referred to as the momentum potential theory. For hypersonic adiabatic boundary layers
at M between 4 and 8, they showed, based on LST and direct numerical simulation
(DNS) results, that the vorticity component for the linear second-mode instability has
the highest amplitude and is concentrated in a thin layer along the critical layer. The
thermal component, which is located on a thicker region centred at the same height, is
the second in amplitude, whereas the acoustic mode is more spread over the boundary
layer with peak values above the critical layer. Streamwise variations are significant only
for the thermal and acoustic components, with an increased content just before and after

1000 A56-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

91
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.912


Second-order analysis of hypersonic boundary-layer stability

the maximum amplification of the second mode, respectively. A similar behaviour was
observed for a cold-wall boundary layer and the authors concluded that the thermal and
acoustic components play a primary role in the second-mode growth.

In order to explain the growth mechanisms of second-mode instability, Tian & Wen
(2021) analysed the amplitude and phase of the main terms of the linear stability equations,
using a relative phase analysis, similar to that used to explain the thermoacoustic coupling
in a Rijke tube. The wall-normal velocity disturbances draw energy from the mean
flow, which results in the growth of the second mode. The relative phase between the
wall-normal fluctuations and the fluctuating internal energy in the region of the critical
layer is essential in this process. Chen et al. (2023b) have extended the phase analysis
of source terms to shed light on energy transfer mechanisms, explaining the features of
the first mode, such as its obliqueness or the effect of wall cooling. They confirm that
the driving mechanism for the second mode is a particular phase condition that allows
the interaction between near-wall fluctuations and the critical layer. Chen, Guo & Wen
(2023a) used DNS results to compare relative phase analysis with the thermoacoustic
theory of Kuehl (2018) and the momentum potential theory framework. Their analysis
shows that the three approaches are consistent and that the primary drivers of second-mode
instability are the production of acoustic energy near the wall due to dilatational effects
and its wall-normal transport to the outer region through the mean temperature gradient.

Particle image velocimetry visualizations of Zhu et al. (2016) at M = 6 revealed that the
growth and decay of the second mode are accompanied by a dilatation process, and that
vorticity waves developing in the critical region are synchronized. Those authors showed
that the vorticity fluctuations are related to the dilatational disturbances, which yields a
nonlinear resonance relation between the phase-locked travelling vorticity and dilatation
waves. Zhu et al. (2018a,b) used experiments, LST and DNS on a flared cone at M = 6 to
explain the presence of a heating region that occurs before the main friction heating due
turbulent breakdown, and coincides with the maximum growth of the second mode. The
main mechanism is associated with the pressure–dilatation term, which overwhelms the
dissipation mechanism. In particular, wall heating corresponds to a peculiar phase between
pressure and dilatation. Further experiments and computations by Zhu et al. (2020, 2021)
demonstrated that the same dilatational mechanism can yield a wall cooling downstream
of the heating region. They showed that the phase between pressure and dilatation can be
exploited to reduce second-mode growth using a porous material.

The study of Kuehl (2018) suggests that the resonant nature of the second mode is
sustained by standing acoustic waves between the wall and the sonic line. The way
the acoustic waves are promoting this mode is not fully understood. Some authors
(e.g. Tam & Hu 1989) propose for instance that an over-reflection, which corresponds
to the amplification of an acoustic wave after reflection (Miles 1957; Ribner 1957),
could be the engine of second-mode growth. Studies on over-reflection have mainly
focused on geophysical applications, such as gravity waves. Recently, Zhang, Görtz &
Oberlack (2022) predicted the over-reflection of acoustic waves in a supersonic exponential
boundary layer. They underlined that the critical layer plays an important role in the energy
exchange between waves and shear flows. The exact role of acoustic waves in hypersonic
boundary-layer instabilities remains an open question.

1.2. Synchronizations and interactions of instabilities
A particular result of LST for hypersonic boundary layers is the presence of several
eigenvalues (modes). Their origin has been clarified by Fedorov & Khokhlov (2001),
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Ma & Zhong (2003a) and Fedorov & Tumin (2011) and we follow their terminology
in the present study. Another peculiar feature of LST is the identification of various
synchronization regions for these modes (Fedorov 2011; Zhong & Wang 2012). The
first synchronization, from which the mode names are derived, occurs at the leading
edge, where the modes are seen to leave the continuous acoustic branches. The mode
leaving the slow (fast) acoustic branch is called mode S (mode F), having a phase
speed equal to that of the slow (fast) acoustic mode at zero frequency cϕ = 1 − 1/M
(cϕ = 1 + 1/M). In Mack’s terminology, the first mode corresponds to an extension of
the Tollmien–Schlichting mode, which is a viscous instability and originates from mode
S in an eigenvalue spectrum. The second mode, which appears at hypersonic speeds, is
rather inviscid and driven by acoustic waves. It is most often a continuation of mode S,
but can also originate from mode F. The second synchronization occurs when mode F
crosses the entropy/vorticity continuous branch. This corresponds to a sudden jump in
the growth rate (as clearly visible in figure 1(c) of § 4.1). This discontinuity would not be
present using DNS or parabolic stability equations (PSE), and is rather a mathematical
artefact of the eigenvalue problem with Dirichlet free-stream boundary conditions. This
results in the presence of continuous branches (Balakumar & Malik 1992), and formally
mode F corresponds to another eigenvalue after branch crossing. Fedorov & Tumin (2011)
show that a bi-orthogonal eigenvalue expansion (Tumin 2007, 2020), which includes, in
addition to mode F, an infinite number of modes belonging to the continuous spectrum of
LST, can resolve this inconsistency. Further downstream, a striking result of LST is that
the maximum of amplification of the second mode (S or F) corresponds to a minimum
of amplification for the other mode (F or S). During this opposite amplification, the
wavenumbers and phase speeds (cϕ) of the two modes are almost equal, and the slope of cϕ

for mode S can exhibit an inflection to follow that of mode F (see figure 1b,d, f ,h of § 4.1).
This phenomenon, referred to as the FS synchronization, remains a mystery. Fedorov
& Khokhlov (2001) suggested an analytical model within the two-mode approximation,
involving the sum of modes F and S with a particular branching dispersion relation.
Taking into account the weakly non-parallel effects, they derived a rule for the intermodal
exchange, explaining why mode S or F is unstable after the branching. An important
conclusion from the discrete mode branching model is that the streamwise dependence
of the base flow and of the amplitude function of the normal modes (eigenfunctions),
which are neglected in a parallel theory, plays an important role for the intermodal
exchange. It is worth noting that linear PSE (LPSE) calculations (Lifshitz, Degani & Tumin
2012), which also take non-parallel effects into account, give a regular mode evolution
in accordance with DNS results (Ma & Zhong 2003a). If discrete normal modes S and
F are prescribed as inflow disturbances in LPSE, they evolve towards the same solution
in the branching region, which correspond to the unstable mode F or S (see results of
LPSE from Lifshitz et al. (2012) in figure 1e,g of § 4.1). It was concluded that LPSE or
DNS do not exhibit a FS synchronization, and, due to mode coalescence, high streamwise
gradients observed in the mode branching model of Fedorov & Khokhlov (2001) are absent
in LPSE. A conjecture made by Lifshitz et al. (2012) is that the second synchronization
(F crossing the entropy/vorticity branch) can alter the FS synchronization because there is
no longer a clear separation of the branching region from the continuous spectrum, and
a complete model should include the continuous branch modes in addition to discrete F
and S modes. Unfortunately, the eigenfunction expansion method is not applicable when
branching of modes happens. It is thus not clear if the FS synchronization, not observed in
LPSE and DNS, is the result of LST approximation rather than a physical feature. Nichols
& Candler (2019) used an input–output optimization to maximize the growth of second
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Figure 1. Phase speed as a function of Re at various Mach numbers: solid lines, present results; symbols,
results from the literature (open symbols, LST from Ma & Zhong (2003a) for M = 4.5, and Fedorov & Tumin
(2011) for M = 5.5 and M = 6.5; filled symbols, PSE from Lifshitz et al. (2012) for M = 5.5 and M = 6.5).
(a,c,e,g) ci (growth rate); (b,d, f,h) cr . The adiabatic wall results are displayed in (a,b) (M = 4.5) and (c,d)
(M = 6); (e, f ) (M = 5.5) and (g,h) (M = 6.5) refer to the cold-wall cases. The solid vertical lines denote the
location of the so-called FS synchronization.

mode for a cold-wall boundary layer at M = 6.5. They found a substantial amplification
gain when both modes S and F are introduced at the inflow. Their linearized Navier–Stokes
simulations thus show a coupling phenomenon, which could be associated with an FS
synchronization.

1000 A56-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

91
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.912


F. Grasso and X. Gloerfelt

Ma & Zhong (2003a,b) found that synchronization location and wave energy transfer
play an important role in receptivity mechanisms. Though mode F (or mode S) may be
linearly stable, it can have resonant interactions (synchronization) with both acoustic waves
and the unstable mode S (or mode F). Zhu et al. (2016) and Chen, Zhu & Lee (2017) also
observed that modal interactions, between the second mode and the first mode, Görtler
instabilities, or low-frequency content, have a catalytic impact on second-mode transition
to turbulence.

1.3. Scope of the study
The primary goal of the study is to shed some light on the physical energy transfer
mechanisms and the role of the initially unstable mode (either slow or fast) at hypersonic
Mach number and for both adiabatic and cold-wall thermal conditions. For the analysis
focusing on the early stages of laminar-to-turbulent transition, we develop a weakly
nonlinear formulation following the work of Chu & Kovasznay (1958). To account for
non-parallel effects that were shown to be important by Fedorov & Khokhlov (2001)
for the intermodal exchange between slow and fast modes, the formulation accounts for
non-parallel effects by considering the boundary-layer growth and the corresponding
streamwise derivatives. The compressible Navier–Stokes equations are briefly recalled in
§ 2. The second-order nonlinear disturbance equations are developed in § 3 and the stability
analysis is discussed in § 4 for various Mach numbers. In an attempt to understand the role
played by the energy transfer mechanisms, both reversible and irreversible, between the
perturbation kinetic energy (k) and the temperature perturbation energy (kT ), in § 5 we
develop the governing equations for the perturbation energies and for the perturbation
entropy. Results are discussed in § 6, and conclusions of the study are given in § 7.

2. Governing equations

The conservation equations for high-Mach-number flows are written in Cartesian
coordinates assuming a perfect gas and neglecting high-temperature effects. In divergence
form they are

∂ρ

∂t
+ ∂Jj

∂xj
= 0, (2.1a)

∂(ρui)

∂t
+ ∂(Jjui)

∂xj
= − ∂p

∂xi
+ ∂σij

∂xj
, (2.1b)

∂(ρT)

∂t
+ ∂(JjT)

∂xj
= − p

cv

∂uj

∂xj
+ γ

Pr
∂

∂xj

(
μ

∂T
∂xj

)
+ 1

cv

ρφ, (2.1c)

p = ρRT, (2.1d)

where R is the gas constant and γ = 1.4 is the ratio of the specific heat coefficients at
constant pressure (cp) and constant volume (cv); Jj, σij and φ stand, respectively, for
the jth convective flux component, the components of the stress tensor and the viscous
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dissipation:

Jj = ρuj, (2.2a)

σij = μ

(
2Sij − 2

3
S��δij

)
, (2.2b)

Sij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
, (2.2c)

φ = 1
ρ

σijSij, (2.2d)

Sij being the symmetric strain tensor component and δij the Kronecker delta. Sutherland’s
law is used for the viscosity μ and a constant Prandtl number Pr = 0.72 is assumed.

3. Second-order nonlinear disturbance equations

Linear stability analysis relies on the assumption that for a generic disturbance, the flow
variables can be decomposed in a basic state plus a disturbance, where the former is
assumed to be a steady-state solution of the conservation equations. Substituting such a
decomposition into the governing equations leads to a linearized set of equations that
describe the evolution of the disturbances. By such an approach the fundamental physical
mechanisms of stability in the very early stages of disturbance evolution have been
elucidated. However, because of the founding assumption that disturbances are linearly
independent, the interactions between disturbances cannot be considered. This is a major
drawback, since disturbance interactions are responsible for nonlinear energy transfer
mechanisms and for disturbance growth leading to turbulence transition. In the present
study, we introduce a decomposition of the flow variables up to second order and account
for the interactions between first- and second-order perturbations by developing a weakly
nonlinear analysis following the work of Chu & Kovasznay (1958).

Let q stand for either the velocity or the temperature, its instantaneous governing
equation being cast in the form

∂(ρq)

∂t
+ ∂(Jjq)

∂xj
= Rq, (3.1)

where, for brevity, Rq stands for the right-hand-side operator, whose expression is readily
obtained from (2.1b)–(2.1c) and (2.2b)–(2.2d).

The weakly nonlinear governing equations are derived by introducing the following
decomposition:

q = q̄ + εq′ + ε2q′′, (3.2)

where q̄, q′ and q′′ represent, respectively, the base flow value and the first- and
second-order disturbances of any variable q, and ε is a small positive number.

Substituting (3.2) in (3.1) and combining terms of the same order, the governing
equations for the base flow (that are given in Appendix A) and for the first- and
second-order disturbances are obtained.
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3.1. Governing equations for first-order disturbances
The non-divergence form of the governing equations for the first-order disturbances q′ is
obtained by combining the following equations:

∂ρ̄

∂t
+ ∂ J̄j

∂xj
= 0, (3.3a)

∂ρ′

∂t
+

∂J′
j

∂xj
= 0, (3.3b)

∂

∂t
(ρ̄q′ + ρ′q̄) + ∂

∂xj
(J̄jq′ + J′

j q̄) = R′
q, (3.3c)

thus yielding

ρ̄
∂q′

∂t
+ J̄j

∂q′

∂xj
= R′

q − J′
j
∂ q̄
∂xj

, (3.4)

where J̄j, J′
j and R′

q are, respectively, the base flow convective flux component, the
first-order convective flux component and the first-order right-hand-side operator defined
as

J̄j = ρ̄ūj, (3.5a)

J′
j = ρ′ūj + ρ̄u′

j, (3.5b)

R′
q = Rq′ = Rq(q̄, ρ̄, . . . ; q′, ρ′ · · · ). (3.5c)

3.2. Governing equations for second-order disturbances
The governing equations for the second-order disturbances are derived following the same
procedure. In non-divergence form, the equation for the generic second-order disturbance
q′′ is readily obtained by combining the base flow, first- and second-order continuity
equations and the conservation equation for q′′:

∂ρ̄

∂t
+ ∂ J̄j

∂xj
= 0, (3.6a)

∂ρ′

∂t
+

∂J′
j

∂xj
= 0, (3.6b)

∂ρ′′

∂t
+ ∂Jj

′′

∂xj
= −

∂(ρ′u′
j)

∂xj
, (3.6c)

∂

∂t
(ρ̄q′′ + ρ′′q̄) + ∂

∂xj
(J̄jq′′ + J′′

j q̄) = R′′
q − ∂(ρ′q′

j)

∂t
− ∂

∂xj
(ρ′u′

jq̄ + J′
jq

′), (3.6d)

thus obtaining

ρ̄
∂q′′

∂t
+ J̄j

∂q′′

∂xj
= R′′

q − J′′
j

∂ q̄
∂xj

+ ρ̄N′′
B,q, (3.7)
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where J′′
j and R′′

q stand, respectively, for the second-order convective flux component and
the second-order right-hand-side operator,

J′′
j = ρ′′ūj + ρ̄u′′

j , (3.8a)

R′′
q = Rq(q̄, ρ̄, ūj · · · ; q′′, ρ′′, u′′

j · · · ; q′ρ′, q′u′
j, ρ

′u′
j · · · ), (3.8b)

and N′′
B,q accounts for the ‘bulk’ interactions of first-order disturbances driven by base flow

gradients,

N′′
B,q = −ρ′

ρ̄

∂q′

∂t
−

J′
j

ρ̄

∂q′

∂xj
− ρ′

ρ̄
u′

j
∂ q̄
∂xj

. (3.9)

In order to derive a form-invariant formulation of the problem, the right-hand-side
second-order term R′′

q is recast as

R′′
q = Rq′′ + N′′

S,q, (3.10)

where Rq′′ is only a function of the base flow properties and of the second-order
disturbances, and has the same form as R′

q:

Rq′′ = Rq(q̄, ρ̄, ūj · · · ; q′′, ρ′′, u′′
j · · · ). (3.11)

Substituting (3.10) into (3.7) gives

ρ̄
∂q′′

∂t
+ J̄j

∂q′′

∂xj
= Rq′′ − J′′

j
∂ q̄
∂xj

+ N′′
B,q + N′′

S,q. (3.12)

For the velocity perturbations, N′′
S,ui

= 0, whereas for the temperature perturbations, N′′
S,T

represents an additional contribution due to viscous effects and thermal power dissipation
(whose expression is given in the next section).

3.3. Disturbance governing equations
From the above analysis, the conservation equations for the nth-order disturbances are then
cast in the following form-invariant expression:

∂ρ(n)

∂t
+ ūj

∂ρ(n)

∂xj
+ ρ̄

∂u(n)
j

∂xj
+ u(n)

j
∂ρ̄

∂xj
+ ρ(n) ∂ ūj

∂xj
= (n − 1)N(n)

B,ρ, (3.13a)

∂u(n)
i

∂t
+ ūj

∂u(n)
i

∂xj
+ 1

ρ̄

∂p(n)

∂xi
− ν̄

∂

∂xj

(
2S(n)

ij − 2
3

S(n)
�� δij

)
− 1

ρ̄

(
2S(n)

ij − 2
3

S(n)
�� δij

)
∂μ̄

∂xj

+ 1
ρ̄

(ρ(n)ūj + ρ̄u(n)
j )

∂ ūi

∂xj
= (n − 1)N(n)

B,ui
, (3.13b)

∂T(n)

∂t
+ ūj

∂T(n)

∂xj
+ 1

cv

( pθ)
(n)
L − 1

ρ̄

γ

Pr
∂

∂xj

(
μ̄

∂T(n)

∂xj

)
− 1

cv

φ
(n)
L

+ 1
ρ̄

(ρ(n)ūj + ρ̄u(n)
j )

∂T̄
∂xj

= (n − 1)N(n)
B,T + (n − 1)N(n)

S,T , (3.13c)

p(n) = R(ρ(n)T̄ + ρ̄T(n)) + (n − 1)N(n)
B,p, (3.13d)
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where n = 1, 2 and (·)(n) is here used to indicate the nth-order perturbation of any variable
(·), and

( pθ)
(n)
L =

(
p(n) ∂ ūi

∂xi
+ p̄

∂u(n)
i

∂xi

)
and φ

(n)
L = ν̄

(
4S̄ijS

(n)
ij − 4

3
S̄��S(n)

kk

)
(3.14a,b)

are the nth-order linearized pressure–dilatation and the linearized viscous dissipation.
In the sections that follow we use N(n)

q = N(n)
B,q + N(n)

S,q. For n = 1, N(1)
B,ρ = 0, N(1)

B,ui
= 0,

N(1)
B,T = 0 and N(1)

B,p = 0. For n = 2,

N(2)
B,ρ = −

∂ρ(1)u(1)
j

∂xj
, (3.15a)

N(2)
B,ui

= −ρ(1)

ρ̄

∂u(1)
i

∂t
− 1

ρ̄
(ρ(1)ūj + ρ̄u(1)

j )
∂u(1)

i
∂xj

− ρ(1)

ρ̄
u(1)

j
∂ ūi

∂xj
, (3.15b)

N(2)
B,T = −ρ(1)

ρ̄

∂T(1)

∂t
− 1

ρ̄
(ρ(1)ūj + ρ̄u(1)

j )
∂T(1)

∂xj
− ρ(1)

ρ̄
u(1)

j
∂T̄
∂xj

, (3.15c)

N(2)
B,p = Rρ(1)T(1), (3.15d)

N(2)
S,T = − 1

ρ̄cv

p(1)
∂u(1)

j

∂xj
+ ν̄

cv

(
2S(1)

ij S(1)
ij − 2

3
S(1)
�� S(1)

kk

)
. (3.15e)

The governing equations for first- and second-order disturbances in Cartesian coordinates
are given in supplementary material available at https://doi.org/10.1017/jfm.2024.912.

4. Stability analysis to second order

To account for the interactions between disturbances in the early phase of their evolution,
the above equations are solved for both the first- and second-order disturbances.

In a compact form, the transport equations of the first-order disturbances (3.13a)–(3.13d)
are cast in the form

L(x, y, z, t; ρ̄, ū, . . . ; ρ′, u′, v′, w′, p′, T ′) = 0, (4.1)

where L is the linearized compressible Navier–Stokes equations for the first-order
disturbances and that has been derived in the previous section.

First-order disturbances are obtained by solving (4.1) for two-dimensional normal-form
disturbances, yielding a generalized eigenvalue problem, whose solution gives a set
of linearly independent eigenmodes q̂′( y) (hereafter also referred to as modes) and
the complex streamwise wavenumber α for a given angular frequency ω. The stability
equations are solved in dimensionless form, where variables are made non-dimensional
with respect to the free-stream values (ρ∞, u∞, ρ∞u2∞, T∞) and the Blasius length � is
used as reference length scale such that

Re = ρ∞u∞�

μ∞
=
√

ρ∞u∞x
μ∞

=
√

Rex. (4.2)
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Second-order analysis of hypersonic boundary-layer stability

The non-dimensional frequencies are then given as

ω = ω∗�
u∞

and F = ω∗μ∞
ρ∞u∞2 , (4.3a,b)

where ω = ReF is the non-dimensional circular frequency.
For the transport equations of the second-order disturbances, we exploit the

form-invariance form of (3.13a)–(3.13d) that are cast in the following compact form:

L(x, y, z, t; ρ̄, ū, . . . ; ρ′′, u′′, v′′, w′′, p′′, T ′′) = N(ρ̄, ū, . . . ; ρ′u′, ρ′v′, . . .), (4.4)

where N = [NB,ρ, NB,ui, NB,T + NS,T ] represents the (weakly) nonlinear terms that drive
the evolution of the second-order modes, which are assumed to have the normal form

q′′ = q̂′′
( y) exp

(
i
(∫ x

α dx − ωt
))

. (4.5)

Introducing the normal-mode expansion of the disturbances, a single set of equations is
written for the first- and second-order modes (q̂′ and q̂′′). Assuming a two-dimensional
non-parallel flow with the base flow assumed to vary in both the streamwise
and wall-normal directions, namely ū = ū(x, y), v̄ = v̄(x, y), w̄ = 0, ρ̄ = ρ̄(x, y), T̄ =
T̄(x, y), p̄ = p̄(x, y), the stability equations for the first- and second-order modes are
recovered. In a compact matrix form, the stability equations are cast as

C
d2q̂

dy2 + B
dq̂
dy

+ Aq̂ = (n − 1)f N̂, (4.6)

where A = A(α, ω, M, Re; ρ̄, ūi, p̄, T̄), B = B(α, ω, M, Re; ρ̄, ūi, p̄, T̄) and C = C(α, ω,

M, Re; ρ̄, ūi, p̄, T̄) are (5 × 5) matrices whose expressions are given in Appendix B; N̂
is the normal-mode representation of the first-order mode interaction contribution to
the second-order ones. The density mode and its x and y derivatives are determined
from the linearized equation of state. Note that the viscosity disturbances ((dμ̄/dT)T̂ ′
and (dμ̄/dT)T̂ ′′, respectively) have been found not to affect the stability (for brevity,
results of the analysis are not reported) and have been neglected. The factor f =
exp(i(

∫ x
α dx − ω0T0/2)) sin(ω0T0/2)/(ω0T0/2) accounts for cycle-averaged nonlinear

effects (Kuehl 2018), where ω0 and T0 are, respectively, the angular frequency and the
corresponding period at synchronization location T0 = �0/u∞ (�0 being the Blasius length
at synchronization). In practice, a first LST calculation is performed to determine the
synchronization frequency corresponding to the maximum amplification of the unstable
mode, which provides the reference Blasius length �0 to form the reference Reynolds
number Re0 for LST computations. In the following, the results are presented using the
local Reynolds number Re and the dimensionless phase speed cϕ = ω/α = cr + ici is
used, as suggested by Lifshitz et al. (2012), since its value does not depend on the length
scale �0 (contrary to the complex wavenumber that does depend on �0). To account for the
thickening of the boundary layer, the base flow equations are solved in the transformed
space (x, y/δ(x)), and �0 and the corresponding Reynolds number Re0 are chosen as
reference.
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For n = 1, (B1) reduces to the linear stability equation

L̂q̂′ = 0, (4.7)

where

L̂ = C
d2

dy2 + B
d
dy

+ A = L̂(α, ω, M, Re; ρ̄, ūi, p̄, T̄), (4.8)

with homogeneous boundary conditions. Namely, û′ = v̂′ = ŵ′ = 0 and dp̂′/dy = 0, both
at the wall and at free stream, and T̂ ′ = 0 at the wall and dT̂ ′/dy = 0 at free stream.

Equation (4.7) constitutes an eigenvalue problem in the wavenumber α that depends
on the Mach and Reynolds numbers. The discretized eigenproblem is transformed into
a problem with linear eigenvalues, and solved with the shift-invert method and a QZ
algorithm and taking v̄ = 0. A Newton–Raphson algorithm is implemented to follow the
selected modes (see Gloerfelt & Robinet (2017) for more details).

For n = 2, the second-order stability equation is

L̂q̂′′ = f N̂. (4.9)

The second-order modes are then computed from the relation

q̂′′ = f L̂
−1

N̂. (4.10)

To second order, the disturbance mode of any variable q is then computed as the sum of
the first- and second-order modes (εq̂′ + ε2q̂′′).

4.1. Linear stability results
The influence of the Mach number and of the wall thermal state is here analysed
considering both adiabatic and cold-wall conditions (see table 1). In the table we also
report the values of the Mach numbers and the corresponding values of the boundary-layer
thickness (δ0), the generalized inflection point distance (ygip), the sonic line y position
(ys,S and ys,F of the slow and fast modes, respectively) and the critical layer height (yc,S
and yc,F) at synchronization location (i.e. at the reference streamwise location), where
ygip is defined as ∂/∂y(ρ̄∂ ū/∂y) = 0. The selected conditions of the adiabatic wall cases
are those of Ma & Zhong (2003a) and Reed & Balakumar (1990) for M = 4.5 and M = 6,
respectively, whereas for the cold-wall cases they are those of Fedorov & Tumin (2011). For
the former, the selected non-dimensional frequency is F = 2.2 × 10−4; for the cold-wall
cases the selected value of F is 1 × 10−4. All selected cases are inviscidly unstable. As
expected, the generalized inflection point moves farther away from the wall as the Mach
number increases, with the exception of the M = 5.5 case that presents an inflection point
at the wall.

For comparison with the literature, all results are presented in terms of the local
Reynolds number (4.2), the growth rate being represented in terms of the imaginary part
of the phase speed ci (Lifshitz et al. 2012). Figure 1 showcases the real and imaginary
parts of the phase speeds that are in very good agreement with the literature (symbols in
figure 1). Note that the vertical dashed lines in the figure identify the analysed domain
around synchronization location. The slow mode of the adiabatic (M = 4.5 and M = 6)
and cold (M = 6.5) wall cases is initially unstable, whereas for M = 5.5 the fast mode is
initially unstable. The unstable mode (slow or fast) reaches its maximum amplification as
the other mode (fast or slow) attains a minimum. The phase velocity of the two modes
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Second-order analysis of hypersonic boundary-layer stability

M T∞ (K) p∞ (N m−2) Twall (K) δ0 ygip ys,S ys,F yc,S yc,F

4.5 65.15 728.4 Tad 16.0 11.2 5.8 5.8 11.5 11.2
6 65 2421.8 Tad 21.8 17.3 9.7 9.7 17.3 17.3
5.5 70 2421.4 6.1T∞/10 10 0 3.6 3.4 6.0 5.8
6.5 70 2421.4 8.1T∞/10 11.5 19.2 10.6 10.6 18.7 18.7

Table 1. Base flow boundary-layer parameters (thickness, generalized inflection point, sonic line and critical
layer heights) for various Mach numbers.

is then very close, and this phenomenon is called synchronization. Past synchronization
location, mode S of the two adiabatic cases and of the cold case at M = 5.5 exhibits a
slightly increasing Mach number (relative to the phase speed) still remaining subsonic,
whereas mode F shows a continuously decreasing phase speed. An opposite behaviour is
observed for case M = 6.5, namely the phase speed of the fast mode has a tendency to
increase whereas it continuously decreases for mode S.

The wall-normal distributions of the eigenfunction amplitudes and phases at
synchronization location are reported in figure 2 for the slow and the fast modes,
respectively. The amplitudes are normalized by the pressure amplitude at the wall.
The behaviour of the adiabatic (respectively, cold) wall cases being similar, unless
significant differences occur, hereafter we only report the results for M = 4.5 and M =
5.5. The figure shows that the eigenfunctions are dominated by the fluctuations in
thermodynamic variables. In the subsonic layer, pressure, temperature and streamwise
velocity perturbations are approximately in phase and in nearly phase opposition with the
wall-normal velocity. It is also interesting to observe that for the cold wall the reduction
of the boundary-layer scales affects the initially unstable mode that experiences a smaller
peak in the temperature perturbation amplitude at the critical layer. The phase behaviour
is overall less affected by the wall thermal conditions.

4.2. Budget analysis
To identify the dominant physical mechanisms and to elucidate their role in the slow
and fast modes, we have scrutinized the budgets of the various perturbation variables
at synchronization location. In the following, we report the budgets of the streamwise
and wall-normal velocity and temperature disturbances that are discussed in detail in the
discussion section.

For the analysis, the total time rate of change of any variable (̂·) is split in two terms,
namely (D̂/Dt)(̂·) = i(αū − ω)(̂·) (which accounts for the streamwise contribution) and
v̄(d(̂·)/dy) that represents the (convective) transport due to base flow wall-normal velocity
component.

Dropping superscripts (·̂)′ and (·̂)′′, the normal-mode expression of the budget equation
for the streamwise velocity disturbance (of either first or second order) is cast in the form

D̂û
Dt

+ v̄
dû
dy

= −iα
p̂
ρ̄

+ Du + u-mgP + (n − 1)f N̂u, (4.11)
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Figure 2. Eigenfunction amplitudes and phases at synchronization location for (a) adiabatic wall (M = 4.5)
and (b) cold wall (M = 5.5). Solid lines, initially unstable mode; dashed lines, initially stable mode.

where

D̂û
Dt

= i (αū − ω) û, (4.12a)

Du = 1
ρ̄

{[
4
3
μ̄

(
i
dα

dx
− α2

)
+ 4

3
iα

∂μ̄

∂y

]
û + μ̄

d2û

dy2 + ∂μ̄

∂y
dû
dy

+ iα
∂μ̄

∂y
v̂ +

(
i
1
3
αμ̄ − 2

3
∂μ̄

∂x

)
dv̂

dy

}
, (4.12b)

u-mgP = −
[

û + ū

(
p̂
p̄

− T̂
T̄

)]
∂ ū
∂x

−
[
v̂ + v̄

(
p̂
p̄

− T̂
T̄

)]
∂ ū
∂y

, (4.12c)

N̂u = 1
ρ̄

[
iωρ̂

′û′ − iα(ρ̂
′ū + ρ̄û′

)û′ − (ρ̂
′
v̄ + ρ̄v̂

′
)
dû′

dy
− ρ̂

′û′ ∂ ū
∂x

− ρ̂
′
v̂

′ ∂ ū
∂y

]
, (4.12d)

where n = 1 for the budget of the first-order mode (·̂)′ and n = 2 for the second-order
mode (·̂)′′. The right-hand side of (4.11) represents the contributions due to the streamwise
pressure gradient, diffusion, transport of streamwise momentum disturbances resulting
from the base flow/perturbation interaction driven by the base flow velocity gradient and
the contribution resulting from the interaction of first-order modes.
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The budget equation for the wall-normal velocity disturbance is written as

D̂v̂

Dt
+ v̄

dv̂

dy
= − 1

ρ̄

dp̂
dy

+ Dv + v-mgP + (n − 1)f N̂v, (4.13)

with n = 1, 2, and where

D̂v̂

Dt
= i(αū − ω)v̂, (4.14a)

Dv = 1
ρ̄

{
−2

3
iα

∂μ̄

∂y
û +

(
i
1
3
αμ̄ − ∂μ̄

∂x

)
dû
dy

×
[
μ̄

(
i
dα

dx
− α2

)
+ iα

∂μ̄

∂x

]
v̂ + 4

3

(
μ̄

d2v̂

dy2 + ∂μ̄

∂y
dv̂

dy

)}
,

(4.14b)

v-mgP = −
[

û + ū

(
p̂
p̄

− T̂
T̄

)]
∂v̄

∂x
−
[
v̂ + v̄

(
p̂
p̄

− T̂
T̄

)]
∂v̄

∂y
, (4.14c)

N̂v = 1
ρ̄

[
iωρ̂

′
v̂

′ − iα(ρ̂
′ū + ρ̄û′

)v̂
′ − (ρ̂′

v̄ + ρ̄v̂
′) dv̂

′

dy
− ρ̂

′û′ ∂v̄

∂x
− ρ̂

′
v̂

′ ∂v̄

∂y

]
. (4.14d)

Similarly, the budget equation for the temperature disturbance T̂ = ê/cv is written as

D̂T̂
Dt

+ v̄
dT̂
dy

= − 1
ρ̄cv

( pθ)L + DT + 1
cv

φ̂L + T-mgP + (n − 1)f N̂T (4.15)

(n = 1, 2), where D̂T̂/Dt, ( pθ)L, DT , φ̂L, φ̂T,L, T-mgP and N̂T stand for, respectively,
the total time rate of change of T̂ , the exchanges of internal energy due to (linearized)
pressure–dilatation and heat conduction, the (linearized) viscous dissipation contribution,
the (linearized) thermal power dissipation, the exchanges of internal energy disturbances
resulting from base flow/perturbation interaction driven by base flow temperature
gradients and the contribution resulting from first-order mode interactions, whose
expressions are given in the following:

D̂T̂
Dt

= i(αū − ω)T̂, (4.16a)

( pθ)L = −p̄
(

iαû + dv̂

dy

)
− p̂

(
∂ ū
∂x

+ ∂v̄

∂y

)
, (4.16b)

DT = γ

Pr
1
ρ̄

{[
μ̄

(
−α2 + i

dα

dx

)
+ iα

∂μ̄

∂x

]
T̂ +

[
μ̄

d2T̂

dy2 + ∂μ̄

∂y
dT̂
dy

]}
, (4.16c)
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φ̂L = ν̄

{
4
(

∂ ū
∂x

iαû + ∂v̄

∂y
dv̂

dy

)
+ 2

(
∂ ū
∂y

+ ∂v̄

∂x

)(
dû
dy

+ iαv̂

)
−4

3

(
∂ ū
∂x

+ ∂v̄

∂y

)(
iαû + dv̂

dy

)}
, (4.16d)

T-mgP = −
[

û + ū

(
p̂
p̄

− T̂
T̄

)]
∂T̄
∂x

−
[
v̂ + v̄

(
p̂
p̄

− T̂
T̄

)]
∂T̄
∂y

, (4.16e)

N̂T = 1
ρ̄

{
iωρ̂

′T̂ ′ − ia(ρ̂
′ū + ρ̄û′

)T̂
′ − (ρ̂

′
v̄ + ρ̄v̂

′
)
dT̂
dy

− ρ̂
′û′ ∂T̄

∂x
− ρ̂

′
v̂

′ ∂T̄
∂y

− 1
cv

p̂′
(

iαû′ + dv̂′

dy

)
+ μ̄

cv

[
−2α2(û′

)2 + 2
(

dv̂′

dy

)2

+
(

dû′

dy
+ iαv̂′

)2

−α2(ŵ′
)2 +

(
dŵ′

dy

)2

− 2
3

(
iαû′ + dv̂′

dy

)2
]

+
(

ū
∂T̄
∂x

+ v̄
∂T̄
∂y

)
ρ̂

′ T̂
′

T̄

}
. (4.16f )

To interpret and understand the physical mechanisms controlling the wall behaviour of
the perturbations we have also analysed in detail the budgets in the near-wall proximity (i.e.
in the limit y → 0). Taking into account the boundary conditions at the wall, namely û =
v̂ = ŵ = T̂ = 0 and ū = v̄ = ∂ p̄/∂y = 0, the normal-mode expression of the continuity
equation (3.13a) and equations (4.11), (4.13) and (4.15) reduce to

dv̂

dy
= iω

p̂
p̄

− ∂v̄

∂y
p̂
p̄

− (n − 1)f
p̂′

p̄
dv̂

′

dy
, (4.17a)

μ̄
d2û

dy2 = iαp̂ + 2
3

dv̂

dy
∂μ̄

∂x
− dû

dy
∂μ̄

∂y
, (4.17b)

4
3
μ̄

d2v̂

dy2 = dp̂
dy

− 4
3

dv̂

dy
∂μ̄

∂y
− dû

dy
∂μ̄

∂x
, (4.17c)

p̄
dv̂

dy
= cp

Pr
d
dy

(
μ̄

dT̂
dy

)
+
[

8
3
μ̄

∂v̄

∂y
dv̂

dy
+ 2μ̄

∂ ū
∂y

dû
dy

]
− p̂

∂v̄

∂y

− (n − 1)f
(

p̂′ dv̂
′

dy
− ρ̄φ̂

′
)

, (4.17d)

where φ̂
′ = ν̄[ 4

3(dv̂′/dy)2 + (dû′/dy)2 + (dŵ′/dy)2] and n = 1, 2.

4.2.1. The u budget
Figure 3 reports the amplitudes and phases of the various terms of the budgets of the slow
and fast û modes at synchronization location for adiabatic wall (M = 4.5) and cold wall
(M = 5.5). At M = 4.5, D̂û/Dt is primarily driven by the streamwise pressure gradient
and by the base flow/perturbation interaction term. The latter attains a maximum in the
subsonic layer (at y/δ ≈ 1/4), whereas D̂û/Dt is maximum in the very near-wall region
(y/δ ≈ 1/10). The figure also shows that the effect of u-mgP is stronger for cold wall
than for adiabatic wall. It is worth noting that this one-way coupling term reflects the
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D̂û/Dt

N̂u

iαp̂ /ρ̄
Du
u-mgP

v̄(dû/dy)

Figure 3. Budgets of the streamwise velocity perturbation of modes S and F for (a) adiabatic wall (M = 4.5)
and (b) cold wall (M = 5.5). Modulus in the first row and phase in the second row.

assumption that the base flow and the disturbances are weakly coupled. Namely, the
reciprocal effect leading to base flow distortion is neglected. At the wall, as predicted from
the asymptotic perturbation equation (4.17b), diffusion and streamwise pressure gradient
are in equilibrium (namely, diffusion of the perturbation streamwise velocity is dictated
by the streamwise pressure gradient).

For fast modes, D̂û/Dt, −iα(1/ρ̄)p̂ and u-mgP are approximately in phase within the
subsonic layer. For slow modes, D̂û/Dt and −iα(1/ρ̄)p̂ are nearly in phase opposition in
the vicinity of the critical layer (where ū = cr). At the critical layer D̂û/Dt exhibits a phase
jump. Note that no significant change in the behaviour is observed across synchronization
(data not reported).

4.2.2. The v budget
The budgets of the slow and fast v̂ modes are displayed in figure 4. The evolution of
the wall-normal perturbation velocity mode v̂ is essentially driven by the wall-normal
pressure gradient. Its total time rate of change D̂v̂/Dt and −(1/ρ̄)(dp̂/dy) superpose in
both amplitude and phase, for both slow and fast modes and for all Mach numbers. At
the wall, as in the case of the perturbation streamwise velocity, diffusion balances the
perturbation wall-normal pressure gradient.

The streamwise distributions of the amplitude and phase of the wall perturbation–
dilatation θ = dv̂/dy, the (negative) time rate of change of the pressure perturbation
iω(p̂/p̄) and the (negative) mean dilatation term −(p̂/p̄)θ̄ (θ̄ = ∂v̄/∂y) around
synchronization are reported in figure 5 for both the S and F modes. The figure shows
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Figure 4. Budgets of the wall-normal velocity perturbation of modes S and F for (a) adiabatic wall (M = 4.5)
and (b) cold wall (M = 5.5).

that, in the near-wall proximity, the effect of the mean dilatation is negligible and dv̂/dy ≈
iω(p̂/p̄); namely, the wall perturbation–dilatation is driven by the time rate of change of
pressure perturbation with a phase lag of approximately 90◦ independently of the Mach
number.

4.2.3. The T budget
For adiabatic wall, the budgets of the slow and fast T̂ modes (figure 6) show that, in the
subsonic layer, D̂T̂/Dt is primarily driven by the (linearized) pressure–dilatation ( pθ)L.
In the supersonic region, in addition to heat conduction effects (whose contribution is
most significant in the proximity of the critical layer), the exchanges of internal energy
associated with the perturbation/base flow interaction (T-mgP) also play a role. For cold
wall, in the subsonic layer D̂T̂/Dt is controlled by ( pθ)L and T-mgP. Dilatational effects
are then expected to be strongly influenced by energy exchanges induced by base flow
temperature gradients. It is also interesting to observe that near the critical layer the
initially stable mode S is also controlled by pressure–dilatation effects in addition to heat
conduction.

In the supersonic and subsonic (away from the wall) layers, D̂T̂/Dt and −( pθ)L are
approximately in phase at all Mach numbers. In agreement with (4.17d), figure 6 also
shows that for all cases, near the wall, the perturbation pressure–dilatation approximately
balances the heat conduction term (p̄(dv̂/dy) ≈ (cp/Pr)(d/dy)(μ̄(dT̂/dy))), since the
mean dilatation and the linearized viscous dissipation are approximately negligible.
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The above results confirm those of Chen et al. (2023a) who conducted a comparative
study on the dominant energy source terms showing that p̄θ̂ plays a dominant role near
the wall, whereas away from the wall mean temperature gradients play also a role in the
energy redistribution through the perturbation/base flow interaction term T-mgP.

4.2.4. Nonlinear interaction
We assume that the interaction of a mode q̂I1

(where I1 stands for either S or F) with a
mode q̂I2

(I2 standing for either F or S) produces a mode q̂I1
= εq̂′

I1
+ ε2q̂′′

Ĩ1/2
, where the

second-order mode is obtained from (4.10):

q̂′′
I1/2

= f L̂
−1

N̂
I1/I2
q , (4.18)

with N̂
I1/I2
q = N̂q(ρ̄, ū, . . . ; ρ̂

′
I1

û′
I2
, ρ̂

′
I1
v̂

′
I2
, . . .) representing the nonlinear contribution due

to cross-interactions.
For self-interactions, q̂I1

= εq̂′
I1

+ ε2q̂′′
I1

, where q̂′′
I1

= f L̂
−1

N̂
I1/I1
q . Here N̂

I1/I1
q stands for

the nonlinear contribution due to the interaction of mode I1 with itself (I1 standing for
either mode S or F), and it is computed as N̂

I1/I1
q = N̂q(ρ̄, ū, . . . ; ρ̂

′
I1

û′
I1
, ρ̂

′
I1
v̂

′
I1
, . . .).

The streamwise distributions of the amplitude of the nonlinear interaction contribution
(integrated in the wall-normal direction in the subsonic layer) are reported in figure 7 for
the streamwise and wall-normal velocity modes and for the temperature mode, considering
self-interactions (of the type S/S and F/F) and cross-interactions. For the latter, we consider
both the initially unstable/initially stable mode interactions (S/F for M = 4.5 and F/S for
M = 5.5) and the initially stable/initially unstable mode interactions (F/S for M = 4.5 and
S/F for M = 5.5). In the figure, the nonlinear terms N̂u, N̂v and N̂T are normalized by the
corresponding total time rate of change, namely

∫ ys
0 |N̂u|/|D̂û/Dt| dy,

∫ ys
0 |N̂v|/|D̂v̂/Dt| dy

and
∫ ys

0 |N̂T |/|D̂T̂/Dt| dy.
The contributions to second-order modes resulting from the interactions of first-order

modes are negligible for the û and v̂ modes, and rather small for T̂ modes. No significant
changes occur as the modes evolve in the streamwise direction when crossing the
synchronization location, and this for both self- and cross-interactions.

5. Governing equations for energy transfer analysis

Hypersonic boundary layer stability is characterized by the occurrence of fast and
slow modes, whose spatial evolution depends on the thermal surface state and on the
geometrical surface properties (Fedorov 2011; Fedorov & Tumin 2011). Temperature
disturbances also play an important role in hypersonic boundary layer stability because of
the energy exchanges between internal and kinetic disturbance energies (Zhu et al. 2018b).
To elucidate the underlying physical mechanisms, and in particular to understand whether
the mode spatial evolution is inviscid or viscous driven, we have analysed the transfer
mechanisms between disturbance kinetic energy and temperature disturbance energy. In
this process, the entropy (s), the disturbance kinetic energy (in the following, we use,
respectively, the symbols k′ and k′′ to refer to the perturbation kinetic energy of the first-
and second-order modes) and the temperature perturbation energy (similarly, we introduce
k′

T and k′′
T ) play an important role. To unravel the role in the amplification/suppression of

the effects of the wall thermal state, their evolutions are analysed in detail.
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Figure 7. Streamwise distribution of the amplitude of the nonlinear interaction term integrated in the
wall-normal direction at synchronization location: initially unstable (M = 4.5, S; M = 5.5; F)/initially stable
mode (M = 4.5, F; M = 5.5; S) interaction (M = 4.5, S/F; M = 5.5; F/S) and initially stable (M = 4.5, F; M =
5.5; S)/initially unstable mode (M = 4.5, S; M = 5.5; F) interaction (M = 4.5, F/S; M = 5.5; S/F). Note that in
the legend, N̂

∗
u, N̂

∗
v and N̂

∗
T stand for normalized quantities, namely

∫ ys
0 |N̂u|/|D̂û/Dt| dy,

∫ ys
0 |N̂v |/|D̂v̂/Dt| dy

and
∫ ys

0 |N̂T |/|D̂T̂/Dt| dy. (a) M = 4.5; (b) M = 5.5.

5.1. Entropy, kinetic energy and ‘temperature energy’ budgets
In the following, we briefly derive the instantaneous governing equations for the entropy,
the kinetic energy (k) and the ‘temperature energy’ variable (kT ). For the sake of the
analysis, we introduce the dimensionless entropy variable s̃ = s/cp defined as

s̃ = ln
(

T
T∞

)
− R

cp
ln
(

p
p∞

)
+ s̃∞. (5.1)

The transport equation for s̃ is obtained by using the Gibbs relation that gives

∂s
∂t

+ uj
∂s
∂xj

= − 1
ρcp

∂Js,j

∂xj︸ ︷︷ ︸
(i)

+ 1
cpT

φ︸ ︷︷ ︸
(ii)

+ 1
cp

φT︸ ︷︷ ︸
(iii)

, (5.2a)

with

Js,j = − 1
T

μ

Pr
∂T
∂xj

and ρφT = Js,j

(
− 1

T
∂T
∂xj

)
, (5.2b)
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where (̃) has been dropped. Term (i) is the entropy diffusion flux associated with heat
conduction, whereas terms (ii) and (iii) represent, respectively, the entropy production
associated with viscous dissipation and energy exchanges by heat conduction.

The budget of the kinetic energy (k = (u2 + v2 + w2)/2) is derived by taking the scalar
product of the momentum budget and the velocity vector, yielding

∂k
∂t

+ uj
∂k
∂xj

= −∂ujp
∂xj︸ ︷︷ ︸
(i)

+ p
ρ

∂uj

∂xj︸ ︷︷ ︸
(ii)

+ 1
ρ

∂uiσij

∂xj︸ ︷︷ ︸
(iii)

−φ︸︷︷︸
(iv)

. (5.3)

The various terms on the right-hand side of (5.3) represent the pressure work (i), the
pressure–dilatation (ii), the diffusion of kinetic energy (iii) and its dissipation due to
viscous effects (iv). Introducing the energy variable (in a mathematical sense) kT = T2/2,
its governing equation is derived by multiplying the internal energy budget (expressed in
terms of T , (2.1c)) by the temperature, thus obtaining

∂kT

∂t
+ uj

∂kT

∂xj
= − 1

ρcv

Tp
∂uj

∂xj︸ ︷︷ ︸
(i)

+ γ

ρPr
∂

∂xj

(
μ

∂kT

∂xj

)
︸ ︷︷ ︸

(ii)

+ 1
cv

Tφ︸ ︷︷ ︸
(iii)

−φkT︸ ︷︷ ︸
(iv)

, (5.4a)

with

φkT = γ

Pr
ν

(
∂T
∂xj

)2

. (5.4b)

The terms on the right-hand side of (5.4a) represent the contribution due to
pressure–dilatation (i), the exchange due to heat conduction (ii), the production associated
with viscous dissipation of kinetic energy (iii) and the effects of thermal power dissipation
associated with heat conduction (iv).

Inspection of (5.2a), (5.3) and (5.4a) shows the following:

(i) Pressure–dilatation (terms (ii) of (5.3) and (i) of (5.4a)) is a reversible inviscid
energy transfer mechanism and it has an increasingly important role as the Mach
number increases.

(ii) The action of viscous forces is an irreversible energy transfer mechanism (i.e.
associated with entropy production through term (iii) of (5.2a)) that has a tendency
to suppress mechanical energy (through term (iv) of (5.3)) and to amplify the
energy variable kT (term (iii) of (5.4a)), and its effect increases with the Mach
number (having an impact on the scales, and hence on the receptivity of the
boundary layer).

(iii) The energy exchange due to heat conduction is an irreversible process (term (ii) of
(5.2a)) whose action is toward suppressing kT (term (iv) of (5.4a)).

5.2. Governing equations for the entropy disturbances, the disturbance kinetic energy
and temperature disturbance energy

To shed some light on the physical mechanisms driving early-stage disturbance evolution
and the associated energy transfer mechanisms, we have analysed the budgets of the
entropy disturbances and of the disturbance kinetic and temperature disturbance energies
up to second order.
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5.2.1. Entropy disturbances
To derive the equations for the entropy disturbances, we first expand the thermodynamic
(5.1) and the constitutive (5.2) relations up to second order, thus obtaining

s̄ = ln
(

T̄
T∞

)
− R

cp
ln
(

p̄
p∞

)
+ s̄∞, J̄s,j = − 1

T̄
μ̄

Pr
∂T̄
∂xj

, (5.5a)

s′ = T ′

T̄
− R

cp

p′

p̄
, Js′,j = − μ̄

Pr
∂

∂xj

(
T ′

T̄

)
= J′

s,j, (5.5b)

s′′ = T ′′

T̄
− R

cp

p′′

p̄
− 1

2

[(
T ′

T̄

)2

− R
cp

(
p′

p̄

)2
]

, Js′′,j = J′′
s,j + μ̄

2Pr
∂

∂xj

(
T ′

T̄

)2

. (5.5c)

The governing equations for the entropy disturbances are then obtained introducing the
second-order decomposition in (5.2a) and using (5.5a)–(5.5c), thus giving

∂s(n)

∂t
+ ūj

∂s(n)

∂xj
= ν̄

Pr
∂2

∂x2
j

(
T(n)

T̄

)
+ 1

Prρ̄
∂

∂xj

(
T(n)

T̄

)
∂μ̄

∂xj

+ 1
cpT̄

φ
(n)
L + 1

PrT̄
φ

(n)
T,L − 1

ρ̄
(ρ(n)ūj + ρ̄u(n)

j )
∂ s̄
∂xj

+ (n − 1)f (N(n)
B,s + N(n)

S,s ), (5.6)

where n = 1, 2, and

φ
(n)
T,L = 2ν̄

(
1
T̄

∂T̄
∂xj

)
∂

∂xj

(
T(n)

T̄

)
(5.7)

is the linearized thermal power dissipation (associated with heat conduction). The terms
N(n)

B,s and N(n)
S,s account for the nonlinear contributions associated with lower-order-mode

interactions. For n = 1, N(1)
B,s = 0 and N(1)

S,s = 0; for n = 2,

N(2)
B,s = −ρ′

ρ̄

∂s′

∂t
− 1

ρ̄
(ρ′ūj + ρ̄u′

j)
∂s′

∂xj
− ρ′

ρ̄
u′

j
∂ s̄
∂xj

, (5.8a)

N(2)
S,s = 1

cpT̄

[
φ′ − T ′

T̄
φ′

L + 1
2

(
T ′

T̄

)2

φ̄

]
− 1

2Pr
∂

∂xj

[
μ̄

∂

∂xj

(
T ′

T̄

)2
]

, (5.8b)

with φ̄ = ν̄[2S̄ijS̄ij − 2
3 S̄��S̄kk] the base flow dissipation.

Dropping superscript (n) (unless confusion arises) and introducing the normal-mode
expansion in (5.6), gives

D̂ŝ
Dt

+ v̄
dŝ
dy

= Ds + φ̂s,u + φ̂s,T + s-mgP + (n − 1)f N̂s, (5.9)

where Ds and s-mgP represent, respectively, the normal-mode forms of the diffusion
and the base flow entropy gradient generation contributions, and φ̂s,u and φ̂s,T are the
normal-mode form of the entropy generation rates associated with viscous and heat
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conduction effects, with

Ds = ν̄

Pr

[(
α2 − i

dα

dx

)
T̂
T̄

+ 2iαT̂
∂

∂x

(
1
T̄

)
+ T̂

∂2

∂x2

(
1
T̄

)

+ 1
T̄

d2T̂

dy2 + 2
dT̂
dy

∂

∂y

(
1
T̄

)
+ T̂

∂2

∂y2

(
1
T̄

)]

+ 1
Pr

1
ρ̄

[
iα

T̂
T̄

+ T̂
∂

∂x

(
1
T̄

)]
1
T̄

∂μ̄

∂x
+ 1

Pr
1
ρ̄

[
1
T̄

dT̂
dy

+ T̂
∂

∂y

(
1
T̄

)]
∂μ̄

∂y
, (5.10a)

s-mgP = −
[

û + ū

(
p̂
p̄

− T̂
T̄

)]
∂ s̄
∂x

−
[
v̂ + v̄

(
p̂
p̄

− T̂
T̄

)]
∂ s̄
∂y

, (5.10b)

φ̂s,u = 1
cpT̄

φ̂L, (5.10c)

φ̂s,T = 1
T̄

φ̂T,L, (5.10d)

where

φ̂T,L = 2
ν̄

Pr

{[
1
T̄

∂T̄
∂x

1
T̄

iαT̂ + T̂
∂

∂x

(
1
T̄

)]
+
[

1
T̄

∂T̄
∂y

1
T̄

dT̂
dy

+ T̂
∂

∂y

(
1
T̄

)]}
(5.11)

and φ̂L is defined in (4.16d). Terms N̂B,s and N̂S,s are the normal-mode forms of the mode
interaction terms:

N̂B,s = iω
ρ̂

′

ρ̄
ŝ′ − iα

1
ρ̄

(ρ̂
′ū + ρ̄û′

)ŝ′ − 1
ρ̄

(ρ̂
′
v̄ + ρ̄v̂

′
)
dŝ′

dy
− ρ̂

′

ρ̄
û′ ∂ s̄

∂x
− ρ̂

′

ρ̄
v̂

′ ∂ s̄
∂y

, (5.12a)

N̂S,s = 1
cpT̄

⎡⎣φ̂
′ − T̂

′

T̄
φ̂

′
L + 1

2

(
T̂

′

T̄

)2

φ̄

⎤⎦− 1
2Pr

∂

∂xj

⎡⎣μ̄
∂

∂xj

(
T̂

′

T̄

)2
⎤⎦ . (5.12b)

Note that unless otherwise specified, here and in the following (̂·) stands for either the
first- or the second-order mode, respectively.

5.2.2. Disturbance kinetic energy
Let k̂′ and k̂′′ be the disturbance kinetic energy, respectively, of the first- and second-order
velocity disturbance mode. Defining k̂′ = R(û′

i)R(û′
i)/2 and k̂′′ = R(û′′

i )R(û′′
i )/2, R(·)

denoting the real part, the governing equations for the disturbance kinetic energies are
readily obtained by multiplying the real part of the nth-order normal-mode form of (3.13b)
by the real part of the nth-order velocity disturbance mode R(û(n)

i ). Dropping superscript
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(n), one has

R(ûi)R

[
∂ ûi

∂t
+ ūj

∂ ûi

∂xj
+ 1

ρ̄

∂ p̂
∂xi

− 1
ρ̄

∂σ̂ ij

∂xj
+ 1

ρ̄
(ρ̂ūj + ρ̄ûj)

∂ ūi

∂xj

]
= (n − 1)R(ûi)R( f N̂ui).

(5.13)
The governing equation for k̂ (k̂ standing for either k̂

′
or k̂

′′
) is then written as

D̂k̂
Dt

+ v̄
dk̂
dy

= − 1
ρ̄

ΠW + 1
ρ̄

Πθ + Dk − φ + Pk + (n − 1)N̂k, (5.14)

where ΠW , Πθ , Dk, φ and Pk are, respectively, the disturbance pressure work, the
pressure–dilatation, the diffusion of disturbance kinetic energy and its dissipation due to
viscous effects and the production resulting from base flow/mode interaction driven by
mean velocity gradients:

ΠW = ∂

∂xi
[R(p̂)R(ûi)], (5.15a)

Πθ = R(p̂)
∂

∂xi
[R(ûi)], (5.15b)

Dk = 1
ρ̄

∂

∂xi
[R(ûi)R(σ̂ ij)], (5.15c)

φ = 1
ρ̄
R(Ŝij)R(σ̂ ij), (5.15d)

Pk = − 1
ρ̄

{R(ûi)[R(ρ̂)ūj + ρ̄R(ûj)]}∂ ūi

∂xj
. (5.15e)

The term N̂k is the contribution to the higher-order disturbance kinetic energy resulting
from first-order mode interactions, defined as

N̂k = R(ûi)R( f N̂ui), (5.16)

with

N̂ui = 1
ρ̄

[
iωρ̂

′û′
i − iα(ρ̂

′ū + ρ̄û′
)û′

i − (ρ̂
′
v̄ + ρ̄v̂

′
)
dû′

i
dy

− ρ̂
′û′ ∂ui

∂x
− ρ̂

′
v̂

′ ∂ui

∂y

]
. (5.17)

5.2.3. Temperature disturbance energy
Let k̂′

T and k̂′′
T be the temperature disturbance energy, respectively, of the first- and

second-order temperature disturbance mode. Defining k̂′
T = R(T̂ ′)R(T̂ ′)/2 and k̂′′

T =
R(T̂ ′′)R(T̂ ′′)/2, the governing equations for the temperature disturbance energies are
readily obtained by multiplying the real part of the nth-order normal-mode form of

(3.13c) by the real part of the nth-order temperature disturbance mode R(T̂
(n)

). Dropping

1000 A56-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

91
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.912


F. Grasso and X. Gloerfelt

superscript (n), one has

R(T̂)R

{
∂T̂
∂t

+ ūj
∂T̂
∂xj

+ 1
ρ̄cv

[
p̂
∂ ūi

∂xi
+ p̄

∂ ûi

∂xi

]
− γ

Prρ̄
∂

∂xj

[
μ̄

∂T̂
∂xj

]}

+ R(T̂)R

{
− 1

cv

φ̂L + 1
ρ̄

[
ρ̂ūj + ρ̄ûj

] ∂T̄
∂xj

}
= (n − 1)R(T̂)R( f N̂T). (5.18)

The governing equation for k̂T (k̂T standing for either k̂′
T or k̂′′

T ) is then written as

D̂k̂T

Dt
+ v̄

dk̂T

dy
= − 1

ρ̄
Πθ,T + DkT + φu − φkT + PkT + (n − 1)N̂kT , (5.19)

where Πθ,T , DkT , φu, φkT and PkT are, respectively, the (normal-mode form of the)
temperature disturbance energy transfer associated with pressure–dilatation, the exchange
of temperature disturbance energy due to heat conduction, the production due to viscous
effects, the thermal power temperature disturbance energy loss and the production
resulting from base flow/mode interaction driven by mean temperature gradients:

Πθ,T = 1
cv

R(T̂)R

(
p̂
∂ ūi

∂xi
+ p̄

∂ ûi

∂xi

)
, (5.20a)

DkT = γ

Pr
1
ρ̄

∂

∂xj

[
R(T̂)μ̄R

(
∂T̂
∂xj

)]
, (5.20b)

φu = 1
cv

R(T̂)R(φ̂L), (5.20c)

φkT = γ

Pr
ν̄
∂R(T̂)

∂xj

∂R(T̂)

∂xj
, (5.20d)

PkT = − 1
cvρ̄

R(T̂)[R(ρ̂ūj + ρ̄ûj)]
∂T̄i

∂xj
. (5.20e)

The term N̂kT is the contribution to the higher-order temperature disturbance energy
resulting from first-order mode interactions, defined as

N̂kT = R(T̂)R( f N̂T), (5.21)

with

N̂T = 1
ρ̄cv

[
iωρ̂

′T̂ ′ − iα(ρ̂
′ū + ρ̄û′

)T̂ ′ − (ρ̂
′
v̄ + ρ̄v̂

′
)
dT̂ ′

dy
− ρ̂

′û′ ∂T̄
∂x

− ρ̂
′
v̂

′ ∂T̄
∂y

]

− 1
ρ̄cv

p̂′
(

iαû′ + dv̂′

dy

)
+ 1

cv

φ̂
′
. (5.22a)

Unless confusion arises, in the following R(·) is omitted for ease of reading. Equations
(5.14) and (5.19) show that at higher order, the disturbance kinetic and temperature
disturbance energies are driven not only by inviscid mechanisms associated with
dilatational effects, base flow/disturbance interaction and the combined actions of viscous
and heat conduction effects (as for the lower-order case), but also by velocity, pressure
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and temperature mode interactions. The equations show that disturbance kinetic energy is
drained by the action of viscous dissipation φ, whereas temperature disturbance energy is
produced by the action of linearized viscous dissipation (term T̂φ̂L/cv of (5.20c)) and is
dissipated by heat conduction effects (term φkT ).

5.2.4. Near-wall disturbance entropy and perturbation energy behaviour
In the near-wall vicinity, the entropy, the perturbation kinetic energy and the temperature
perturbation energy equations (5.6), (5.14) and (5.19) reduce to

−iωŝ = 1
Pr

1
ρ̄

∂

∂y

[
μ̄

d
dy

(
T̂
T̄

)]
+ 1

cpT̄
φ̂L + 1

T̄
φ̂T,L, (5.23a)

∂

∂y

(
μ̄

dk̂
dy

)
= ρ̄φ, (5.23b)

γ

Pr
∂

∂y

(
μ̄

dk̂T

dy

)
= ρ̄φkT , (5.23c)

where

φ̂L = 2ν̄

[
4
3

∂v̄

∂y
R

(
dv̂

∂y

)
+ ∂ ū

∂y
R

(
dû
∂y

)]
,

φ̂T,L = 2
ν̄

Pr

[
1
T̄

∂T̄
∂y

1
T̄
R

(
dT̂
∂y

)]
,

φ = ν̄

[
R

(
dû
∂y

)
R

(
dû
∂y

)
+ 4

3
R

(
dv̂

∂y

)
R

(
dv̂

∂y

)]
,

φkT = γ

Pr
ν̄R

(
dT̂
∂y

)
R

(
dT̂
∂y

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.24)

Equations (5.23a)–(5.23c) show that at the wall

(i) there is no direct effect of mode interactions on both k and kT ;
(ii) dissipation and diffusive transport of perturbation kinetic energy are in

equilibrium; and
(iii) thermal power dissipation and transport associated with heat conduction of

temperature perturbation energy are in equilibrium.

6. Energy analysis

6.1. Perturbation energy analysis
The discussion being centred on the understanding of the underlying energy transfer
mechanisms, we scrutinize the contributions associated with the pressure–dilatation and
the dissipation due to viscous and heat conduction effects on the perturbation kinetic
energy and the temperature perturbation energy. In addition, to ascertain the role of the
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reversible versus the irreversible mechanisms we have also analysed in detail these effects
on the entropy perturbation. For clarity, the terms that have been scrutinized are

in the budget of s : φs,u = 1
cpT̄

T̂φL, φs,T = 1
PrT̄

φ̂T,L; (6.1a)

in the budget of k̂ : p̂θ̂ , −φS2, −φθ2; (6.1b)

in the budget of k̂T : − 1
cv

T̂( pθ)L, φu = 1
cv

T̂φL, −φkT , (6.1c)

with ρ̄φS2 = 2μ̄R(Ŝij)R(Ŝij), ρ̄φθ2 = −2
3
μ̄R(θ̂ )R(θ̂ ). (6.1d)

Observe that the linearized thermal power dissipation φ̂T,L (equation (5.11)) can in
principle attain either non-negative or non-positive values, and, consequently, entropy
perturbation can either increase or decrease due to (linearized) heat conduction. Similarly,
entropy perturbation can either increase or decrease by the action of the linearized
viscous dissipation, since φ̂L (equation (4.16d)) can in principle be either non-negative
or non-positive. As also proposed in Zhu et al. (2020, 2021), the dissipation of mechanical
energy is expressed as the sum of two terms (φ = φS2 + φθ2), where φS2 accounts for
the deformation work associated with the deformation tensor and φθ2 represents the
contribution due to dilatational effects (equation (6.1d)). Observe that φS2 ≥ 0 (i.e. k is
dissipated due to the action of deformation work), whereas φθ2 ≤ 0 (i.e. k is produced due
to dilatational viscous dissipation effects).

The budgets of the slow and fast entropy perturbation modes are reported in figure 8.
The figure shows that the primary physical mechanisms driving the entropy perturbation
evolution are its diffusion (associated with heat conduction) and the base flow entropy
gradient generation (s-mgP). The (linearized) viscous ((1/cpT̄)φ̂L) and thermal power
((1/T̄)φ̂T,L) dissipation contributions (in the discussion that follows their sum is also
referred to as the entropy generation rate) are negligible except in very close proximity
to the wall (but still small), where diffusion dominates. Across the critical layer, entropy
perturbation is primarily controlled by mean base flow entropy gradient production, by
transverse convection and diffusion and, to a lesser extent, by viscous dissipation (the
latter contribution being somewhat more significant for the fast mode). Across the critical
layer, diffusion plays a significant role in the slow (fast) mode for adiabatic (cold) wall.

The streamwise distributions of the generation rates integrated separately over the
subsonic sublayer (in the range [0, ys]; this region is hereafter simply referred to as the
subsonic region, Sub) and over the supersonic portion of the boundary layer above the
sonic line (in the range [ys, δ], δ being the local boundary layer height; this region is
hereafter simply referred to as the supersonic region, Sup) are reported in figure 9. The
contribution of term s-mgP (results not reported in the figure for clarity) is dominant,
further confirming that dissipative effects are rather negligible. In the supersonic region
(for both modes S and F), the generation rates are not in phase, whereas they are in phase
in the subsonic portion of the boundary layer. In the subsonic region, for adiabatic wall,
the contribution resulting from the effects due to viscous dissipation is more significant
than that due to thermal power dissipation. The opposite holds true for cold wall.

In conclusion, entropy perturbations are driven primarily by an inviscid mechanism
associated with base flow entropy gradient production (as already pointed out in the
discussion of the entropy perturbation budgets at synchronization location). This indicates
that to a good approximation, in the subsonic layer, where acoustic waves are trapped
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Figure 8. Budgets of the entropy perturbation of modes S and F for (a) adiabatic wall (M = 4.5) and (b) cold
wall (M = 5.5).
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Figure 9. Streamwise distributions of the entropy generation rate of modes S and F integrated in the
wall-normal direction across the supersonic (Sup) and subsonic (Sub) regions. The rates are normalized by
maxx[

∫ y |∂s/∂t + ū∂s/∂x| dy]. (a) M = 4.5; (b) M = 5.5.

(Mack 1984; Fedorov 2011; Zhong & Wang 2012), the exchange of energy is a reversible
process associated with pressure–dilatation.

The wall-normal budgets of the perturbation kinetic energy and of the temperature
perturbation energy in the subsonic portion of the boundary layer at synchronization
location are reported, respectively, in figures 10 and 11. Figure 10 shows that the
perturbation kinetic energy is driven by the pressure work, pressure–dilation and base
flow/perturbation interaction mechanisms. The slow mode undergoes positive pressure
work near the wall, which changes sign moving away from the wall becoming negative
at about 1/3 of the subsonic thickness. The pressure–dilatation term is predominantly
negative draining perturbation kinetic energy. For mode F, the pressure work is negative
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Figure 10. Perturbation kinetic energy budget of modes S and F at synchronization location. (a) M = 4.5;
(b) M = 5.5.

near the wall and the pressure–dilatation is positive contributing to an increase of its
perturbation kinetic energy. As in fully turbulent boundary layers, and in agreement with
(5.23b), dissipation and diffusion of perturbation kinetic energy by viscous effects are in
equilibrium at the wall. The budget of the temperature perturbation energy (figure 11)
shows that thermal power dissipation and the exchanges associated with heat conduction
are significant in the proximity of the wall, the two being in equilibrium at the wall (as
predicted from (5.23c)).

To better understand the underlying inviscid energy transfer mechanisms, we have
scrutinized in more detail the dilatation and dissipation rates associated with viscous
and heat conduction effects. Figure 12 reports the streamwise distributions of p̂θ̂ and
−T̂( pθ)L/cv for the adiabatic and cold-wall cases (M = 4.5 and M = 5.5, respectively)
at y = 1/8ys and ycrit. As also found by Zhu et al. (2020, 2021), the pressure–dilatation
exhibits a nearly sinusoidal variation in the streamwise direction alternating between
positive and negative values, and changes sign also in the wall-normal direction. For M =
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Figure 11. Temperature perturbation energy budget of modes S and F at synchronization location.
(a) M = 4.5; (b) M = 5.5.

4.5 (and M = 6 and M = 6.5 cases, not reported) the slow mode (which is the initially
unstable mode for these cases) experiences energy exchanges that grow in amplitude in
the streamwise direction, whereas the fast mode undergoes a decaying energy exchange
mechanism. The opposite holds true for M = 5.5, for which the fast mode is initially
unstable. The same features are observed for −T̂( pθ)L/cv .

The wall-normal distributions at synchronization location are reported in figure 13. To
second order, the slow mode experiences a local decrease of perturbation kinetic energy
in the subsonic near-wall region (i.e. p̂θ̂ < 0). On the contrary, the pressure–dilatation
contribution to the perturbation kinetic energy of mode F is positive (p̂θ̂ > 0).
Accordingly, for the slow mode, there is a transfer from mechanical to thermal perturbation
energy (pθ < 0 and −T̂( pθ)L > 0), whereas a reversed process is experienced by
the fast mode (p̂θ̂ > 0 and −T̂( pθ)L < 0). In the subsonic region p̂θ̂ and −T̂( pθ)L
are in phase opposition (perturbation kinetic energy is produced through p̂θ̂ at the
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expense of temperature perturbation energy through term −T̂( pθ)L and vice versa).
As a consequence, we conclude that when p̂θ̂ ≷ 0, −T̂p̄θ ≶ 0, and if p̂ and θ̂ are in phase
(not in phase), T̂ and θ̂ are also in phase (not in phase).
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It is interesting to observe that this bi-directionality is verified also to first order
(figure 14). In principle, this result is not to be expected. Indeed, if it is true for the kinetic
energy (u2

i /2) and the ‘energy variable’ (T2/2) of the flow, the same conclusion cannot
be reached a priori for the perturbation field at any order (i.e. when p̂θ̂ ≷ 0, −T̂( pθ)L
can take, in principle, any value). In figure 15 we report the wall-normal distributions
of ( pθ)L and p̄θ̂ up to second order. The figure shows that ( pθ)L ≈ p̄θ̂ (i.e. the base
flow dilatation is not significant in the establishment of the streamwise evolution of the
linearized pressure–dilatation term).

The observed change in sign of the pressure–dilatation indicates that a two-way
reversible energy transfer process is established, alternating between cooling and heating
in both the streamwise and wall-normal directions. The direction of this conversion process
is determined by the sign of the phase difference between the pressure and the dilatation
cos(ϕp − ϕθ), ϕp and ϕθ being the phase of p and θ , respectively (Zhu et al. 2020, 2021),
where

cos(ϕp − ϕθ) := ( pθ)

prmsθrms
with

{
p = p̄ + εR(p̂′) + ε2R(p̂′′)
θ = θ̄ + εR(θ̂

′
) + ε2R(θ̂

′′
).

(6.2)

Figure 16 shows the streamwise distribution of cos(ϕp − ϕθ) in the subsonic (at y =
ys/8) and supersonic (at y = ycrit) regions across synchronization for M = 4.5 and
M = 5.5. The wall-normal distributions at three different streamwise locations (before,
at and past synchronization) are displayed in figure 17. The figures show that in the
subsonic region the phase difference (ϕp − ϕθ ) varies periodically in the streamwise
direction assuming positive and negative values, and it is approximately constant in the
wall-normal direction. For M = 4.5, the initially unstable mode (mode S) experiences
mild heating/cooling/heating as it evolves in the near-wall layer and cooling moving away
from the wall. Similarly, for M = 5.5, the initially unstable mode (mode F) experiences
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cooling/heating/cooling in the near-wall region and undergoes cooling farther away from
the wall. It is also interesting to observe that at first order (ϕp − ϕθ ) does not vary with x
(figure 17), in agreement with the findings of Zhu et al. (2020).

The streamwise distributions of φS2 and φθ2 (generically referred to as dissipation rates
of the perturbation kinetic energy) and of T̂φL/cv and φkT (generically referred to as the
generation rates of the temperature perturbation energy) are reported in figure 18. The
dissipation and generation rates are normalized, respectively, by the local maxx |p̂θ̂ | and
maxx |T̂( pθ)L/cv|. The figure shows that the dilatational part of the deformation work
is smaller than that associated with the deformation tensor (that contributes to local
heating, even though negligible). In addition, thermal power dissipation is larger than the
linearized viscous dissipation of temperature perturbation energy. As previously observed
when discussing the entropy budget, the irreversible exchanges are much smaller than
the reversible ones (p̂θ̂ and −T̂( pθ)L/cv , not reported in the figure for clarity). It is also
interesting to observe that the irreversible energy exchange rates exhibit the same feature
as the reversible ones. Namely, the initially unstable modes (the slow and fast modes,
respectively, for M = 4.5 and M = 5.5) undergo an irreversible energy exchange process
that grows in amplitude in the streamwise direction, whereas the initially stable modes
undergo rapidly decaying energy exchanges.

The streamwise cumulative total perturbation kinetic energy (Ipθ ) and temperature
perturbation energy (I−T( pθ)L) exchanged by dilatation, respectively, in the subsonic
(superscript ‘sub’) and supersonic (superscript ‘sup’) regions are reported in figure 19,
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Figure 16. Streamwise distributions of cos(ϕp − ϕθ ) at y = ycrit (Sup) and y = ys/8 (Sub). Thin lines, first
order; thick lines, up to second order. (a) M = 4.5; (b) M = 5.5.

where

Isub
pθ =

∫ x ∫ ys

0
pθ dy dx, Isub

−T( pθ)L
=
∫ x ∫ ys

0
[−T( pθ)L] dy dx,

I
sup

pθ =
∫ x ∫ δ

ys

pθ dy dx, I
sup
−T( pθ)L

=
∫ x ∫ δ

ys

[−T( pθ)L] dy dx.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (6.3)

In the subsonic and supersonic, regions the terms are normalized by
∫ xend | ∫ ys

0 (·) dy| dx
and

∫ xend | ∫ δ

ys
(·) dy| dx, respectively. In both the subsonic and supersonic regions

across synchronization, the cumulative total perturbation kinetic energy of the initially
unstable modes (mode S for M = 4.5 and mode F for M = 5.5) exchanged by
pressure–dilatation is negative, whereas the cumulative temperature perturbation energy
is positive. Namely, unstable modes experience a reduction of kinetic energy while being
heated. The linearized pressure–dilatation being driven by the perturbation–dilatation
(( pθ)L ≈ p̄θ̂ ), pressure and temperature perturbations are in the same relation as the
perturbation–dilatation. For the initially stable modes, in the supersonic region an increase
of kinetic energy by dilatation effects is not accompanied by a reversible decrease of
temperature perturbation energy, and pressure and temperature perturbations are not in the
same relation as the perturbation–dilatation. In the subsonic region, as is the case of the
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M Mode Isub
pθ Isub

−T( pθ)L
p̂ and T̂ I

sup
pθ I

sup
−T( pθ)L

p̂ and T̂

4.5 S < 0 (p, θ not in phase) > 0 (T, θ in phase) I < 0 > 0 I
F < 0 > 0 I > 0 > 0 O

5.5 S > 0 < 0 I > 0 > 0 O
F < 0 (p, θ not in phase) > 0 (T, θ in phase) I < 0 > 0 I

6 S < 0 (p, θ not in phase) > 0 (T, θ in phase) I < 0 > 0 I
F < 0 > 0 I < 0 > 0 I

6.5 S < 0 (p, θ not in phase) > 0 (T, θ in phase) I < 0 > 0 I
F < 0 > 0 I > 0 > 0 O

Table 2. Cumulative total energy due to dilatational effects exchanged through self-interaction at
synchronization location in the subsonic and supersonic regions at various Mach numbers. Bold indicates
initially unstable mode. Here I means that p̂ and T̂ are in phase, whereas O means that p̂ and T̂ are not in phase.

initially unstable modes, they experience a reduction of kinetic energy while being heated.
Furthermore, the energy transfer process occurs in the early stages of the evolution and is
completed before synchronization location. Table 2 summarizes the results for all Mach
numbers and it shows that the energy exchanges exhibit the same features, independently
of the Mach number and of the wall thermal conditions.
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Figure 18. Streamwise distributions of the dissipation (φθ2 and φS2 ) and generation (T̂φL/cv and φKT ) rates
experienced by modes S and F at various wall-normal locations. At each y location, the dissipation and
generation rates are normalized, respectively, by maxx |p̂θ̂ | and maxx |T̂( pθ)L/cv |. Solid line, initially unstable
mode; dashed line, initially stable mode. (a) M = 4.5; (b) M = 5.5.

To further highlight the minor role of cross-interactions, we report in figure 20 the
streamwise distributions of the cumulative total perturbation kinetic energy (Ipθ ) and
temperature perturbation energy (I−T( pθ)L) exchanged by cross-interaction (S/F and F/S
as defined in § 4.2.4) through dilatation. The results show that the energy exchanges exhibit
the same features of self-interactions, independently of the Mach number and of the wall
thermal conditions.
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Figure 19. Streamwise distributions of the cumulative total perturbation kinetic energy (Ipθ ) and temperature
perturbation energy (I−T( pθ)L ) of modes S and F exchanged through dilatation in the subsonic (superscript
‘sub’) and supersonic (superscript ‘sup’) regions. In the subsonic and supersonic regions, the rates are
normalized, respectively, by

∫ xend | ∫ ys
0 (·) dy| dx and

∫ xend | ∫ δ

ys
(·) dy| dx. Solid line, initially unstable mode;

dashed line, initially stable mode. (a) M = 4.5; (b) M = 5.5.

7. Conclusions

In the present study we have carried out an analysis of the energy exchange mechanisms
driving the evolution of the leading perturbation modes at hypersonic Mach number for
both adiabatic and cold-wall thermal conditions. The analysis focusing on the early stages
of laminar-to-turbulent transition, we have developed a weakly nonlinear formulation of
the hypersonic boundary-layer stability following the work of Chu & Kovasznay (1958).

The selected conditions of the adiabatic wall cases are those of Ma & Zhong (2003a)
and Reed & Balakumar (1990) for M = 4.5 and M = 6, respectively, whereas for the
cold-wall cases they are those of Fedorov & Tumin (2011) at M = 5.5 and M = 6.5. Linear
stability theory shows that all selected cases exhibit synchronization of the slow (S) and
fast (F) modes, and are all inviscidly unstable. For the adiabatic cases and for the M = 6.5
cold-wall case, mode S is initially unstable, whereas mode F is the initially unstable one
at M = 5.5.
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Figure 20. Initially unstable/initially stable mode interactions. Streamwise distributions of the cumulative
total perturbation kinetic energy (Ipθ ) and temperature perturbation energy (I−T( pθ)L ) exchanged by
cross-interaction (S/F and F/S) through dilatation in the subsonic (superscript ‘sub’) and supersonic
(superscript ‘sup’) regions. In the subsonic and supersonic regions the rates are normalized, respectively,
by
∫ xend | ∫ ys

0 (·) dy| dx and
∫ xend | ∫ δ

ys
(·) dy| dx of the corresponding direct-interaction terms (S/S and F/F,

respectively). (a) M = 4.5, S/F; (b) M = 5.5, F/S; (c) M = 6, S/F; (d) M = 6.5, S/F.

A detailed scrutiny of the budgets of the various perturbation variables, including the
perturbation entropy, the perturbation kinetic energy and the temperature perturbation
energy, has led us to conclude that there is no dominant physical mechanism leading to
synchronization and that the nature of the energy transfer process is essentially inviscid.
Perturbation kinetic energy and temperature perturbation energy are reversibly exchanged
through perturbation–dilatational effects, the exchanges associated with those due to base
flow dilatation being negligible.

The energy transfer mechanism is driven by the initially unstable modes, and their
synchronization with the initially stable modes is not the result of any particular
mechanism that takes over. The subsonic layer is the region where the energy transfer
mechanism is primarily seeded as a consequence of the thermoacoustic trapping. In this
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region, the analysis shows that the pressure and temperature perturbations (at any order)
are in the same relation as the perturbation–dilatation (of the same order). As a result,
when p and θ are in phase, T and θ are also in phase and perturbation kinetic energy is
produced at the expense of temperature perturbation energy. The opposite is true when p
and θ are not in phase.

The direction of the conversion process associated with pθ is determined by the sign
of the phase difference between the pressure and the dilatation. The phase difference
(ϕp − ϕθ ) features a nearly sinusoidal variation in the streamwise direction alternating
between positive and negative values, exhibiting sign changes also in the wall-normal
direction in the subsonic region. This indicates that a two-way reversible energy transfer
process is established alternating between cooling and heating, in both the streamwise and
wall-normal directions. This behaviour is observed only when accounting for second-order
contributions, thus confirming the essential role of nonlinear effects in the phase change
of the pressure–dilatation.

In the subsonic layer, the thermal power dissipation due to heat conduction is strongly
affected by the wall thermal conditions, and is more significant for cold wall due to
reduction of the boundary-layer scales and the subsequent increase of both the mean
and perturbation temperature gradients. In the supersonic region, the large gradients that
establish at the critical layer height account for significant thermal power dissipation
independently of the wall thermal state.

In conclusion, the present study indicates that the spatial evolution of both slow and
fast modes is driven by the same dilatational mechanisms. The analysis of the amplitudes
of the nonlinear contributions for both self- and cross-interactions of first-order velocity
and temperature modes shows that no significant changes occur as the modes evolve in
the streamwise direction when crossing the synchronization location, and this for both
self- and cross-interactions. In addition, we also observe that the energy exchanges exhibit
the same features of self-interactions, independently of the Mach number and of the wall
thermal conditions. This result is consistent with PSE and DNS analyses that observe only
the unstable mode (hence, no cross-interaction). Another possibility to further investigate
the absence of FS synchronization at various Mach numbers and wall thermal conditions
might be to use an input/output methodology, where modes F and S could be prescribed
as inputs, and the output response could rely on DNS or nonlinear PSE solver, rather than
the linearized Navier–Stokes solver in Nichols & Candler (2019).

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2024.912.
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Appendix A. Governing equations for the base flow properties

A.1. Base flow equations
The governing equations for the base flow are derived assuming two-dimensional
(quasi-)non-parallel base flow, namely ū = ū(x, y), v̄ = v̄(x, y), w̄ = 0, ρ̄ = ρ̄(x, y), T̄ =
T̄(x, y), p̄ = p̄(x, y). In non-divergence form, the governing equations (2.1a)–(2.1c) for the
base flow variables (ρ̄, ū, v̄, p̄, T̄) reduce to

ū
∂ρ̄

∂x
+ v̄

∂ρ̄

∂y
+ ρ̄

∂ ū
∂x

+ ρ̄
∂v̄

∂y
= 0, (A1)

ū
∂ ū
∂x

+ v̄
∂ ū
∂y

= − 1
ρ̄

∂ p̄
∂x

+ Dū, (A2)

ū
∂v̄

∂x
+ v̄

∂v̄

∂y
= − 1

ρ̄

∂ p̄
∂y

+ Dv̄, (A3)

ū
∂T̄
∂x

+ v̄
∂T̄
∂y

= − p̄
ρ̄cv

(
∂ ū
∂x

+ ∂v̄

∂y

)
+ DT̄ + φT̄ , (A4)

p̄ = ρ̄RT̄, (A5)

with

Dū = ν̄
∂

∂x

[
2
∂ ū
∂x

− 2
3

(
∂ ū
∂x

+ ∂v̄

∂y

)]
+ ν̄

∂

∂y

(
∂ ū
∂y

+ ∂v̄

∂x

)
+ 1

ρ̄

[
2
∂ ū
∂x

− 2
3

(
∂ ū
∂x

+ ∂v̄

∂y

)]
∂μ̄

∂x
+ 1

ρ̄

(
∂ ū
∂y

+ ∂v̄

∂x

)
∂μ̄

∂y
, (A6)

Dv̄ = ν̄
∂

∂x

(
∂ ū
∂y

+ ∂v̄

∂x

)
+ ν̄

∂

∂y

[
2
∂v̄

∂y
− 2

3

(
∂ ū
∂x

+ ∂v̄

∂y

)]
+ 1

ρ̄

(
∂ ū
∂y

+ ∂v̄

∂x

)
∂μ̄

∂x
+ 1

ρ̄

[
2
∂v̄

∂y
− 2

3

(
∂ ū
∂x

+ ∂v̄

∂y

)]
∂μ̄

∂y
, (A7)

DT̄ = γ

Pr
ν

(
∂2T̄
∂2x

+ ∂2T̄
∂2y

)
+ γ

Pr

(
∂T̄
∂x

∂μ̄

∂x
+ ∂T̄

∂y
∂μ̄

∂y

)
,

φT̄ = 1
cv

φ̄,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (A8)

with φ̄ the viscous dissipation of base flow kinetic energy (k̄ = (ū2 + ū)/2):

φ̄ = ν̄

[
2
(

∂ ū
∂x

)2

+ 2
(

∂v̄

∂y

)2

+
(

∂ ū
∂y

+ ∂v̄

∂x

)2

− 2
3

(
∂ ū
∂x

+ ∂v̄

∂y

)2
]

, (A9)

and Dū, Dv̄ and DT̄ and φ̄ represent, respectively, the diffusion of the streamwise
and wall-normal velocities and the exchange of the base flow internal energy by heat
conduction.

1000 A56-41

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

91
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.912


F. Grasso and X. Gloerfelt

The governing equations for the base flow entropy and energy variables are given as
follows:

ū
∂ s̄
∂x

+ v̄
∂ s̄
∂y

= Ds̄ + φs̄,ū + φs̄,T̄ , (A10)

ū
∂ k̄
∂x

+ v̄
∂ k̄
∂y

= − 1
ρ̄

ΠW̄ + 1
ρ̄

Πθ̄ + Dk̄ − φ̄, (A11)

ū
∂ k̄T

∂x
+ v̄

∂ k̄T

∂y
= − 1

ρ̄
Πθ̄,T̄ + Dk̄T

+ φ̄u − φ̄kT , (A12)

where k̄T = T̄2
/2 is the base flow ‘temperature’ energy variable.

The terms Ds̄, φs̄,ū and φs̄,T̄ appearing in (A10) stand for, respectively, the diffusion of
base flow entropy associated with heat conduction, and the generation rates due to viscous
and thermal power dissipation:

Ds̄ = ν

Pr

[
∂

∂x

(
1
T̄

∂T̄
∂x

)
+ ∂

∂y

(
1
T̄

∂T̄
∂y

)]
+ 1

Pr
1
ρ̄

(
∂T̄
∂x

∂μ̄

∂x
+ ∂T̄

∂y
∂μ̄

∂y

)
,

φs̄,ū = 1
cp

1
T̄

φ̄,

φs̄,T̄ = ν

Pr

[(
1
T̄

∂T̄
∂x

)2

+
(

1
T̄

∂T̄
∂y

)2]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A13)

The terms ΠW̄ , Πθ̄ , Dk̄ and φ̄ of (A11) represent, respectively, the pressure work, the
pressure–dilatation, the diffusion of the base flow kinetic energy and its dissipation due to
viscous effects:

ΠW̄ =
(

∂ ūp̄
∂x

+ ∂v̄p̄
∂y

)
, (A14)

Πθ̄ = p̄
(

∂ ū
∂x

+ ∂v̄

∂y

)
, (A15)

Dk̄ = ν̄
∂

∂x
ū
[

2
∂ ū
∂x

− 2
3

(
∂ ū
∂x

+ ∂v̄

∂y

)]
+ ν̄

∂

∂y

[
ū
(

∂ ū
∂y

+ ∂v̄

∂x

)]
+ 1

ρ̄
ū
[

2
∂ ū
∂x

− 2
3

(
∂ ū
∂x

+ ∂v̄

∂y

)]
∂μ̄

∂x
+ 1

ρ̄
ū
(

∂ ū
∂y

+ ∂v̄

∂x

)
∂μ̄

∂y

+ ν̄
∂

∂x

[
v̄

(
∂ ū
∂y

+ ∂v̄

∂x

)]
+ 1

ρ̄
v̄

(
∂ ū
∂y

+ ∂v̄

∂x

)
∂μ̄

∂x
+ ν̄

∂

∂y
v̄

[
2
∂v̄

∂y
− 2

3

(
∂ ū
∂x

+ ∂v̄

∂y

)]
+ 1

ρ̄
v̄

[
2
∂v̄

∂y
− 2

3

(
∂ ū
∂x

+ ∂v̄

∂y

)]
∂μ̄

∂y
. (A16)

Terms Πθ̄,T̄ , Dk̄T
, φ̄u = T̄φ̄ and φ̄kT stand for, respectively, the base flow

temperature/pressure–dilatation, the diffusion of the base flow energy variable and its
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production due to the action of the base flow viscous forces and the thermal power
dissipation associated with base flow heat conduction.:

Πθ̄,T̄ = T̄p̄
(

∂ ū
∂x

+ ∂v̄

∂y

)
, (A17)

Dk̄T
= γ

Pr
ν

(
∂2k̄T

∂x2 + ∂2k̄T

∂y2

)
+ γ

Pr
1
ρ̄

(
∂ k̄T

∂x
∂μ̄

∂x
+ ∂ k̄T

∂y
∂μ̄

∂y

)
, (A18)

φ̄u = γ

cv

T̄φ̄, (A19)

φ̄kT = 1
cv

ν̄

[(
∂T̄
∂x

)2

+
(

∂T̄
∂y

)2]
. (A20)

A.2. Base flow analysis
The solution of the base flow equations (A1)–(A4) is obtained through the similarity
solution of a zero-pressure-gradient compressible laminar boundary layer and introducing
a generalized coordinate transformation based on the Lees–Dorodnitsyn similarity
variables (Anderson 2002), with the streamwise derivatives appearing in the equations
being evaluated by finite differencing. In figure 21 (only the M = 4.5 adiabatic wall case
is reported), we briefly discuss the budgets of the base flow streamwise velocity component
(ū), entropy (s̄), kinetic energy (k̄) and ‘temperature’ energy (k̄T ). In the critical-layer
region, the streamwise convection of ū (ū(∂ ū/∂x)) is affected by diffusion and convection
normal to the wall (v̄(∂ ū/∂y)), which depend strongly on the large gradients that establish
in this region. Base flow entropy is produced primarily by thermal power due to heat
conduction that is then diffused towards the wall balancing entropy production by viscous
dissipation. Similarly, in the region around the critical layer, base flow kinetic energy
is produced and it diffuses towards the wall balancing the energy removed by viscous
dissipation, whereas k̄T is removed by thermal power dissipation and diffused by heat
conduction towards the wall to balance the production due to viscous dissipation.

Appendix B. Linear stability matrices

Dropping the superscripts ()′ and ()′′ and decomposing the disturbances in normal modes,
the stability equations are cast in the following compact matrix form:

C
d2q̂

dy2 + B
dq̂
dy

+ Aq̂ = (n − 1)f N̂, (B1)

where A = A(α, ω, M, Re; ρ̄, ūi, p̄, T̄), B = B(α, ω, M, Re; ρ̄, ūi, p̄, T̄) and C = C(α, ω,

M, Re; ρ̄, ūi, p̄, T̄) are (5 × 5) matrices (we recall that N̂ is the normal-mode
representation of the first-order interaction contribution to the second-order modes). The
non-zero coefficients of A, B and C are

A1,1 =
(

iρ̄α + ∂ρ̄

∂x

)
, (B2a)

A1,2 = ∂ρ̄

∂y
, (B2b)
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Figure 21. Base flow budgets at M = 4.5. The symbols on the vertical axes identify the locations of the sonic
and critical layer heights for the slow and fast modes: square, generalized inflection point; diamond, critical
layer height; circle, sonic layer height.

A1,4 =
{[

i (αū − ω) +
(

∂ ū
∂x

+ ∂v̄

∂y

)]
ρ̄

p̄
+ ū

(
1
p̄

∂ρ̄

∂x
− ρ̄

p̄2
∂ p̄
∂x

)
+ v̄

(
1
p̄

∂ρ̄

∂y
− ρ̄

p̄2
∂ p̄
∂y

)}
,

(B2c)

A1,5 = −
{[

i (αū − ω) +
(

∂ ū
∂x

+ ∂v̄

∂y

)]
ρ̄

T̄
+ ū

(
1
T̄

∂ρ̄

∂x
− ρ̄

T̄2
∂T̄
∂x

)
+ v̄

(
1
T̄

∂ρ̄

∂y
− ρ̄

T̄2
∂T̄
∂y

)}
, (B2d)

A2,1 =
{[

i (αū − ω) + ∂ ū
∂x

]
ρ̄ + 4

3
μ̄

(
α2 − i

dα

dx

)
− 4

3
iα

∂μ̄

∂x

}
, (B2e)

A2,2 =
(

ρ̄
∂ ū
∂y

− iα
∂μ̄

∂y

)
, (B2f )

A2,4 =
[(

ū
∂ ū
∂x

+ v̄
∂ ū
∂y

)
ρ̄

p̄
+ iα

]
, (B2g)

A2,5 = −
(

ū
∂ ū
∂x

+ v̄
∂ ū
∂y

)
ρ̄

T̄
, (B2h)
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A3,1 =
(

ρ̄
∂v̄

∂x
+ 2

3
iα

∂μ̄

∂y

)
, (B2i)

A3,2 =
[

i (αū − ω) + ∂v̄

∂y

]
ρ̄ + μ̄

(
α2 − i

dα

dx

)
− iα

∂μ̄

∂x
, (B2j)

A3,4 =
[(

ū
∂v̄

∂x
+ v̄

∂v̄

∂y

)
ρ̄

p̄

]
, (B2k)

A3,5 = −
(

ū
∂v̄

∂x
+ v̄

∂v̄

∂y

)
ρ̄

T̄
, (B2l)

A4,3 =
{

i (αū − ω) ρ̄ +
[
μ̄

(
α2 − i

dα

dx

)
− iα

∂μ̄

∂x

]}
, (B2m)

A5,1 =
{
ρ̄

∂T̄
∂x

+ iα
p̄
cv

− iα
μ̄

cv

[
4
∂ ū
∂x

− 4
3

(
∂ ū
∂x

+ ∂v̄

∂y

)]}
, (B2n)

A5,2 =
[
ρ̄

∂T̄
∂y

− iα
μ̄

cv

2
(

∂ ū
∂y

+ ∂v̄

∂x

)]
, (B2o)

A5,4 =
[(

ū
∂T̄
∂x

+ v̄
∂T̄
∂y

)
ρ̄

p̄
+ 1

cv

(
∂ ū
∂x

+ ∂v̄

∂y

)]
, (B2p)

A5,5 =
{

i (αū − ω) ρ̄ −
(

ū
∂T̄
∂x

+ v̄
∂T̄
∂y

)
ρ̄

p̄
+ γ

Pr
μ̄

(
α2 − i

dα

dx

)
− iα

γ

Pr
∂μ̄

∂x

}
; (B2q)

B1,2 = ρ̄, (B3a)

B1,4 = v̄
ρ̄

p̄
, (B3b)

B1,5 = −v̄
ρ̄

T̄
, B2,1 =

(
ρ̄v̄ − ∂μ̄

∂y

)
, (B3c)

B2,2 =
(

−iα
1
3
μ̄ + 2

3
∂μ̄

∂x

)
, (B3d)

B3,1 =
(

−i
1
3
αμ̄ − ∂μ̄

∂x

)
, (B3e)

B3,2 =
(

ρ̄v̄ − 4
3

∂μ̄

∂y

)
, (B3f )

B3,4 = 1, (B3g)

B4,3 =
(

ρ̄v̄ − ∂μ̄

∂y

)
, (B3h)

B5,1 = − μ̄

cv

2
(

∂ ū
∂y

+ ∂v̄

∂x

)
, (B3i)

B5,2 =
{

p̄
cv

− μ̄

cv

[
4
∂v̄

∂y
− 4

3

(
∂ ū
∂x

+ ∂v̄

∂y

)]}
, (B3j)

B5,5 =
(

ρ̄v̄ − γ

Pr
∂μ̄

∂y

)
; (B3k)
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C2,1 = −μ̄, (B4a)

C3,2 = −4
3
μ̄, (B4b)

C4,3 = −μ̄, (B4c)

C5,5 = − γ

Pr
μ̄. (B4d)
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