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We study optimal bandwidth selection in nonparametric cointegrating regression
where the regressor is a stochastic trend process driven by short or long memory
innovations. Unlike stationary regression, the optimal bandwidth is found to be a
random sequence which depends on the sojourn time of the process. All random
sequences hn that lie within a wide band of rates as the sample size n → ∞ have
the property that local level and local linear kernel estimates are asymptotically
normal, which enables inference and conveniently corresponds to limit theory in
the stationary regression case. This finding reinforces the distinctive flexibility of
data-based nonparametric regression procedures for nonstationary nonparametric
regression. The present results are obtained under exogenous regressor conditions,
which are restrictive but which enable flexible data-based methods of practical
implementation in nonparametric predictive regressions within that environment.

1. INTRODUCTION

Extensions of cointegrating regression techniques to include nonlinear response
functions have become available through a substantial body of recent work on
both parametric and nonparametric nonstationary kernel regression. Much of this
literature makes use of certain foundational results concerning the asymptotic
behavior of various nonlinear functions of integrated processes and standardized
forms of integrated processes. Early papers in this literature by Park and Phillips
(1999, 2000, 2001), de Jong (2004), and Pötscher (2004) provided a groundwork of
methods and results that have assisted the development of this research. Pötscher’s
work introduced a boundedness assumption on the density of a standardized form
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of an integrated process that has proved particularly useful in establishing limit
theory for parametric and nonparametric estimators of nonlinear functions of
nonstationary processes. Many authors have taken advantage of this approach in
advancing research in the field.

Following this research, it is now known that standard kernel methods can be
employed to estimate and conduct valid nonparametric cointegrating estimation
and inference with unit root, local unit root, and long memory (LM) regressors,
as well as endogenous regressors and weakly dependent structural equation errors
(see Wang and Phillips, 2009a, 2009b, 2011, 2016; hereafter WP). Remarkably,
nonparametric t-statistics enjoy standard Gaussian limit behavior in these envi-
ronments precisely as they do in the conventional stationary exogenous regressor
setting. It is further known that nonparametric kernel estimators are uniformly
consistent over very wide regions with nonstationary data (Chan and Wang, 2014,
2015; Duffy, 2017a), a property that is particularly useful given the typical random
wandering nature of such data.

These findings have brought estimation and inference in bivariate nonparametric
cointegrating regression to a level of generality comparable to linear cointegrating
regression but with the unexpected advantages of (i) not requiring endogeneity or
serial correlation bias corrections, (ii) none of the difficulties of the ill-posedness
that arise in the stationary nonparametric context with endogenous regressors, and
(iii) simple Gaussian inferential methods that facilitate application. The methods
have been found to be especially useful in predictive regression with nonstationary
predictors (Kasparis, Andreou, and Phillips, 2015) where nonparametric methods
show effective size control and good power for a wide class of regressors. In
that context, Duffy (2017a, 2017b) has further demonstrated that kernel density
estimates satisfy a unified theory of limit behavior that includes both stationary
and persistent processes of the integrated and mildly integrated type (Phillips
and Magdalinos, 2007). In effect, in predictive regression, the limit distributions
of self-normalized kernel regression statistics are Gaussian and this property
is unaffected by persistence in the regressor, uniformly in the parameters that
characterize persistence.

As in other applications of nonparametric methods, implementation requires a
rule for bandwidth selection. In stationary and cross-section regressions, band-
width selection analysis is a heavily worked area where operational methods
that deliver optimal rates of convergence have long been available and much
experience has been accumulated through simulation and empirical practice. In
the nonstationary case, while rate conditions are known, there has been little
work on optimal selection or formal justification for data-based methods, although
simulation evidence is available from past work (WP, 2009a, 2009b) and some
results have been recently obtained for β recurrent Markov chains (Bandi, Corradi,
and Wilhelm, 2012).

The contribution of the present paper is to provide an optimal bandwidth
selection rule for use in kernel-based nonlinear cointegrating regression. It is
found that the optimal bandwidth is delivered by a random sequence, unlike the
deterministic function rule that is familiar in cross-section and stationary kernel

https://doi.org/10.1017/S0266466620000390 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466620000390


OPTIMAL BANDWIDTH SELECTION 1327

regression. We show that for this bandwidth and for all bandwidth sequences hn

that lie within a certain band of rates as the sample size n → ∞, centered and
self-standardized local level and local linear kernel estimates are asymptotically
standard normal, which enables convenient use in inference and corresponds to
standard limit theory in the stationary regression case. This finding reinforces
the distinctive flexibility of data-based nonparametric regression procedures for
nonstationary nonparametric regression. The present results are obtained under
exogenous regressor conditions and enable conditional data-based methods of
practical implementation in environments such as certain nonparametric predictive
regressions. Exogeneity is restrictive but is a useful starting point that enables the
use of existing methods to gain traction on the challenging problem of bandwidth
selection in nonparametric nonstationary regression.

We consider a nonlinear cointegrating regression model of the form

yt = m(xt)+σ(xt)ut, (1.1)

where xt is a nonstationary regressor, m(·) and σ(·) are unknown real functions
on R representing the conditional mean and error standard deviation, respectively,
and ut is an equilibrium error satisfying E(ut|xt) = 0. In (1.1), the conventional
local linear estimator m̂L(x) of m(x) is defined by

m̂L(x) =
n∑

i=1

wi(x)yi/

n∑
i=1

wi(x),

where wi is a weight function defined by wi(x) = K[(xi − x)/h]Vn,2 − K1[(xi −
x)/h]Vn,1, employing the non-negative real continuous kernel function K(x), with
Kj(x) = xjK(x) and Vn,j = ∑n

i=1 Kj[(Xi −x)/h], in which the bandwidth h ≡ hn → 0.
Under various conditions on the model components m(x) and σ(x), the time

series xt, and the bandwidth h, the consistency and asymptotic normality of the
kernel estimator m̂L(x) have been explored in WP (2009a, 2009b, 2011, 2016) and
Wang (2014, 2015). We now address the issue of optimal bandwidth selection to
aid implementation of m̂L(x) in practical work.

The paper is organized as follows. Section 2 gives the main results and attendant
discussion, Section 3 concludes and proofs are provided in Section 4.

2. MAIN RESULTS

In classical nonparametric kernel regression with a stationary regressor, a band-
width selection rule for the choice of h in m̂L(x) is typically based on the asymptotic
behavior of a mean squared error (MSE) criterion such as E

[
(m̂L(x) − m(x))2

]
.

Such a criterion is appropriate in a stationary setting where the criterion is well
defined. In the nonstationary case, as will become apparent, such a criterion is not
well suited because the expectation is undefined. Our approach in the present work
is therefore based on a conditional MSE criterion

E
[
(m̂L(x)−m(x))2 | x1,...,xn

]
(2.1)
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or, more generally, a conditional weighted average mean squared error (WMSE)
such as∫ ∞

−∞
E

[
(m̂L(x)−m(x))2 | x1,...,xn

]
W(x)dx, (2.2)

where W(x) is a weight function having a compact support.
To fix ideas in what follows, we make precise the assumptions employed for the

time series (xt,ut) in (1.1). Let ηj,j = 0, ±1, ±2,... be a sequence of i.i.d. random
variables with Eη0 = 0, Eη2

0 = 1, and |Eeitη0 | ≤ t−δ for some δ > 0. Let ξ j,j ≥ 1,
be a linear process defined by

ξ j =
∞∑

k=0

φk ηj−k,

where the coefficients φk,k ≥ 0, satisfy one of the following two conditions that
allow for LM and short memory (SM) in ξ j:

LM. φk ∼ k−μ, where 1/2 < μ < 1;
SM.

∑∞
k=0 |φk| < ∞ and φ ≡ ∑∞

k=0 φk �= 0.

Let d = (
3
2 −μ

)
1
{(

ξ j
) ∈ LM

} + (
1
2

)
1
{(

ξ j
) ∈ SM

}
. For some 0 < δ0 <

min{d,1 − d}, let � ⊂ {a : |a| ≤ nd−δ0} be a subset of R that expands with n
at a rate that depends on d. Define the potential bandwidth region Hn = {dn :
ε−1

n nd−1+δ0 ≤ dn ≤ εn}, where log−1n ≤ εn → 0 is a sequence of constants, so that
if hn ∈ Hn then hn → 0 and n1−d−δ0 hn → ∞, ensuring that the bandwidth tends to
zero but not as fast as 1/n1−d.

To investigate the asymptotic properties of the conditional MSE and WMSE
criteria in (2.1) and (2.2), we employ the following assumptions. All time series
are defined in a probability space with filtration (Ft) .

A1. (i) xt = ∑t
j=1 ξ j; (ii) {ut,Ft}t≥1 forms a martingale difference with E(u2

t |
Ft−1) = 1; and (iii) x1,x2, . . . ,xn are Ft−1 measurable for any 1 ≤ t ≤ n and
n ≥ 1.

A2. On �, (i) m(x) is bounded and twice continuously differentiable, and (ii) σ(x)
is bounded and continuous.

A3. K(x) has finite support,
∫ ∞
−∞ K(x)dx = 1,

∫ ∞
−∞ xK(x)dx = 0 and |K(x) −

K(y)| ≤ C|x− y| whenever |x− y| is sufficiently small.

The first result describes the asymptotic behavior of the conditional MSE and
conditional WMSE.

THEOREM 2.1. Suppose A1–A3 hold. For any h = hn(x1,...,xn) such that
limn→∞ P(h ∈ Hn) = 1, we have

E
[
(m̂L(x)−m(x))2 | x1,...,xn

]
= 1

4
τ 2 h4 [m′′(x)]2 + (hAn)

−1 σ 2(x)
∫ ∞

−∞
K2(t)dt

+ oP

[(
n1−dh

)−1 +h4
]
, (2.3)
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uniformly in x ∈ �, where τ = ∫ ∞
−∞ t2K(t)dt and An = ∑n

k=1 K(xk). Moreover,
for any weight function W(x) having a compact support that is covered by �,
we have∫ ∞

−∞
E

[
(m̂L(x)−m(x))2 | x1,...,xn

]
W(x)dx

= 1

4
τ 2 h4

∫ ∞

−∞

[
m′′(x)

]2
W(x)dx + (hAn)

−1
∫ ∞

−∞
σ 2(x)W(x)dx

∫ ∞

−∞
K2(t)dt

+ oP

[(
n1−dh

)−1 +h4
]
. (2.4)

Remark 1. Based on (2.3), for any x ∈ �, the optimal pointwise bandwidth is
taken to be

hopt =
[σ 2(x)

∫ ∞
−∞ K2(t)dt[

τ m′′(x)]2

]1/5
A−1/5

n . (2.5)

Similarly, based on (2.4), the optimal weighted bandwidth is

hopt =
[∫ ∞

−∞ σ 2(x)W(x)dx
∫

K2(x)dx∫ ∞
−∞[m′′(x)]2W(x)dxτ 2

]1/5
A−1/5

n . (2.6)

Note that (sn/n)An → DLG(1,0), where s2
n = var(xn) and LG(t,a) is the local time at

spatial location a at time t of the (fractional) Brownian motion limit process Gt with
index d for which s−1

n x�nt ⇒ Gt (see Lemma 4.2 and equation (4.14) below), where
�· is the floor function. Unlike the stationary time series case where the optimal
bandwidth is a deterministic sequence, the optimal bandwidth here is a random
sequence involving An which upon normalization has the random limit LG(1,0).
Due to the fact that ELG(1,0)−1 = ∞, the conventional MSE criterion based on
the unconditional MSE E(m̂L(x) − m(x))2 cannot be used as a selection rule for
the bandwidth. On the other hand, we do have the following uniform convergence
result: for any h = hn(x1,...,xn) such that limn→∞ P(h ∈ Hn) = 1,

sup
x∈�

|m̂L(x)−m(x)| = OP{(n1−dh)−1/2 log 1/2n+h2}. (2.7)

The proof of (2.7) is similar to that in Sect. 5.1.4 of Wang (2015). We omit the
details.1

Remark 2. Using Theorem 2.1, an explicit presentation of the optimal band-
width h is provided that depends on the sojourn time of the process. It is clear
from the proof that results (2.3) and (2.4) still hold if An is replaced by An,h :=
1
h

∑n
k=1 K

[
(xk − x)/h

]
. In consequence, the optimal pointwise bandwidth can be

taken to be

1Another approach, which we do not pursue here, is to consider the median of the conditional MSE E
[
(m̂L(x) −

m(x))2 | x1,...,xn
]

rather than its mean. Since the density of the local time is known in certain cases such as the local
time of Brownian motion, the median of the reciprocal of the local time LG(1,0) may be deduced in those cases and
a sample approximation constructed in terms of a function of An.
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ĥopt = arg min
h

{1

4
τ 2 h4 [m′′(x)]2 + (hAn,h)

−1 σ 2(x)
∫ ∞

−∞
K2(t)dt

}
,

and, similarly, the optimal weighted bandwidth can be taken as

ĥopt = arg min
h

{1

4
τ 2 h4

∫ ∞

−∞

[
m′′(x)

]2
W(x)dx

+ (hAn,h)
−1

∫ ∞

−∞
σ 2(x)W(x)dx

∫ ∞

−∞
K2(t)dt

}
.

Use of these alternative formulations of the optimal bandwidth may have some
finite sample benefit in performance at the cost of more complex calculation.

Remark 3. As noticed by a reviewer, the optimal bandwidth would ideally be
defined with respect to a criterion that would remain meaningful if {xt}n

t=1 were
merely predetermined. The challenge in this nonstationary case is that the criteria
(2.3) and (2.4) depend on the random quantity An ∼a

n
sn

LG(1,0) that relies on the
sojourn time LG(1,0) of the limit process associated with xt. This dependence
ensures that a small sojourn time implies the need for a large bandwidth in
optimal estimation of m(x), thereby compensating for the fact that the data are
less informative about the function in the immediate vicinity of this location.
This characteristic feature of the problem of bandwidth selection is particular
to the nonstationary case and should persist when the nonstationary regressor
is predetermined. The criterion for selection in the present paper does not meet
the requirement of demonstrating this feature analytically but the result itself is
suggestive and provides some indications that will be useful in future development
of this line of research.

Let H1n = {dn : ε−1
n nd−1+δ0 ≤ dn ≤ εnn(d−1)/7}, where δ0 > 0 is chosen as small

as required and log−1 n ≤ εn → 0.

THEOREM 2.2. In addition to A1–A3, suppose that m(3)(x) is bounded on �

and sup
k≥1

E|uk|2+δ < ∞, for some δ > 0. Then, for any h = hn(x1,...,xn) such that

limn→∞ P(h ∈ H1n) = 1, we have( n∑
k=1

K
[
(xk − x)/h

])1/2[
m̂L(x)−m(x)− h2

2
m′′(x)τ

] →D N
(
0, σ 2(x)

∫ ∞

−∞
K2(t)dt

)
,

(2.8)

for any x ∈ �, where τ = ∫ ∞
−∞ t2K(t)dt.

Remark 4. Theorem 2.2 shows that the self normalized bias corrected esti-
mation error m̂L(x) − m(x) − 1

2 h2m′′(x)τ has the same standard normal limit
distribution for all choices of bandwidth that lie within the region H1n as n → ∞.
Since P(hopt ∈ H1n) → 1, Theorem 2.2 indicates that result (2.8) applies for the
optimal bandwidth hopt. The optimal bandwidth formula
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hopt = h
(
σ 2(x),m′′(x)

) =
[σ 2(x)

∫ ∞
−∞ K2(t)dt[

τ m′′(x)]2

]1/5
A−1/5

n (2.9)

is infeasible as it depends on σ 2(x) and m′′(x), analogous to the optimal bandwidth
formula in the usual stationary case. Both σ 2(x) and m′′(x) are consistently
estimable and the resulting plug-in feasible version of the optimal bandwidth
ĥopt = h

(
σ̂ 2(x),m̂′′(x)

)
with such consistent estimates continues to lie within the

region H1n as n → ∞. Nonetheless, as pointed out by a referee, the proof of
Theorem 2.2 relies on the martingale array property of the sample covariance∑n

k=1 wk(x)σ (xk)uk, which fails when a feasible bandwidth such as ĥopt is used
because of the resulting dependence on {y1,...,yn} that is introduced to the kernel
weights and estimation of σ 2(x) and m′′(x). Thus, Theorem 2.2 is no longer
established when a feasible bandwidth choice such as ĥopt is used in estimation.
This problem of dependence is common in kernel nonparametric estimation and
arises, for instance, in stationary nonparametric regression when a plug-in optimal
bandwidth is employed, so it is not confined to the present nonlinear cointegrating
regression model.

Remark 5. Due to the nonstationarity of the regressor xt condition A1(iii)
plays a significant role in the proof of Theorem 2.2, wherein the extended
martingale limit theorem given by Wang (2014) is employed. The condition A1(iii)
essentially requires independence between the regressor and the error process,
thereby excluding endogenous and predetermined regressors. Relaxation of this
condition is technically difficult and seems unlikely to be possible using the present
approach and techniques.

Remark 6. Let m̂(x) be the conventional local level kernel estimator defined by

m̂(x) =
∑n

k=1 K
[
(xk − x)/h

]
yk∑n

k=1 K
[
(xk − x)/h

] .

Let H2n = {dn : n(d−1)/3 logn ≤ dn ≤ n(d−1)/7/ logn}. Results (2.3)–(2.8) remain
true when m̂L(x) is replaced by m̂(x) if h = hn(x1,...,xn) is a random bandwidth
sequence satisfying limn→∞ P(h ∈H1n) = 1. This additional rate control condition
on the bandwidth is used to remove the first order biases which have no impact on
the choice of the optimal bandwidth.

3. CONCLUSION

Nonparametric methods in cointegrated systems have presented technical chal-
lenges to the development of limit theory for kernel estimators and theoretical
underpinnings of automated methods of implementation. This paper, in conjunc-
tion with other recent work discussed in the Introduction, helps to advance the
available limit theory for these systems to enable practical implementation in
empirical work. The optimal bandwidth selection rules given in Section 2 enable
conditional data-based implementation of kernel techniques in environments such
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as pure cointegrating regression and nonparametric predictive regression that are
valid under exogenous regressors. Several technical challenges remain. We need
to extend the present results, or some version of them, to models in which the
regressor is endogenous or predetermined. This is a demanding task that seems to
require new methods for the reasons explained above. And, just as in the stationary
regression case, it will also be useful in practical work to have suitable mechanisms
for plug-in estimation of the quantities involved to develop empirical versions of
the optimal bandwidth formulas (2.5) and (2.6). While this paper does not address
those challenges, it does demonstrate some progress towards automated data-based
methods of inference in nonstationary nonparametric regression and prediction.

4. PROOFS

For 0 < t1 < t2 < ∞, let Ln = {(t,a) : t1nd−1+δ0/2 ≤ t ≤ t2,|a| ≤ nd−δ0}. Suppose
g(x) is a bounded real function satisfying

∫ ∞
−∞ |g(x)|dx < ∞ . We start with the

following lemmas, which play key roles in the main proofs.

LEMMA 4.1. Suppose g(x) has finite support and satisfies a Lipschitz condi-
tion. Then

sup
(h,x)∈Ln

∣∣∣∣
n∑

k=1

{1

h
g
[
(xk − x)/h

]
−g(xk)

}∣∣∣∣ = Oa.s.(n
1−d−γ δ0) (4.1)

for some γ > 0.

Proof. Set t1nd−1+δ0/2 = h1 < · · · < hqn1 = t2 and −nd−δ0 = t1 < · · · < tqn2 =
nd−δ0 with hi − hi−1 ∼ n−7 and ti − ti−1 ∼ n−10. Due to Ex2

n � nd, we have xn =
oa.s.(n2). Standard arguments show that to prove (4.1) it suffices to show

max
1≤i≤qn1

max
1≤j≤qn2

∣∣∣∣
n∑

k=1

fhi,tj(xk)

∣∣∣∣ = Oa.s.(n
1−d−γ δ0), (4.2)

where fhi,tj(y)= h−1
i g[(y−tj)/hi]−g(y). Note that

∫ ∞
−∞ fhi,tj(y)dy = 0,

∫ ∞
−∞ |fhi,tj(y)|

dy < ∞, sup
y

|fhi,tj(y)| ≤ Cn1−d−δ0 and

inf
t

∫ ∞

−∞
|fhi,tj(y− t)||y|dy ≤

∫ ∞

−∞
|y| |g(y)|dy+

∫ ∞

−∞
|g(y)|(tj +hi|y|)dy

≤ Cnd−δ0 .

Result (4.2) is then a direct corollary of Thm. 2.30 in Wang (2015). �

LEMMA 4.2. We have

sn

n

n∑
k=1

g(xk) → D

∫ ∞

−∞
g(x)dxLG(1,0), (4.3)
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where s2
n = var(xn) and LG(t,a) is the local time process at time t and spatial

location a of the fractional Brownian motion Gt with index H = 3/2−μ for which
s−1

n x�nt ⇒ Gt. If in addition
∫ ∞
−∞ g(t)dt = 0,

∫ ∞
−∞ |t g(t)|dt < ∞ and g(t) satisfies

the Lipschitz condition, then

sup
(h,x)∈Ln

(n1−dh)−1/2

∣∣∣∣
n∑

k=1

g
[
(xk − x)/h

]∣∣∣∣ = OP(logn). (4.4)

Proof. Result (4.3) follows from Wang and Phillips (2009a) and result (4.4)
follows from Duffy (2017b) and Chan and Wang (2014). �

4.1. Proof of Theorem 2.1

We are now ready to prove (2.3). Result (2.4) follows from (2.3) with a minor
calculation and hence the details are omitted. For convenience in the arguments
that follow we introduce the notation Xn ≤ PYn for Xn/Yn = OP(1), and Xn(x) =
Yn(x)+oP(1)Zn(x), uniformly in �, for

sup
x∈�

|Xn(x)−Yn(x)|
Zn(x)

= oP(1).

Recalling condition A1 and the fact that h = hn(x1,...,xn) is a function only of
x1,...,xn, simple calculations show that

E
[
(m̂L(x)−m(x))2 | x1,...,xn

]
=

{∑n
k=1 wk(x)[m(xk)−m(x)]∑n

k=1 wk(x)

}2 +
∑n

k=1 w2
k(x)σ

2(xk)[∑n
k=1 wk(x)

]2

= I1(n)+ I2(n), say. (4.5)

Since K(x) has finite support, there exists a C0 > 0 such that wk(x)
[
m(xk) −

m(x)
] = 0 if |xk − x|/h ≥ C0. This, together with condition A2(i), ensures that

wk(x)
[
m(xk)−m(x)

]
= wk(x)

{
m

[
x+h(xk − x)/h

]−m(x)
}

= wk(x)
[
m′(x)(xk − x)+ 1

2
m′′(x)(xk − x)2 +oP(1)(xk − x)2

]
,

as h = oP(1). Hence, by noting that
∑n

k=1(xk − x)wk(x) = 0, we may write

I1(n) = 1

4
h4

{[
m′′(x)

]
2 +oP(1)

}
l2n , (4.6)
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uniformly in x ∈ �, where, recalling that Kj(x) = xjK(x),j = 0,1,2,..., and Vn,j =∑n
k=1 Kj

[
(xk − x)/h

]
, we have

ln = V2
n,2 −Vn,3Vn,1

Vn,0Vn,2 −V2
n,1

= Vn,2 −Vn,3Vn,1/Vn,2

Vn,0 −V2
n,1/Vn,2

.

Note that sn � nd and P(LG(1,0) > 0) = 1 (e.g., see Chap. 2 of Wang, 2015). It is
readily seen from (4.1) and (4.3) that

inf
x∈�

Vn,0, inf
x∈�

Vn,2 ≥ P h
n∑

k=1

K(xk) ≥ P δn n1−dh, (4.7)

where log−1n < δn → 0 is chosen as slowly as required. On the other hand by
(4.4), setting g(t) = tK(t) and t2K(t)− ∫

t2K(t)dt K(t), we have

sup
x∈�

|Vn,1|, sup
x∈�

|Vn,2 −Vn,0

∫ ∞

−∞
t2K(t)dt | ≤ P (n1−dh)1/2 logn. (4.8)

Results (4.7)–(4.8) and the fact that Vn,3 ≤ C Vn,2 imply

sup
x∈�

|l2n − τ 2| ≤ sup
x∈�

|ln − τ | |ln + τ |
≤ P(n1−dh)−1/2 log 2n = oP(1),

where τ = ∫ ∞
−∞ t2K(t)dt. Taking this estimate into (4.6) and noting that

sup
x∈�

|m′′(x)| < ∞, we obtain

I1(n) = 1

4
h4 [

m′′(x)
]2

τ 2 +oP(h4), (4.9)

uniformly in x ∈ �.
We next consider I2(n). Similar arguments making use of (4.7)–( 4.8) yield that

hVn,2∑n
k=1 wk(x)

= h

Vn,0 −V2
n,1/Vn,2

= A−1
n +OP(nd−1−γ δ0), (4.10)

where An = ∑n
k=1 K(xk), and

V−1
n,2

∑n
k=1 w2

k(x)∑n
k=1 wk(x)

=
∑n

k=1 K2
[
(xk − x)/h

]+Rn

Vn,0 −V2
n,1/Vn,2

=
∫ ∞

−∞
K2(t)dt +OP

[
(n1−dh)−1/2 log 2n

]
, (4.11)

uniformly in x ∈ �, where we have used the fact that since both K(x) and K1(x)
are bounded,

|Rn| ≤ 2C|Vn,1|Vn,0/Vn,2 +CV2
n,1Vn,0/V2

n,2 = OP
[
(n1−dh)1/2 logn

]
.
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By virtue of (4.10) and (4.11), we have

∑n
k=1 w2

k(x)[∑n
k=1 wk(x)

]2 = h−1 hVn,2∑n
k=1 wk(x)

V−1
n,2

∑n
k=1 w2

k(x)∑n
k=1 wk(x)

= {
(hAn)

−1 +oP
[
(n1−dh)−1

]}{∫ ∞

−∞
K2(t)dt +OP

(
n−δ0/2 log 2n

)}
=

∫ ∞

−∞
K2(t)dt (hAn)

−1 +oP
[
(n1−dh)−1

]
,

uniformly in x ∈ �. In consequence, recalling that K(x) has finite support and σ(x)
is bounded and continuous on �, standard arguments now yield that

I2(n) =
[
σ 2(x)+oP(1)

] ∑n
k=1 w2

k(x)[∑n
k=1 wk(x)

]2

= σ 2(x)
∫ ∞

−∞
K2(t)dt (hAn)

−1 +oP
[
(n1−dh)−1]. (4.12)

Result (2.4) follows immediately from (4.9) and (4.12).

4.2. Proof of Theorem 2.2

Noting that
∑n

k=1(xk − x)wk(x) = 0, we may write

m̂L(x)−m(x)− 1

2
h2m′′(x)τ

=
∑n

k=1 wk(x)σ (xk)uk∑n
k=1 wk(x)

+
∑n

k=1 wk(x)[m(xk)−m(x)−m′(x)(xk − x)− 1
2 m′′(x)(xk − x)2]∑n

k=1 wk(x)

+ 1

2
m′′(x)

[∑n
k=1 wk(x)(xk − x)2∑n

k=1 wk(x)
−h2

∫ ∞

−∞
t2K(t)dt

]

= Rn1 +Rn2 +Rn3, say. (4.13)

Recall that m(3)(x) is bounded on R. As in the proof of Theorem 2.1, for any x ∈ �,
we have

|Rn2| ≤ P
h3(|Vn3|+ |Vn4||Vn1|/Vn2)

|Vn0 −V2
n1/Vn2| ≤ P h3,
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where Kj(x) = xjK(x) and Vnj = ∑n
k=1 Kj

[
(xk − x)/h

]
, and

|Rn3| ≤ P
h2(|Vn2 − ∫ ∞

−∞ t2K(t)dt Vn0|+ |Vn3||Vn1|/Vn2)

|Vn0 −V2
n1/Vn2|

≤ Ph2 (n1−dh)−1/2 logn.

In consequence, it follows that( n∑
k=1

K
[
(xk − x)/h

])1/2(|Rn2|+ |Rn3|
)

≤ P (n1−dh)1/2 [
h3 +h2 (n1−dh)−1/2 logn

] = oP(1),

since limn→∞ P(h ∈ H1n) = 1. Hence, Theorem 2.2 will follow by continuous
mapping if we prove{ sn

nh

n∑
k=1

K
[
(xk − x)/h

]
,

sn

nh
V−1

n2

n∑
k=1

wk(x),
( sn

nh

)
1/2V−1

n2

n∑
k=1

wk(x)σ (xk)uk

}
→ D

{
LG(1,0), LG(1,0), c0 L1/2

G (1,0)N
}
,

or equivalently,{ sn

nh

n∑
k=1

K
[
(xk − x)/h

]
,
( sn

nh

)1/2
n∑

k=1

K
[
(xk − x)/h

]
σ(xk)uk

}
→ D

{
LG(1,0), c0 L1/2

G (1,0)N
}
, (4.14)

where c2
0 = ∫ ∞

−∞ K2(t)dtσ 2(x) and N is a standard normal variate independent of
LG(1,0). To prove (4.14), let Fk be defined as in condition A1 and

Xnk =
( sn

nh

)1/2
K

[
(xk − x)/h

]
σ(xk)uk.

By recalling h = hn(x1,...,xn), that is, h is Fk -measurable for each 1 ≤ k ≤ n, we
have

E(Xnk | x1,...,xn) =
(

dn

nh

)1/2

K
[
(xk − x)/h

]
σ(xk)E(uk | x1,...,xn) = 0.

The remainder of the proof of (4.14) follows from the same arguments as in the
proof of Thm. 5.2 in Wang (2015) [see pp. 196–197 there and note that the extra
condition on σ(x) is not necessary under the current condition on K(x)].
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