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Inertial torque on a squirmer

F. Candelier!, J. Qiu?, L. Zhao?, G. Voth? and B. Mehlig*{

ICNRS, TUSTI, Aix Marseille Univ, Marseille, France

2 AML, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, PR China
3Department of Physics, Wesleyan University, Middletown, CT 06459, USA

“4Department of Physics, Gothenburg University, 41296 Gothenburg, Sweden

(Received 7 September 2022; revised 5 November 2022; accepted 7 November 2022)

A small spheroid settling in a quiescent fluid experiences an inertial torque that aligns it
so that it settles with its broad side first. Here we show that an active particle experiences
such a torque too, as it settles in a fluid at rest. For a spherical squirmer, the torque is
T = —%mf(v§0) A vé,o)) where v§°) is the swimming velocity, vg)) is the settling velocity
in the Stokes approximation and my is the equivalent fluid mass. This torque aligns the
swimming direction against gravity: swimming up is stable, swimming down is unstable.
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1. Introduction

The motion of small plankton in the turbulent ocean is overdamped (Visser 2011).
Accelerations play no role, and hydrodynamic forces and torques can be computed in
the Stokes approximation. Turbulence rotates these small organisms, yet they manage to
navigate upwards towards the ocean surface. Gyrotactic organisms make use of gravity to
achieve this. These bottom-heavy swimmers experience a gravity torque that tends to align
against the direction of gravity, so that they swim upwards (Kessler 1985; Durham et al.
2013; Gustavsson et al. 2016). Also density or shape asymmetries give rise to torques in
the Stokes approximation that can change the swimming direction (Roberts 1970; Jonsson
1989; Roberts & Deacon 2002; Candelier & Mehlig 2016; Roy et al. 2019).

Larger organisms accelerate the surrounding fluid as they move, and this changes the
hydrodynamic force the swimmer experiences (Wang & Ardekani 2012; Khair & Chisholm
2014; Chisholm er al. 2016; Redaelli et al. 2022). Three different mechanisms cause
such fluid-inertia effects: a non-zero slip velocity (Oseen problem with non-dimensional
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parameter Rep, the particle Reynolds number), velocity gradients of the disturbance flow
(Saffman problem, shear Reynolds number Rey) and unsteady fluid inertia (with parameter
Rey, S1, where Sl is the Strouhal number).

Fluid inertia gives rise to hydrodynamic torques. For a passive spheroid in spatially
inhomogeneous flow, there are Res-corrections to Jeffery’s torque (Subramanian & Koch
2005; Einarsson et al. 2015; Rosén et al. 2015; Dabade, Marath & Subramanian 2016;
Marath & Subramanian 2018). A passive spheroid settling in a quiescent fluid experiences
an inertial torque, a Rep-effect. This Khayat-Cox torque tends to align the particle so that it
settles with its broad side down (Brenner 1961; Cox 1965; Khayat & Cox 1989; Klett 1995;
Dabade, Marath & Subramanian 2015; Kramel 2017; Lopez & Guazzelli 2017; Menon
et al. 2017; Gustavsson et al. 2019; Jiang et al. 2021; Cabrera et al. 2022). For a passive
sphere, spherical symmetry ensures that the Khayat-Cox torque vanishes.

In this paper, we show that a small spherical squirmer experiences an inertial torque
analogous to the Khayat & Cox torque when it settles in a quiescent fluid. Using asymptotic
matching, we calculate the torque to leading order in the particle Reynolds number

Rey, = auc/v, (LD

where u, is a velocity scale, a is the radius of the squirmer and v is the kinematic
viscosity of the fluid. The calculation shows that the inertial torque does not vanish for
a spherical swimmer because swimming breaks rotational symmetry. We describe how
the torque aligns the squirmer, and compare its effect with gyrotactic torques, and with the
Khayat-Cox torque for a non-spherical passive particle.

2. Model

We consider a steady spherical squirmer, an idealised model for a motile micro-organism
developed by Lighthill (1952) and Blake (1971). In this model, one imposes an active
axisymmetric tangential surface-velocity field of the form

(B1 sin® + B, sinf cos 6)ey, 2.1

with parameters By and B, and where 0 is the angle between the swimming direction (unit
vector n) and the vector r from the particle centre to a point on its surface. The tangential
unit vector at this point is denoted by eg. One distinguishes two types of squirmers
depending on the parameter 8 = B, /B (Lauga & Powers 2009): ‘pushers’ (8 < 0) and
‘pullers’ with § > 0. In the Stokes limit, a squirmer moving with velocity x in a fluid at
rest experiences the hydrodynamic force

FO = 6morva (%Bln - x) ) (2.2)

Here the superscript denotes the Stokes approximation, and gy is the mass density of the
fluid. Following Candelier, Mehlig & Magnaudet (2019) and Candelier et al. (2022), we
use a prime to indicate that this is the hydrodynamic force on the squirmer, due to the
disturbance it creates.

Plankton tends to be slightly heavier than the fluid. Therefore we allow the squirmer to
settle subject to the buoyancy force

47
F, = ?cﬁ (05 — 0/)g, (2.3)

where oy is the mass density of the squirmer, and g is the gravitational acceleration. In
the overdamped limit, the steady centre-of-mass velocity of the squirmer is determined by
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(b)
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Figure 1. (@) Squirmer with swimming velocity vy and settling velocity v, see §2. Gravity points in the
negative &-direction. (b,c) Disturbance flow created by a squirmer with B, = 0 (schematic). Shown are the
flow lines in the frame that translates with the body. The centre-of-mass velocity x is shown in green.

~
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the zero-force condition F' + Fg = 0. This yields x = %Bln + %(Qs/gf — 1)(a2/v)g =

v§0) + vi,o). Again, the superscript denotes the Stokes limit. In this limit, the squirmer

experiences no torque in a fluid at rest, 7’ © — .

3. Inertial torque

Assume that the squirmer swims with swimming velocity vy and settles with settling
velocity vg. The angle between vy and v is denoted by o, as shown in figure 1(a).
Symmetry dictates the form of the inertial torque 7”. It has the units mass x velocity?.
Since the torque is an axial vector, it must be proportional to the vector product between
the two velocities. The torque can therefore be written as

7'V = Cmyp(vs A vy), 3.1)

where my = (47t/ 3)a’ or is the equivalent fluid mass, C is a non-dimensional constant, and
the superscript indicates that this is the first inertial correction to the torque. Equation (3.1)
says that torque vanishes when the swimmer swims against gravity (¢« = 7 in figure 1a),
and when it swims in the direction of gravity (¢ = 0). Bifurcation theory implies that
one of these fixed points is stable, the other one unstable. The sign of the coefficient C
determines which of the two is the stable fixed point.

Inertial torques can be understood as a consequence of advection of fluid momentum. In
the frame translating with the squirmer, far-field momentum is advected by the transverse
disturbance flow generated by the squirmer, as illustrated schematically in figure 1(b,c). At
non-zero Rey, the head of the squirmer — the north pole of the axial velocity field (2.1) —
experiences more drag than its rear, because some of the momentum imparted to the fluid
by the head is advected to the trailing end, in the direction transverse to gravity. So when
v, is not co-linear with v, there is an inertial torque which rotates the swimmer so that
vy becomes closer to anti-parallel with v,. Comparing with (3.1), this means that the
coefficient C must be negative. Note that the mechanism described above is the same that
creates Khayat-Cox torques on non-spherical passive particles sedimenting in quiescent
fluid. For a fibre, for example, the far-field momentum is advected by the transverse flow
along the fibre, leading to a torque that aligns the fibre perpendicular to gravity (Khayat &
Cox 1989).
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4. Perturbation theory for the coefficient C
The inertial torque is computed from

7V = /y r A @D ds), 4.1

where O’(ln) = —pW0s,., + ZMS(I) are the elements of the stress tensor o) with pressure

p, S,(m, are the elements of the strain-rate tensor of the disturbance flow and u = gyv is
the dynamic viscosity. The integral goes over the particle surface ., r is the vector from
the particle centre to a point on the particle surface and ds is the outward surface normal

at this point. In the Stokes approximation the torque vanishes, T” ®_ 0, as mentioned
above.

The disturbance stress tensor is determined by solving the steady Navier—Stokes
equations for the velocity w of the incompressible disturbance flow caused by the squirmer,

— Repx - Vw + Re,w - Vw = —Vp + Aw, 4.2)

with boundary conditions w = x + (B sin® + By sin6f cosf)ey for |r| =1, and w —
0 as |r| — oo. Here we assumed that the squirmer has no angular velocity. We

non-dimensionalised (4.2) using the radius a of the squirmer as a length scale, and with

the velocity scale u, = vé(, ). Forces are non-dimensionalised by wau., and torques by

pau.. The acceleration terms on the left-hand side of (4.2) are singular perturbations
of the right-hand side, the Stokes part. We use matched asymptotic expansions in Re, to
determine the solution for small Re,, (Hinch 1995). Near the squirmer, one expands:

Wiy, = w(o) + Repw(l) + - and p;, = pm + Repp(l) + - (4.3a,b)
This inner expansion is matched, term by term, to an outer expansion:
N A 1
Wou = T,Q + Rep(T) + T0)) + (44)

Here ’3;22,’1) are regular terms in the outer expansion, while 7;% is singular in k-space,
proportional to §(k) (Meibohm et al. 2016). The outer solution is obtained by replacing
the boundary condition on the surface of the squirmer by a singular source term in
(4.2), a Dirac §-function with amplitude F O = —67[(%Bln — Xx). Since the non-linear
term (quadratic in w) is negligible far from the particle, the resulting equation can be

solved by Fourier transform, yielding explicit expressions for fj;gg,l) and 7:5,11; which serve

as boundary conditions for the inner problems. The inner problem to order Reg is the
homogeneous Stokes problem
Vp(O) + AW(O) 0, V. wgg) =0, (4.5a)

with boundary conditions

(O) =Xx+ (Bysinf + By sinf cosf)eg for |r] =1, w(o) ’Z',gg) as |r] — oo.

(4.5D)

This problem is solved in the standard fashion using Lamb’s solution (Happel & Brenner
1965). The Rel -order inner problem is inhomogeneous:

—Vp + Aw)) = —Reyx - V'l 4 Re,wD v vewlD =0, (4.60)
wﬁ) =0 for|lrl=1 and wgl) ~ T,Sg) ’];5,2;, for |r| — oo. (4.6b)
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(D = (wp + T(l)) + wy, where w), is a particular

To solve (4.6), we make the ansatz w;, sing
)

solution and wy, is the homogeneous solution of (4.6a). For the pressure we write p(1
(1) )
+ Py

as described in Candelier et al. (2022). Then w(l) and p(]) are determined using Lamb’s
(1) (1) _ 7D

sing

. We first determine the particular solution w p ) and pp by Fourier transform,

solution. The boundary condition for wy, is w,, on the particle surface.

Having obtained wl(n), we compute the torque from (4.1). The torque comes from the

particular solution of the first-order inner problem; there are no singular contributions
at this order. Note also that for a passive spherical particle, spherical symmetry ensures
that the particular solution does not contribute to the torque. Swimming breaks spherical
symmetry, and this is the reason that torque does not vanish for a spherical squirmer. Given
pM and wl(r} ), we can determine the inertial correction o) to the stress tensor. Performing
the integral in (4.1), we find the leading-order contribution to the torque,

1 _ 3w 0 .
7' = —TRep(vg A o). 4.7
In dimensional units, this corresponds to T’ M 8m (v(o) A vz(’,o)) The coefficient
C= —% is negative, as predicted by the argument summarised in § 3. So a spherical

organism swimming downwards experiences a torque that tends to turn it upwards, causing
the organism to swim against gravity.

5. Direct numerical simulations

We solved the three-dimensional Navier—Stokes equations for the incompressible flow
using an immersed-boundary method (Peskin 2002). The interaction between squirmer
and fluid was implemented by the direct-force method (Uhlmann 2005): to satisfy the
boundary condition (2.1), the algorithm calculates the predicted fluid velocity on the
surface of the squirmer. Based on the mismatch between the predicted velocity and (2.1),
an appropriate immersed-boundary force is applied to the fluid phase to maintain the
boundary conditions (2.1) on the surface of the squirmer. We used the improved algorithm
of Kempe & Frohlich (2012), Breugem (2012) and Lambert et al. (2013), because it is
more precise for nearly neutrally buoyant particles. We used a cubic computational domain
of side length L = 20a with periodic boundary conditions. The computational domain
was discretised using a cubic mesh with resolution Ax. The Navier—Stokes equations
were integrated using a second-order Crank-Nicholson scheme (Kim, Baek & Sung 2002)
with time step Az, while the motion of the squirmer was integrated using a second-order
Adams—Bashforth method. The numerical simulation of solid-body motion in a fluid is
challenging at small Re,. The mesh resolution Ax must be fine enough to resolve the
shape of the body, so that the viscous stresses near its surface are accurately represented.
In addition, the time step A¢ must be small enough to resolve the viscous diffusion of the
disturbance, At < Ax*/v (Appendix).

To determine the torque, we froze the orientation of the squirmer at a given angle o, but
allowed the squirmer to translate. It was initially at rest. We measured the centre-of-mass
velocity and the torque after the transient, when the disturbance flow was fully established.
Figure 2(a) shows the numerical results for the inertial torque on a spherical squirmer for
different values of Rep, in comparison with the theory (4.7). The remaining parameter
values used in the simulations are quoted in the caption for figure 2. We see that
the simulation results approach the small-Re,, theory as the particle Reynolds number
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Figure 2. (a) Non-dimensional inertial torque 7" W Té(') e3 on a spherical squirmer. Shown is the theory,

(4.7) (solid line), in comparison with direct numerical simulation results (§ 5) for different values of particle
Reynolds number: Re, = 0.1 (), Re, = 0.323 (O) and Re, = 1 (o). The torque was non-dimensionalised

by walue, where u. = vg,o). The angle « is defined in figure 1(a). Parameters: By = 1, B, =0, v§0> =2/3,
v{go) = 1. Mesh resolution 2a/Ax = 36, time step vAr/Ax> = 0.22. (b) Non-dimensional torque for @ = 90 as

a function of Re),; other parameters same as in (a). Also shown is (4.7). (c¢) Non-dimensional swimming speed
(¢) and settling speed ([J) from direct numerical simulations for Re,, = 0.323; other parameters same as in (a).

Also shown are the Stokes estimates vs(o) (dashed) and véo) (solid).

decreases. For the smallest value of Re, we simulated, Re, = 0.1, the relative error is
approximately 16 %. For Re;, = 1, the difference is much larger, but the simulation results
nevertheless agree qualitatively with the small-Re), theory. This is encouraging, because it
allows us to draw qualitative conclusions about the effects of the torque on plankton (§ 6).
We note, however, that the numerical results for Re, = 1 exhibit an asymmetry in their
dependence on «. Since the small-Re, theory yields a symmetric angular dependence of
the torque, we attribute the asymmetry to higher-order Rej,-corrections.

The small-Re,, theory predicts that Té(l) /Rey, approaches a Rep,-independent plateau as
Re, — 0. Figure 2(b) indicates that this plateau is not yet reached for Re, = 0.1. We
note that there is still a residual time-step dependence for Re, = 0.1. Decreasing the time
step further from vAr/Ax?> = 0.22 to 0.11 increases the numerical value by 2.4 %. The
deviation between the small-Re;, theory and the simulation result of 16 % at Re, = 0.1
is consistent with that of Jiang et al. (2021), who numerically computed the Khayat-Cox
torque for settling spheroids, and found that the simulation result is approximately 20 %
lower at Re, ~ 0.3 than the small-Re,, theory. Kharrouba, Pierson & Magnaudet (2021)
found smaller differences for a slender cylinder settling in a quiescent fluid, between 8 %
and 13 % for Re,, = 0.05, depending on the orientation of the cylinder. Note, however, that
they compared with the more precise slender-body theory ((6.13) in Khayat & Cox 1989).
This approximation is more accurate as Re, grows than (6.22) in Khayat & Cox (1989)
which is the equivalent of (4.7) here.

Another indication that higher-order Rej-corrections are important comes from
measuring settling and swimming speeds in the numerical simulations. We extracted
the swimming speed using X = vgn — vges. Solving for vy gives vy =x-e1/(n-ey).
Figure 2(c) shows the measured swimming and settling speeds at Re, = 0.323. The
settling speed is substantially smaller than the Stokes estimate, consistent with a significant
Rey,-correction. The swimming speed is much closer to the Stokes estimate. This is because
the data shown is for 8 = 0, and the known Re),-corrections to the swimming speed (Khair
& Chisholm 2014),

2 38 B 11987 .\,
= “Bin|1—LRey+ (24—l g2 R+ |, 5.1
=3 1”[ ep+<8+470400ﬁ> %t -1
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vanish for 8 = 0. We note that the numerical results of Chisholm ez al. (2016) indicate that
v, does not depend on Re,, at all for 8 = 0.

6. Conclusions

We showed that a spherical squirmer settling in a fluid at rest experiences an inertial
torque, and computed the torque using matched asymptotic expansions. The calculation
is similar to that of Cox (1965) for the inertial torque on a nearly spherical, passive particle
settling in a quiescent fluid. This torque vanishes for a passive sphere, a consequence
of spherical symmetry. A spherical swimmer experiences an inertial torque because
swimming breaks this symmetry. The torque causes the squirmer to align with gravity
so that it swims upwards. In other words, this torque acts just like Kessler’s gyrotactic
torque for bottom-heavy organisms.

For small plankton, the effect of the inertial torque is much smaller than the gyrotactic
torque, at least for spherical shapes. We can see this by comparing the corresponding
reorientation times. This time scale is defined as t; = %(87:/1(13) /Tinax, where 811;4(13 is
the rotational resistance coefficient for a sphere (Kim & Karrila 2013) and 7}, is the

maximal magnitude of the torque. For the inertial torque, one obtains 77 = 8v/(3 v§0) véo))
(this and all following expressions are quoted in dimensional units). The reorientation
time for the gyrotactic torque is G = 305v/(0rgh) (Pedley & Kessler 1987), where h is
the offset between the centre-of-mass and the geometrical centre of the squirmer, and
g = |g|. The ratio of these time scales is 7;/tg ~ gh/ vs(o) véo), assuming o5 ~ or. Taking
h ~ 10~7 m (table 1 in Kessler 1986), we see that swimming and settling speeds need to be
of the order of mms~! for the reorientation times to be comparable. For small plankton,
typical speeds tend to be much smaller (Kessler 1986).

For larger organisms, however, the inertial torque can be significant. With typical
values for a copepod (Titelman & Kigrboe 2003), vy =1, vy = 0.2mm s~L as well
as v=10"°m?s~!, one finds an inertial reorientation time of the order of 7; ~
10s~!. Kolmogorov times for ocean turbulence range from tx = ,/v/& = 100s for
dissipation rate per unit mass & = 107%cm?s ™3 to tx = 1's for & = 1072 cm? s~3. So the
non-dimensional reorientation parameter ¥ = t7/7gx (Durham et al. 2013) ranges from 0.1
for weak turbulence to 10 for strong turbulence. The Reynolds number is of order Re, ~ 1
for speeds of the order of 1 mm, so that the Rej,-perturbation theory does not strictly
apply. However, since the theory works qualitatively as we demonstrated above, we can
nevertheless conclude that for weak turbulence, the inertial torque can have a significant
effect on the angular dynamics of the organism.

Some motile micro-organisms are non-spherical (Berland, Maestrini & Grzebyk 1995;
Faust & Gulledge 2002; Smayda 2010). It has been suggested that a non-spherical settling
squirmer experiences an inertial Khayat-Cox torque (Qiu et al. 2022). Since the boundary
conditions differ between passive and active particles, and since swimming breaks fore-aft
symmetry, the inertial torque on a non-spherical squirmer may be different from the
Khayat-Cox torque. However, we expect that the torque is still determined by the same
physical mechanism, advection of fluid-momentum transverse to gravity. This may give
rise to terms proportional to sin(2«), whereas the torque is proportional to sin(«) for the
spherical squirmer. To make these speculations definite, one could compute the inertial
torque for a nearly spherical squirmer in perturbation theory. A second open question is to
determine the inertial torque for bottom-heavy, non-spherical organisms, the analogue of
the inertial torque on passive particles with mass-density asymmetries (Roy et al. 2019).
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Figure 3. Convergence tests changing mesh resolution Ax (a,c,e) and changing integration time step At
(bd,f). Settling speed of a passive sphere (a,b), compared with the numerical data of Dennis & Walker
(1971), extracted from figure 4 of Vesey & Goldenfeld (2007). Swimming speed of neutrally buoyant spherical
squirmer with 8 = 0, compared with (5.1), (Khair & Chisholm 2014), (c,d). Panels (e,f) show the inertial
torque.

More generally, although the small-Re,, perturbation theory may become quantitatively
inaccurate for Reynolds numbers of order unity — where the torque begins to make a
significant difference — the results tell us which non-dimensional parameters matter, and
how to reason about the effect of boundary conditions, and the symmetries of the problem.
The calculation illustrates the conceptual insight that the inertial torque comes from
fluid motion transverse to the direction of gravity. Fluid momentum in this direction is
advected along the swimmer by the transverse fluid velocity, resulting in a torque. In our
case, the boundary conditions are different from those for passive particles, and so is the
symmetry of the problem, because swimming breaks fore-aft symmetry. Nevertheless, the
fundamental mechanism generating the torque is the same.
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Appendix. Details regarding the direct numerical simulations

This Appendix describes how we found the required mesh and time resolutions for our
numerical simulations. We considered two test cases: a passive sphere settling under
gravity, and a neutrally buoyant squirmer with 8 =0, Re, = 0.1 and 0.323. To check

convergence as the mesh resolution increases, we changed Ax/2a, keeping vAt/Ax* =
0.22 constant. Settling and swimming speeds reached a plateau when we increased the
mesh resolution (left column of figure 3). For Re, = 0.323, the settling speed varied by
1.1 % and the swimming speed varied by 1.3 % when we changed Ax/2a from 1/36 to
1/48.

We then checked for convergence as the step size At was reduced, for fixed Ax/2a =
1/36. Again, both settling and swimming speeds reached plateaus as vA#/Ax? decreased
(right column of figure 3). For Re, = 0.323, when we halved vAt/Ax? from 0.22 to 0.11,
the settling and swimming speeds varied by 0.25 % and 0.79 %, respectively. Therefore, we
used Ax/2a = 1/36 and At = 0.22Ax? /v for most of the numerical simulations discussed
in the main text. At these parameter values, the simulated settling speed of a passively
settling particle is approximately 1 % larger than the numerical calculation of Dennis &
Walker (1971), taken from figure 4 of Vesey & Goldenfeld (2007). The swimming speed
of the squirmer is independent of Re), in the range [0.1, 1], and it is 6.3 % larger than the

theoretical value vs(o) = 2B1/3. This error constrains the overall accuracy of the numerical

method; it is slightly less accurate for the active compared with the passive particle.
Finally, consider the torque (bottom panels of figure 3). For Re, = 0.323, the torque

varied by approximately 1.5 % when we changed Ax/2a from 1/36 to 1/48 for vAt/Ax* =

0.22, and it varied by 1.6 % when we halved vAt/Ax* from 0.22 to 0.11 for Ax/2a =
1/36.
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