OPEN DISK PACKINGS OF A DISK
John B. Wilker

(received January 20, 1967)

1. Introduction. Itis an old problem to find how a collection
of congruent plane figures should be arranged without overlapping
to cover the largest possible fraction of the plane or some region
of the plane. If similar figures of arbitrary different sizes are
permitted, Vitali's theorem ([7], p.109) guarantees that packings
which cover almost all points are possible. It is natural to study
the diameters of figures used in such a packing and we will in-
vestigate this for the case of a closed disk packed with smaller
open disks.

The following notation is used throughout. U denotes the
closed disk of radius 1 . € = {D_} is a non-overlapping arrange-
n

ment of smaller open disks Dn of radius r within U leaving
0
uncovered the residual set R(C)=U - |J] D_. Incase R(C)
n=1 °
has plane Lebesgue measure 0, C is called a packing of U .
The distribution of diameters in a packing € of U may

b%omeasured by the convergence properties of the series

> r ® where o is a real number. For any packing, the
n=t
series converges to 1 if a=2 ; Mergelyan [6] and Wesler [8]
have shown that it diverges if o= 1 . We are led to

DEFINITION 1.1. The exponent of a packing € is defined
to be

)
e(€C) =inf{a: = r_<w}.
n=1
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This has been extended by Melzak [5] to the local exponent
of a packing at a point in its residual set.

DEFINITION 1. 2. Let € be a packing and x a point
in R(C) . Let D(x,r) be the open disk of radius r about x.
Let

[0%

e(C’ % r) - 1nf{Q: DnCD(Xy r) rn

<o }.

The local exponent of € at x is defined to be

e(C,x) = lim e(C,x,r) .
r=>0

In [5] it is argued that the infimum exists: since there are in-
finitely many terms in the sum, {a: DnC B, r) rna < o} is
bounded below by 0 . The limit exists because e(C,x,r) is
non-increasing in r .

In the next section it is shown that the exponent of a packing
is the supremum of its local exponents. Then the special class
of "osculatory packings' is introduced and it is shown that all
these have the same exponent and constant local exponent. Reasons
are given for believing this exponent to be the minimum over all
packings, and a lower bound of 1.059 is derived for it. A family
of osculatory packings is modified without change of exponent to
produce a family of packings which solve a certain obstacle prob-
lem. In the final sections, several unsolved problems on packings
and exponents are reviewed.

This paper is derived from the author's Master's thesis
written at the University of British Columbia. Itis a pleasure
to record thanks to Dr. Z.A. Melzak for suggesting the problem
and offering his assistance and encouragement, to David Kennedy
for giving the assurance of a computer check on numerical calcu-
lations and to Wayne Welsh and Dr. M. Sion for examining the
proofs. I am also grateful to the National Research Council
whose financial assistance made this work possible.

2. Exponents and Local Exponents. Before demonstrating
that the exponent of a packing is the supremum of its local expo-
nents, it is convenient to compare 1.2 with another possible
definition of local exponent.
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DEFINITION 2.1.

8(C,x, 1) =inf{a: Y _ r "<},
D_NDEx, 1) # ¢

~ ~
e(€C,x) = lim e(C,x,r) .
r->0

LEMMA 2.2.

N N
e(C,x) exists and e(C,x) = e(C, x) .

Proof. For any r > 0, consider D(x,r) . Only finitely
many disks from € not contained in D(x,r) can overlap
D(x,r/3) . (An easy geometric consideration shows there are
fewer than six such disks.) It is therefore possible to choose
r0< r so that no disks from € can meet D(x, ro) unless they

are contained in D(x,r) . Then

o o o
T Z T > T

n n
D » D(x, D(x,
DnC (x, r) DnP (x ro) ¢ DnC (x ro)

Hence e(C, x,r)zz(C, x,ro) > e(C, x,ro) .

And so lim Z(C,x,r)z lim e(C,x,r)
r—=0 r—=0

THEOREM 2.3.

e(C) = sup e(C, x) .
xeR(C)

Proof. Let s = sup e(C,x). Itis clear that e(C)> s
xeR(C)
since, for any x in R(C), e(C) = e¢(C, x,2) > e(C, x) .

To prove the opposite inequality, take an arbitrary number
e>0. For any x in R(C), s+¢ > e(C,x) . Hence, there exists
r(x) so that
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s+e
r <
n

D_ND(x,r(x))#¢
Now {Dn} U {D(x, r(x)) : xeR(C)} is an open cover of U . As

U is compact, there is a finite subcover
{D ,..., Dn , D(x1, r(xi)), e D(Xl , r(xz )N}

™ K

Any disk D of the packing must either coincide with one of
m

D ,...,D or intersect one of D(x ,r(x )),...,D(x ,r(x ));
n, n, 1 1 Y £

for its centre lies in U and hence in one of the disks covering
U . At any rate, T is included, perhaps more than once, in

the convergent series

e

£

_I_
s rs+£ + 5 Z rs €
. n, . n
i=1 i j=1 D ND(x., r(x.)) #(p
n J J
® +
Hence X r: ® < % and e(€C) < s+e. Since & was arbitrary,
n=1

e(C) < s and the proof is complete.

It is interesting to see how this theorem relates to what is
known about certain packings. Melzak [5] has constructed a
packing whose local exponent is everywhere 2 . This shows that
the supremum may be attained in a rather spectacular way. In
the same paper he demonstrated that an osculatory packing has
exponent less than 1.999971 . By replacing one of the disks in
the first packing by a scaled down copy of this packing one obtains
a packing whose local exponent is not constant.

3. Osculatory Packings. A certain class of packings of U
will be called osculatory. We will show that they all have the
same exponent. As the definition of osculatory packings of U
given here is slightly more general than that in [5], it requires
some preliminary discussion.

There are two ways in which three circles can be tangent
in pairs to bound a curvilinear triangle. In the first way, the
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circles are all externally tangent to produce a curvilinear tri-
angle of the F-type. In the second way, two of the circles are
externally tangent to one another and internally tangent to the
third to produce a curvilinear triangle of the G-type lying inside
the third circle.

Given a curvilinear triangle of either type there is a unique
disk fitting into it tangent to the three bounding circles. This
disk divides the rest of the curvilinear triangle into three new
curvilinear triangles. These uniquely determine a second genera-
tion of disks leaving a total of nine curvilinear triangles in the

. -1
residual set. We can proceed by induction introducing 3"

disks in the nth generation to produce an osculatory packing of
the curvilinear triangle.

Having described the osculatory packing of a curvilinear
triangle, it is possible to define an osculatory packing of U .

DEFINITION 3.1. C = {Dn} is an osculatory packing of

N
U if there is a positive integer N so that U - {J Dn consists

n=1
of curvilinear triangles packed in the osculatory fashion by
D 1%
{ n} n=N °

In [5], it is verified that "osculatory packings' really are
packings in the sense that they leave uncovered a residual set of
plane Lebesgue measure 0 . That proof still holds with the re-
vised definition of osculatory packings. In what follows, operations
will be performed on certain osculatory packings to derive new
collections of disks. These new collections will always be packings
either because they are again osculatory or because a countable
union of sets of measure 0 is a set of measure O .

In the osculatory packing of a curvilinear triangle the radii
of the packing disks are uniquely determined by the radii of the
circles bounding it. It is convenient to adopt a notation which
shows that the sum of the «oth power of these packing radii

{r }:_1 depends only on o and the radii a,b, ¢ of the bounding
n’n=

circles. It is necessary to distinguish between the two types of
curvilinear triangles.

DEFINITION 3.2.  If disks of radii {r_} form the
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osculatory packing of a curvilinear triangle bounded by circles
o0

of radii a,b,c then > r% is denoted by F(a,a,b, c) in the
n=1 O

F case and by G(a,a,b,c) in the G case. Inthe G case we

adopt the convention that a is the radius of the circle containing

the curvilinear triangle.

Notice that F is symmetric in its last three arguments
while G is symmetric in its last two arguments only.

Now let C = {Dn} be an osculatory packing of U . Let

N
Uu- U Dn consist of N_, curvilinear triangles of the F type

F
n=1
and NG curvilinear triangles of the G type. Let Fi (o)
(i=1,.. "NF) R Gj () (j=1,..., NG) be the sums corresponding

to these curvilinear triangles. Then we obtain

N N

0 N F G
(3.3) Z rl =2 1+ 2 F)+ Z Gl)
n=1 n=1 ° i=1 j=1
oo
It is clear that the convergence of X r? depends only
n
n=1

on the convergence of the series represented by Fi (¢) and Gj(a/) .

To show that all osculatory packings of U have the same exponent,
it is sufficient to show that the convergence of the series represented
by F(«,a,b,c) and Gla, a,b,c) is independent of their last three
arguments.

Let us begin by considering F(«, a,b,c) . Two simple re-
sults are collected in

LEMMA 3.4.

(i) F(a, a,b,c) is monotone increasing in a , b and c .

(ii) F(a, pa, pb, pc) = paF(a, b, c) .
Proof. (i) By symmetry it suffices to show what happens
when a is increased. Increasing a, while b and c are held

constant, increases the radius of the disk that will fit into the
curvilinear triangle they determine. The effect of increasing
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radii is felt the same way down through all generations of disks.
A term by term comparison of the series for F(a, a,b,c) and
F(x, a+ Aa,b,c) proves the result.

(ii) Changing a, b and c by the same factor p amounts
to a similarity transformation of the whole configuration. Since
each radius is changed by the factor p , each term in the series
for F(a, a,b,c) is multiplied by the factor p%, and the result
follows.

Now it is possible to show
LEMMA 3.5, The convergence of the series represented

by F(a,a,b,c) is independent of a, b and c . F(a,a,b,c)
converges if and only if F(a,1,1,1) converges.

Proof. Let m = min{a,b,c} , M =max{a,b,c} . By
Lemma 3.4 (i), F(e,m,m,m)< F(e,a,b,c) < F(o, M, M, M) .

By Lemma 3.4 (i), m"F(a,1,1,1) < F(a,a,b,c) < M F(a, 1,1, 1) .
That is, F(«,a,b,c) converges if and only if F(z, 1,1,1) con-
verges.

In order to consider G(e, a, b, c), it is necessary to recall
several facts about the involutory transformation called inversion.
Here and in later sections where no confusion can arise, the same
symbol will be used for a disk or circle as for its radius.

Consider inversion with respect to a circle k of radius k
centered at O . It maps a point P onto P' where O,P and

P' are collinear and OP X OP' = k2 . The circumference of k
is invariant pointwise. Lines through O are mapped into them-
selves; other lines, into circles through O . Circles through O
are mapped into lines; other circles into circles.

LEMMA 3.6. Let r be a circle of radius r centered
at distance d > r from the centre of inversion. Then r inverts
in a circle of radius k to the circle r' of radius r' where

. k r
d2 - r2
Proof. The line through the centres of k,r,r' cuts r!

at points whose distances from the centre of inversion are
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2 2

I S
d+r ' d-r

2 2 2

Hence r'=‘4‘[k . ]= k r
2 " d-r d+r dZ_rZ

COROLLARY. Let T be a set packed with disks. If T
is contained in the circle of inversion k of radius k , if the
distance from T to the centre of inversion is bounded below by

th . .
dO , and if the 1 packing disk r, of radius ri inverts into

a disk ri of radius r', then
g ==

1
ri k2
t<g <z
i d
o
Proof. Let d. be the distance from the centre of the
Em— i
i disk to the centre of inversion. By the lemma,
r! kZ
;l = —2——'—2' . Since T 1is contained in the circle of inversion,
i d, -r,
i i
k2
k>d; and > 5 > 1 . Since each disk r, is contained in T,
d. -r. .
i i
2
d-r, >d Hence kz = kz < k < 'k—z
N s 2 . 2 - - —_— —_
i i o d‘2 - (di ri)(di+ri) (d_—r,)z dZ
i i i i o

This result enables us to show

LEMMA 3.7. The convergence of the series represented
by Gl(a,a,b,c) is independentof a,b and c¢. Gle,a,b,c)
converges if and only if F(«,1,1,1) converges.

Proof. Consider G(a, a,b, c) and the related packed
G-type curvilinear triangle. Choose a circle k which surrounds
the largest disk in this configuration and has its centre in this
disk but bounded away from the curvilinear triangle by some
distance do . Invert in k to transform the packed G-type

curvilinear triangle a b c into a packed F-type curvilinear
triangle a'b'c' .
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Under this inversion, the disks in the packing all grow

2
but the growth ratio ri /ri does not exceed vy = k /c]o2 . Thus

F(a,a',b', c') > G(a, a,b, c) .
But
yaG( @ a,b,c)> F(a,a',b', c')
Hence

F(o,a',b', c') > G(a,a,b, c) > y_%‘(a, a',b',c') .

That is, G(a, a, b, c) converges if and only if F(e, a', b', c')
converges. By Lemma 3.5, this occurs if and only if F(e, 1,1,1)
converges.

Now it is possible to prove

THEOREM 3.8. All osculatory packings of U have the
same exponent. Itis equal to inf {o: F(o,1,1,1)< o} .

Proof. The result is immediate from Equation 3.3,
Lemma 3.5 and Lemma 3.7.

The number inf{o: F(x,1,1,1) <o} occurs often in what
follows. It is convenient to have a special symbol for it.

DEFINITION 3.9. ¢ =inf{o: F(a,1,1,1) <0} .

4. Local Properties of Osculatory Packing. Osculatory
packings of U can be characterized by their local behaviour.
After doing this we show that all osculatory packings have constant
local exponent equal to o .

DEFINITION 4.1. A packing C= {Dn} of U is called

osculatory at the point x in U in case there exists a positive
N

integer N and a radius r > 0 such that (U - U D )N\D(x, r)
n=4

is covered by a finite number of curvilinear triangles and these

are packed in the osculatory fashion.

DEFINITION 4. 2. A packing of U is called locally
osculatory in case it is osculatory at every pointin U .
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THEOREM 4.3. A packing of U is osculatory if and
only if it is locally osculatory.

Proof. Necessity is clear. Sufficiency follows from the
compactness of U . For if € is a locally osculatory packing
then to every point x in U there corresponds a positive integer

N(x)
N(x) and a radius r(x) > 0 such that (U - | Dn)ﬂD(x,r(x))
n=1

meets finitely many curvilinear triangles and these are packed
in the osculatory fashion. The open disks {D(x, r(x)):xeU}
cover U so there is a finite subcover

{D(x1, r(xi)) . D(xk, r(xk))} . N
Let N = max{N(x'l) Ce N(Xk)} . Then U - nL:)1 Dn is the union
of finitely many curvilinear triangles packed in the osculatory
fashion. Thatis, C is an osculatory packing.

The highest possible exponent is 2, and in Section 1 a
reference was given to the construction of a packing whose local
exponent is everywhere 2 . In the next section we will discuss
reasons for believing that o , the exponent of the osculatory
packings, is the lowest possible exponent. Accordingly, it is
interesting to observe

THEOREM 4.4. The local exponent of an osculatory
packing is constant and equal to o at every point.

Proof. In Theorem 2.3 it was shown that the exponent
of a packing is the supremum of its local exponents. Because
of this and Theorem 3.8, the local exponent of an osculatory
packing can nowhere exceed o . Now suppose that C is an
osculatory packing, =x is a point in the residual set R(C), and
the local exponent e(C,x) is less than o . As e(C,x) = lim e(C,x,r),
r—>0
there exists an T > 0 such that e(C, x, ro) <o . As C is oscula-
N
tory, there exists a positive integer N such that U - |} Dn
n=1
consists of finitely many curvilinear triangles packed in the oscula-
tory fashion. One of these contains x, and as each succeeding
generation of disks is packed into this triangle, the residual set
is fragmented into smaller and smaller curvilinear triangles, one
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of which always contains x . Eventually a stage is reached when

the diameter of the curvilinear triangle containing x is less than

ro- This curvilinear triangle is contained in D(x,r ) . As the
o

exponent for the packing of this curvilinear triangle is o ,
e(C, x, ro) < o is impossible and e(C,x)< ¢ is impossible.

5. Is o the minimum exponent? In addition to considering
the exponent of a packing e(C), it is possible to consider the
Hausdorff dimension of the residual set, dim R(C) . ([3],p.107.)

D.G. Larman [4] has shown that for the packing of an
n-dimensional cube by balls,

inf {dim R(C)} < inf{e(C)} .
C C

H.G. Eggleston [2] has shown that, for the packing of an
equilateral triangle by oppositely oriented equilateral triangles,

inf {dim R(C)) = 283
C log 2

Moreover, this is attained by a packing Co which uses the

largest possible triangle at each stage. Defining the exponent
for triangle packings in terms of the side lengths, we would have
in this case

[>.0] 0 . .
e(C ) = inf {@:2d%< o} = inf{a: = 31'1(2 J)oz<°0}=1og3 '
° i=1 j=1 log 2

If Larman's result holds for triangle packings,

inf {e(€)} = (C ) .
C

One might then expect that for disk packings by disks, inf{e(C)}

)
would be attained by a packing which, by analogy with Eggleston's
construction, uses the largest possible disk at each stage. However,
such a packing is osculatory when D1 is inserted tangent to U .

This evidence is entirely circumstantial but points strongly
to the conjecture that the osculatory exponent, o , is minimal.
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6. A lower Bound for o . In this section, several lower
bounds are derived for o . The best lower bound so far estab-
lished is 1.059 . However, before establishing this number, we
shall obtain the lower bound 1.035 by two methods which motivate
the final analysis. In all cases we work from the fact that

o =inf {a: F(a,a,b,c)< o} .
This follows from Definition 3.9 and Lemma 3.5.

As geometric progressions are easy to test for convergence,
it would seem desirable to find radii a,b, and c¢ so that F(g a, b, c)
could be bounded from below by a geometric progression. We are
led to ask if there exists a curvilinear triangle which can be packed
in the osculatory fashion so that each generation of disks includes
one whose radius belongs to a geometric progression. An affirma-
tive answer is given in

LEMMA 6.1. I X\ = T-N7 (where v = 1+ng , the golden

ratio), then there exists a curvilinear triangle bounded by disks of

2
radii 1,\,\ and such that the first-generation packing disk has

3
radius \

Proof. Assume such an arrangement of disks is possible
and apply Soddy's formula ([1], pp.13-15) for the radius of the
first-generation disk in order to get an equation for \ . One

3 1 2 3
obtains 1/\" =1 +;+—12— +2J1/ +1% £ 112> . The substitution
N
u=x+ )\-1 leads to the equation uz— 2u-4 =0 . As \ must be
positive, the only relevant rootis u=1+V5 =27 . This gives
rise to X =7+ N7 , and the choice )\ = T-+7 is forced by A<1.

LEMMA 6.2.

¢ > —1083 oy 035
= log (T +NT)

First Proof. Applying the Soddy formula again and again,

+2 h
there is always a disk of radius )\N in the N generation of
the osculatory packing of the curvilinear triangle described in
the previous lemma. Moreover, this is the smallest of the 3N—1

disks in the Nth generation.
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Hence
> 0
Fle, 1,0, )> Z 3
N=1

N-1 ( N+2)°‘

A

The right side is a geometric progression of common ratio
32%. The geometric progression diverges unless <1 .

That is,

>’_10g3_ log3 log 3
log A\ log 1/x ~ log (r+N7) °

Calculation shows

log 3
Tog (T > 1.035 .

2
Second Proof. We may break up F(o, 1, \,\ ) into series
for the packing of the curvilinear triangles which result from
the insertion of the first-generation disk. We obtain

2 2 3 2 3 3 3
Fla, 1, 0,07) = Fle, WA A7) +# Fle, ,0,07) + Fla, 4,0, 07) + 00)%.

By Lemma 3.4,

(2) Flarin®) = 2% Fla, 1,0, 0°)

(b) Fla, 1,05,0°) > Flay 25 00) =A% Fla, 4, 1, 1%)
(€) Flas 1,0 10) > Flas a2 on0) = A% Fla, 1,0,07) .

Hence
2 2. 3
Fla, 1,0, 2> 3% Fla, 1, A7)+
And so
3a
2
Fla, 1,0,0°) > —2—
1-3)

This shows that F(o, 1, )\,)\2) diverges if 1-33%=0. A lower
bound for ¢ is again obtained from the equation 3\%=1 .

This bound is unnecessarily low because too much was

sacrificed in estimate (c), F(a, 1, \, )\3) > )\QF(o:, 1,0, )\2) .
The method which we will use to improve this estimate comes
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from the inversion proof in Lemma 3.7 that G(e,a,b,c) con-
verges if and only if F(a,a',b',c') converges. We invert the

3
packed curvilinear triangle bounded by disks of radii 1, \,\
into the packed curvilinear triangle bounded by disks of radii
1N, )\2 . If no radius in the packing is thereby increased by
more than the factor vy, then

3 2
vYFle, 1,0, 07) > Fla, 1,1, 1)

3 - 2
Flo, ,,0) >y ¥ Fla, 1, 0,07) .

Proceeding as in the second proof of Lemma 6.2

)\3(1/

1-22%- "

2
F(Q: '1))\:)\ )>
o

The resulting equation for the lower bound on o is

(6.3) 2%+y %=1,

Computation will show that y_1> X\ ; so this equation gives a

larger value of the lower bound than the equation N =1.

It remains to compute the maximum growth ratio, vy ,
which we know by the corollary of Lemma 3.6 to be of the form

2 2
k /dO , where k is the radius of the circle of inversion and

do is the distance from the curvilinear triangle to the centre of

inversion. Our first task is to find the circle k which inverts

3
the disks 4,\,\ into the disks 1,1, )\2

Since the inversion in k is to leave 1 and )\ invariant,
these circles must be orthogonal to k. Let 141 and X\ be
centred on the positive and negative x-axis respectively of a
cartesian coordinate system, and let them be tangent at the
origin. Then k must pass through the origin tangent to the
x-axis. The centre of k may be chosen on the negative y-axis

so that )\3 lies in the lower half plane and )\2 in the upper
half plane.

3
The point of tangency of X\~ and 1 inverts into the point
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of tangency of )\2 and 1 . It follows that these points are
collinear with the centre of inversion. The centre of inversion
is therefore determined as the intersection of this line with the
y-axis. The radius k is the distance from the centre of in-
version to the origin, the distance d0 is the distance from the

3
centre of inversion to the point of tangency of A\~ and 41 . (The
assertion regarding do requires an easy computation to verify

that the centre of inversion is closer to the point of tangency of

3 3
A and 1 than to the point of tangency of A\~ and X\ .)

The main problem is to find the above points of tangency.
It is no harder to do this in full generality and so we prove

LEMMA 6.4. If a and b are circles of radii a and
b, centred at (a,0) and (-b,0) respectively and if ¢ is a
circle of radius c¢ lying in the upper half plane and tangent to
a and b, then c.a, the point of tangency of ¢ and a, has
coordinates

2bc 2 Jabc(atb+c)

( atb+ctbc/a ’ atb+tctbc/a

) .
Proof. Inverting the circles a,b, and c in the unit
circle centred at the origin, we obtain the following images:
a', the line x=1/2a;
b', the line x =-1/2b;

c!, a circle in the upper half plane tangent to a'
and b'.

c.a will be determined as the inverse of c'. a' .

The coordinates of c'. a' are (1/2a, yo) where Yy is

the y coordinate of the centre of c¢'. As c' is tangentto a'
1, 1 -1 b+a
[ 3 : ty e (—— L ——) = —= :
and b', its radius is > (Za Zb) 2ab and the x coordinate

1

. .04 .
of its centre is —(Z=— + y, may be determined from

-1, _b-a
222t 25) " e
the fact that c' inverts into c, a circle of radius c . Applying
the formula from Lemma 3.6 for the radius of the image of a
given circle under inversion,
2 b
o = 4ab
- -a .2
[y +@=2)%] - (2222
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Simplifying and solving for Y,

_ [atbtc
Yo 4abc

Thus c¢'. a' has coordinates

1 la+b+c
(Za "y 4abc )
In the unit circle centred at the origin, the point (x,y) inverts
X Yy
2, .2 2 2 )
X 1y X +ty
point with coordinate

1 ’a+b+c
2a 4abc
( 1 atb+c '’ 1 atb+c )

+ +
2
4a2 4abc 4a 4abc

into the point ( Thus c'. a' inverts into the

Simplifying these gives the final form of the coordinates of c.a.

COROLLARY. If c is in the lower half plane, the same
formula holds with the second coordinate of c.a taken negative.

3
Applying these results to the circles 1,\, )\2, N we find

2
that 1 and \ are tangent at

3 /3.4 5
2\ -2 )\+)\+)\)

(xpy,)= (53 2 3
14 4 14N

171

3
and 1 and \ are tangent at

4 /.4 5 7
2\ 2N B )
3.4 7 4
14+ N 14\ +)\3+)\

(Xz' YZ) = (

If the centre of the circle of inversion is (0, y3) , the collinearity

of (x1,y‘1), (xz,Yz) and (0,y,) gives
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Y, SV, X (Yi—y‘2 )
3 2 2 Xt
2 2 2 2 2
. . . - d - _
Now it is possible to compute k vy o d =%, +(Y3 Yz) )

-1 2
and finally y = = dcz) /k . Equation 6.3 for the lower bound on
o is

2(.34601)" + (.37203)% = 1
and by computation we obtain

THEOREM 6.5 . o> 1.059

7. Other Packings with Exponent o . There are packings
with exponent o which are not osculatory. We now describe a
whole family of such packings.

Around a disk of radius 1/3 itis possible to place six more
disks of radius 1/3 so that adjacent disks are tangent. This set
of disks may be placed in U leaving a residual set which is the
union of curvilinear triangles, six of the F-type and six of the
G-type. FEach of these curvilinear triangles may then be packed
in the osculatory fashion to complete the packing of U . This
packing clearly has the exponent ¢ .

Moreover, corresponding to every integer N > 3 there is

an analogous packing in which the central disk has radius an and

the N surrounding disks each having radius bN . The values of

a .. and bN are obtained from the equations

N
+2b._=1,
N N
b
—'——N = sin s
+b__
N PN

The first is derived from the requirement that the disks fit
into U ; the second is read off from the right-angled triangle

whose vertices are the centre of U, the centre of a bN disk and

the point of tangency of this bN disk with either of the two
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adjacent bN disks.

Let us denote the resulting packing by CN . For the

corresponding sum let us write

® o

o
= +

= r =ay 6N(af) ,
so that 6N(oz) denotes the sum which arises from the osculatory
packing of the annulus U - ay -
Now the ay disk in CN may be replaced by a copy of

CN scaled down by the ratio 1:a When this process is

N
iterated infinitely often, a packing CT\I is obtained for which

0
o o 20
= rn = 6N(af) + aN 6N(a/) +aN SN(oz) + ...
n=1
) SN(a)
o
1—aN

As a(;\],< 1 for o> 1, this series is convergent if and only if the
series for CN is convergent. Thus the family of packings

CT\I(NE}) all have exponent ¢ .

It is clear that the packings CT\I are not osculatory because

they fail to be osculatory at the centre of U .

Now consider the following obstacle problem. A point is
defined to be strongly avoided by a packing if it is left uncovered
not only by the open disks of the packing but also by their closures.
Is there a packing with exponent ¢ which strongly avoids an
arbitrary given point in the interior of U ?

It is clear that the packings CT\I solve this problem when

the point in question is the centre of U . Let us fix on some
C,IF\I and produce a packing which strongly avoids an arbitrary
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given point X in the interior of U .

The construction of such a packing depends on the fact that
a nest of concentric disks converging to their common centre
can be inverted into a nest of disks converging to any point within
the largest disk, the inversion leaving the largest disk fixed.

Invert X in the circumference of U to X' . The circle
centred at X' and orthogonal to U inverts X to the centre of
U and leaves U invariant. This is a special case of the theorem
([1], pp. 84, 85) that a circle and a pair of inverse points invert
(in another circle) into a circle and a pair of inverse points. The
inversion described above must take the centre of U to X and
any disk containing the centre of U to a disk containing X .

Consider the action of this inversion on any CT\I to produce
a new packing Clk\I! . Topologically the role of X relative to
CT\I' is the same as the role of the centre of U relative to CT\I .
Hence X 1is strongly avoided by Cf\}' . Disks grow and shrink

under this inversion but the maximum growth and shrinkage ratios
are bounded as the interior of U is bounded away from the centre
of inversion. It follows that the exponent o is preserved.

8. Unsolved Problems. In this section, a number of un-
solved problems are listed.

The leading question is whether o is the minimum of all
exponents for the packing of a disk by disks.

Even if this is not the case, an exact determination of o
is of interest. Combining the upper bound proved in |5] with the
lower bound of Theorem 5.5 we have 1.059< ¢ < 1.999971 .

M. Sion has asked what figures other than curvilinear tri-
angles and disks can be packed with disks so that the packing
has exponent o . This opens the whole question of the relevance
of boundary conditions to packing problems. Does it matter if we
pack disks, squares, or arbitrary bounded regions?

In |5] it is shown that the exponent of osculatory packings,
o, is less than 2 and that there exists a packing whose exponent

is 2. DBut these are the only two exponents known to exist. It
would be interesting to know which numbers can be exponents.
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Intuitively one feels that any number between two exponents
should be an exponent. Yet the fact proved in Theorem 1.5,
that the exponent of a packing is equal to the supremum of its
local exponents, suggests that there is no obvious way of com-
bining two packings to obtain one of intermediate exponent,

In [4] it is shown that the infimum of exponents is not less
than the infimum of the Hausdorff dimensions of residual sets.
This result prompts a number of questions. Are these infima
minima and if so, are they attained for the same packing? Is

re((l'l)

n

there a connection between the sum of the series =

n=1
and the measure of the residual set in its Hausdorff dimension
([3], pp. 102-104)?

Finally, there is a question which is likely to be easier
and which bears directly on the obstacle problem of Section 7.
It is pure geometry. Can a packing which begins with an arbi-
trary finite collection of disks be completed to an osculatory
packing? That is, can a finite number of disks be added to

N

U - D to triangulate it?
nL=J'1 n ;

If this can be done, then there is a packing with exponent
¢ which strongly avoids any finite number of points in the interior
of U . For these points may each be covered by separate non-
overlapping disks centred over them and this finite collection of
disks completed to an osculatory packing. Then the disks covering
the points r;lay be replaced by suitably scaled down packings of
the type CN

REFERENCES

1. H.S.M. Coxeter, Introduction to Geometry. John Wiley
and Sons, Inc., New York, 1963.

2. H.G. Eggleston, On Closest packing by equilateral
triangles. Proc. Camb. Phil. Soc., 49 (1953), 26-30.

3. W. Hurewiscz and H. Wallman, Dimension Theory.
Princeton University Press, Princeton, 1948.

4. D.G. Larman, On the exponent of convergence of a packing

414

https://doi.org/10.4153/CMB-1967-038-2 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1967-038-2

of spheres. Mathematika, 13 (1966), 57-59.

5. Z.A. Melzak, Infinite packings of disks. Canad. J. Math.,
18 (1966), 838-852.

6. S.N. Mergelyan, Uniform approximations to functions of
a complex variable. Amer. Math. Soc. Transl. No. 101

(1954), p.21.

7. S. Saks, Theory of the Integral. (Monographie Matematyczne
7), Warsyawa- Lwow, 1937.

8. O. Wesler, An infinite packing theorem for spheres.
Proc. Amer. Math. Soc., 11 (1960), 324-326.

University of Toronto

415

https://doi.org/10.4153/CMB-1967-038-2 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1967-038-2

