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In loving memory of my beloved miniature dachshund Maddie (16 March 2002 – 16
March 2020). We consider nonlocal differential equations with convolution
coefficients of the form

−M
((

a ∗ (g ◦ |u|))(1)
)
u′′(t) = λf

(
t, u(t)

)
, t ∈ (0, 1),

in the case in which g can satisfy very generalized growth conditions; in addition, M
is allowed to be both sign-changing and vanishing. Existence of at least one positive
solution to this equation equipped with boundary data is considered. We
demonstrate that the nonlocal coefficient M allows the forcing term f to be free of
almost all assumptions other than continuity.

Keywords: Nonlocal differential equation; positive solution; convolution; Harnack
inequality; topological fixed point theory

2020 Mathematics Subject Classification: Primary: 33B15; 34B10; 34B18; 42A85;
Secondary: 44A35; 26A33; 47H30

1. Introduction

For two L1((0, +∞)) functions, a and b, let (a ∗ b)(t) denote the finite convolution
of a and b at some t � 0 – i.e.,

(a ∗ b)(t) :=
∫ t

0

a(t − s)b(s) ds, t � 0.

In this paper we consider the following convolution-type differential equation, where
λ > 0 is a parameter.

−M
((

a ∗ (g ◦ |u|))(1)
)
u′′(t) = λf

(
t, u(t)

)
, t ∈ (0, 1) (1.1)

As will be further clarified in § 2, we assume that M is continuous and possibly both
sign-changing and vanishing. Moreover, a ∈ L1((0, 1)), which is assumed to be a.e.
positive, allows for various nonlocal operators to be captured by the convolutional
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2 C. S. Goodrich

formulation. For example, if we set

a(t) :=
1

Γ(α)
tα−1, t > 0,

where 0 < α < 1, then (a ∗ (g ◦ u))(1) is the α-th order Riemann–Liouville frac-
tional integral of g ◦ u at t = 1. Fractional integrals and derivatives are a well studied
class of nonlocal operators – see, for example, [1, 7, 19, 32, 33, 45, 46, 53] for
some of the research in this area, together with the monographs [35, 47].

Our primary contribution herein is to prove the existence of at least one positive
solution to (1.1) when subjected to boundary data and, in particular, to do so whilst
making the following contributions.

• We require only that g satisfy the growth bound

0 � ξ1(u) � g(u) � ξ2(u), u � 0, (1.2)

where both ξ1 and ξ2 are strictly increasing functions. Figure 1 illustrates a pos-
sible configuration of ξ1, ξ2, and g satisfying (1.2). Notice that this includes the
model case, in which g(u) := up for some p > 0. However, this assumption is more
general than other recent assumptions. For example, it has been assumed previ-
ously [29, 31] that g satisfies p-q growth, i.e., c1u

p � g(u) � c2 + c3u
q, which is

clearly a special case of the above with ξ1(u) := c1u
p and ξ2(u) := c2 + c3u

q.
Similarly, it has been assumed previously [24] that g is bounded by convex
(or concave) functions. Once again, this is obviously a special case in which one
further requires the convexity or concavity of the ξi functions. So, the general-
ization investigated here really gets to the heart of the matter inasmuch as what
assumptions on g are necessary – i.e., it is sufficient to assume that g is merely
bounded above and below by strictly increasing functions. All other assumptions
(e.g., convexity, concavity, particular growth regimes such as polynomial growth)
are superfluous.

• We characterize in a numerically precise way the fact that the forcing term f
satisfies essentially no restriction other than continuity provided that M assumes
both very small and very large positive values. Whilst this observation is not new
per se, for it can be recovered in a general sense even from our original work with
Kirchhoff equations, cf., [22, Theorem 2.6], in this work we provide a more precise
characterization of this phenomenon by utilizing a different growth assumption
on f . Essentially, we demonstrate that if M is very large at some point and close
to zero at another point, then nearly the only assumption needed of f is that
it is continuous. This phenomenon is unusual in the theory of boundary value
problems (cf., Erbe and Wang [18]), though it has been characterized in the
context of boundary value problems with nonlocal boundary conditions [20, 21].
In any case, we demonstrate that this phenomenon exists even under the more
general condition imposed on the function g.

Let us mention that an important model case of (1.1) occurs when a(t) ≡ 1 and
g(u) := up for p � 1. In this case, equation (1.1) reduces to

−M
(
‖u‖p

Lp

)
u′′(t) = λf

(
t, u(t)

)
. (1.3)
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A unified characterization of convolution coefficients 3

Figure 1. Illustration of the admissible region for the graph of g satisfying condition
(1.2).

In case we instead set a(t) =
1

Γ(α)
tα−1, 0 < α < 1, as mentioned above, then (1.1)

reduces to

−M
((

Iα
0+(g ◦ |u|))(1)

)
u′′(t) = λf

(
t, u(t)

)
.

where by (Iα
0+u)(t) we denote the α-th order Riemann–Liouville fractional integral

of u at t.
More generally, nonlocal equations of the form (1.3), or its relatives, have been

well studied in recent years. Two model cases seem to have attracted the most
attention. One is (1.3) and its PDE equivalent

−M
(
‖u‖p

Lp

)
Δu(x) = λf

(
x, u(x)

)
, x ∈ Ω ⊂ R

n, (1.4)

whereas the other is

−M
(
‖u′‖p

Lp

)
u′′(t) = λf

(
t, u(t)

)
, 0 < t < 1 (1.5)

and its PDE equivalent

−M
(
‖Du‖p

Lp

)
Δu(x) = λf

(
x, u(x)

)
, x ∈ Ω ⊂ R

n. (1.6)

Each of (1.3)–(1.6) has its origins in the steady-state version of the Kirchhoff-type
wave PDE

utt − M
(
‖Du‖p

Lp

)
Δu(x) = λf

(
x, u(x)

)
, x ∈ Ω ⊂ R

n.

Regarding equations of the type (1.3)–(1.4) some recent contributions include
papers by Alves and Covei [3], Corrêa [14], Corrêa, Menezes, and Ferreira [15],
do Ó, Lorca, Sánchez, and Ubilla [17], Goodrich [22], Stańczy [51], Wang, Wang,
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4 C. S. Goodrich

and An [52], Yan and Ma [54], and Yan and Wang [55]. On the other hand, regard-
ing equations of the type (1.5)–(1.6) some recent contributions include papers by
Afrouzi, Chung, and Shakeri [2], Ambrosetti and Arcoya [4], Azzouz and Bensedik
[5], Boulaaras [8], Boulaaras and Guefaifia [9], Chung [12], Delgado, Morales-
Rodrigo, Santos Júnior, and Suárez [16], Graef, Heidarkhani, and Kong [36], Infante
[38, 39], and Santos Júnior and Siciliano [48]. In addition to Kirchhoff-like non-
local differential operators, there is, from a functional analytic viewpoint, a very
closely related literature on differential equations equipped with nonlocal bound-
ary operators – see, for example, the papers by Infante, et al. [6, 10, 11, 13, 37,
40–44] and Yang [56, 57], which in addition to the associated mathematical theory,
demonstrate applications to the deformation of a beam under a load, the thermo-
dynamics of a heated filament, and nuclear reactor theory. Additionally, Shibata
[49, 50], along with Goodrich [28], has provided some nonexistence results for non-
local ODEs and nonlocal radially symmetric PDEs of the types mentioned above.

Recently, in the setting of both nonlocal ODEs and nonlocal radially symmetric
PDEs, we have developed [23, 25–27], together with Lizama [34], a very general
methodology for making minimal assumptions of M . The methodology utilizes spe-
cialized order cones together with topological fixed point theory. An advantage of
this methodology is that we are able to make minimal assumptions on the coefficient
function M . For example, in the study of positive solutions of nonlocal differential
equations it is almost always assumed that the nonlocal coefficient M satisfies one
of the following three conditions.

(1) M(t) > 0 for all t � 0 – see, for example, [14, 15, 17, 51, 52]

(2) M(t) can only vanish at 0 or ‘at +∞’ - - see, for example, [4]

(3) M(t) > 0 on a neighbourhood of zero – see, for example, [48]

One can see why such assumptions would be made since if M(t) = 0, then the
differential equation degenerates. Since we are able, by means of our theory, to
precisely localize the argument of M , i.e., (a ∗ (g ◦ |u|))(1), we can avoid making
such sweeping assumptions – cf., remark 2.9. Indeed, instead of having to assume
that M(t) > 0 on a pre-specified subset of the real line, our theory simply requires
M(t) to be positive somewhere. This is quite different than (1)–(3) above – even
than (3), which is the least restrictive of the lot.

So, here we continue the development of this theory by clarifying the general-
ity of the function g and also focussing on the interaction between the behaviour
of M and the assumptions required of f . And, in particular, we demonstrate
that the good aspects of our theory continue to work properly even under the
more general assumptions on g utilized herein – not only the minimal assumptions
required of M , but, furthermore, how M itself can obviate the usual assumptions
on f .

2. Main result

Throughout this section we denote by ‖ · ‖∞ the usual maximum norm on [0, 1],
and we will always work within the Banach space C ([0, 1]) equipped with this norm.
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In addition, we will let 1 denote the constant function 1 : R → {1}. Similarly, by
0 we will denote the constant function 0 : R → {0}. We will also use the notation

(a ∗ 1)(c, d) :=
∫ d

c

a(1 − s) ds

for any 0 � c < d � 1.
We next list the assumptions imposed on the various functions appearing in

(1.1). In addition, since our approach to studying (1.1) will be via studying the
fixed points of an associated Hammerstein integral operator, we will equip (1.1)
with boundary data via a Green’s function, which we henceforth denote by G. The
properties of G are listed in condition (H2) below. Observe that condition (H1.2)
implies that (a ∗ 1)(1) > 0, a fact that will be used in the sequel without explicit
mention.

H1: The functions M : [0, +∞) → R, f : [0, 1] × [0, +∞) → [0, +∞), g :
[0, +∞) → [0, +∞), and a : (0, 1] → [0, +∞) satisfy the following proper-
ties.
(1) Each of M , f , and g is continuous.

(2) a ∈ L1((0, 1]; [0, +∞)) is a.e. positive.

(3) There exist numbers 0 < ρ1 < ρ2 such that M(t) > 0 for t ∈ [ρ1, ρ2].

(4) There exist strictly increasing continuous functions ξ1, ξ2 : [0, +∞) →
[0, +∞) such that

ξ1(u) � g(u) � ξ2(u), u � 0.

H2: The continuous function G : [0, 1] × [0, 1] → [0, +∞) satisfies each of the
following.
(1) There exist numbers 0 � c < d � 1 and a constant η0 := η0(c, d) ∈ (0, 1]

such that

min
t∈[c,d]

G(t, s) � η0G (s), s ∈ [0, 1],

where G : [0, 1] → [0, +∞) denotes the function G (s) := max
t∈[0,1]

G(t, s).

(2) With η0, c, and d as in (H2.1), and both ρ1 and ρ2 as in (H1.3), there
exist constants c1 > 0, c2 � 0, and c3 > 0 such that

f(t, u) � c1u, (t, u) ∈ [c, d]

×
[
η0ξ

−1
2

(
ρ1

(a ∗ 1)(1)

)
,

1
η0

ξ−1
1

(
ρ1

(a ∗ 1)(c, d)

)]
and that

f(t, u) � c2 + c3u, (t, u) ∈ [0, 1] ×
[
0,

1
η0

ξ−1
1

(
ρ2

(a ∗ 1)(c, d)

)]
.
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6 C. S. Goodrich

We will study problem (1.1), equipped with suitable boundary data, by means
of the operator T : C ([0, 1]) → C ([0, 1]) defined by

(Tu)(t) := λ

∫ 1

0

(
M
((

a ∗ (g ◦ |u|))(1)
))−1

G(t, s)f
(
s, u(s)

)
ds.

It will be convenient to restrict the domain of T to specialized sets, which allow us
to provide precise control over the argument of M . Indeed, this is the strategy that
permits us to avoid wide ranging assumptions on M such as the uniform positivity
of M . In particular, we will work within the order cone

K :=
{

u ∈ C
(
[0, 1]

)
: u � 0 and min

t∈[c,d]
u(t) � η0‖u‖∞

}
.

Furthermore, for any ρ � 0, define the set V̂ρ ⊆ K by

V̂ρ :=
{

u ∈ K :
(
a ∗ (g ◦ |u|))(1) < ρ

}
.

Observe that V̂ρ is (relatively) open in K . Crucially, we note that

∂V̂ρ :=
{

u ∈ K :
(
a ∗ (g ◦ |u|))(1) = ρ

}
,

which gives us very precise control over the argument of M . Since whenever T
is restricted to a subset of K it holds that u ≡ |u|, henceforth we will omit the
absolute value when performing calculations with T .

We begin by providing a result that localizes u in either the case u ∈ V̂ρ or
u ∈ ∂V̂ρ for some ρ > 0. This lemma will be used repeatedly in the sequel. It also
establishes that the V̂ρ set is bounded, with respect to ‖ · ‖∞, for each ρ � 0 – a
necessary condition for the application of the topological fixed theorem that we
employ later.

Lemma 2.1. Suppose that conditions (H1)–(H2) are satisfied. Then for any ρ > 0
such that

ξ−1
2

(
ρ

(a ∗ 1)(1)

)
> 0,

whenever u ∈ ∂V̂ρ, it follows that

ξ−1
2

(
ρ

(a ∗ 1)(1)

)
< ‖u‖∞ <

1
η0

ξ−1
1

(
ρ

(a ∗ 1)(c, d)

)
.

In addition, for any ρ > 0, whenever u ∈ V̂ρ, it follows that

‖u‖∞ <
1
η0

ξ−1
1

(
ρ

(a ∗ 1)(c, d)

)
.
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A unified characterization of convolution coefficients 7

Proof. Let us first suppose that u ∈ ∂V̂ρ for some ρ > 0. Then, on the one hand,
we calculate

ρ =
(
a ∗ (g ◦ u)

)
(1) <

(
a ∗ (ξ2 ◦ u)

)
(1) �

(
a ∗ (ξ2 ◦ ‖u‖∞)1

)
(1)

= ξ2

(‖u‖∞)(a ∗ 1)(1).
(2.1)

Then using the fact that ξ2 is strictly increasing, it follows from (2.1) that

‖u‖∞ > ξ−1
2

(
ρ

(a ∗ 1)(1)

)
. (2.2)

On the other hand, we calculate

ρ =
(
a ∗ (g ◦ u)

)
(1) >

(
a ∗ (ξ1 ◦ u)

)
(1)

�
∫ d

c

a(1 − s)ξ1

(
u(s)

)
ds

�
∫ d

c

a(1 − s)ξ1

(
η0‖u‖∞

)
ds

= ξ1

(
η0‖u‖∞

)
(a ∗ 1)(c, d)

(2.3)

Then using the fact that ξ1 is strictly increasing, it follows from (2.3) that

‖u‖∞ <
1
η0

ξ−1
1

(
ρ

(a ∗ 1)(c, d)

)
. (2.4)

And so from both (2.2) and (2.4) we obtain, for any ρ > 0, the localization estimate

u ∈ ∂V̂ρ =⇒ ξ−1
2

(
ρ

(a ∗ 1)(1)

)
< ‖u‖∞ <

1
η0

ξ−1
1

(
ρ

(a ∗ 1)(c, d)

)
.

Next assume that u ∈ V̂ρ for some ρ > 0. Then, by means of the preceding
calculations, we see that the localization

u ∈ V̂ρ =⇒ ‖u‖∞ <
1
η0

ξ−1
1

(
ρ

(a ∗ 1)(c, d)

)
.

holds. And this completes the proof. �

Remark 2.2. We wish to emphasize at this juncture that even though the proof of
lemma 2.1 is similar to the related results [24, Lemma 2.3], [26, Lemma 2.4], and
[31, Lemma 2.8], it, nonetheless, encompasses far greater generality. Indeed, there
is no requirement that either ξ1 or ξ2 satisfy any particular type of growth (e.g.,
polynomial), and there is no requirement that either function satisfy any convexity
or concavity assumption. In addition, even in the model case in which g(u) = up,
here the cases 0 < p < 1 and p � 1 are treated in a unified fashion. And this is not
something that has been accomplished before, to the best of our knowledge.

Next we prove a technical lemma regarding how large M(t) needs to be in order
for a certain inequality to be satisfied. This result will be used in the existence
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8 C. S. Goodrich

theorem later. Note that in both the statement of lemma 2.3 as well as the sequel
we use the following notation:

G[a,b] := max
t∈[0,1]

∫ b

a

G(t, s) ds,

for any 0 � a < b � 1.

Lemma 2.3. Fix ρ > 0. Assume that each of conditions (H1) and (H2) is satisfied
and that ξ−1

2 (
ρ

(a ∗ 1)(1)
) > 0. If u ∈ ∂V̂ρ and

M(ρ) � λG[0,1]

(
c2 +

c3

η0
ξ−1
1

(
ρ

(a ∗ 1)(c, d)

))(
ξ−1
2

(
ρ

(a ∗ 1)(1)

))−1

,

then

λ
(
c2 + c3‖u‖∞

)(
M(ρ)

)−1
G[0,1] � ‖u‖∞.

Proof. First recall that if u ∈ ∂V̂ρ, then from lemma 2.1 it follows that

0 < ξ−1
2

(
ρ

(a ∗ 1)(1)

)
< ‖u‖∞ <

1
η0

ξ−1
1

(
ρ

(a ∗ 1)(c, d)

)
. (2.5)

Note that

λ
(
c2 + c3‖u‖∞

)(
M(ρ)

)−1
G[0,1] � ‖u‖∞ (2.6)

if and only if

M(ρ) �
λ (c2 + c3‖u‖∞) G[0,1]

‖u‖∞ . (2.7)

Now, using (2.5) note that

λ (c2 + c3‖u‖∞) G[0,1]

‖u‖∞

<

(
ξ−1
2

(
ρ

(a ∗ 1)(1)

))−1

λ

(
c2 + c3

1
η0

ξ−1
1

(
ρ

(a ∗ 1)(c, d)

))
G[0,1]

= λG[0,1]

(
c2 +

c3

η0
ξ−1
1

(
ρ

(a ∗ 1)(c, d)

))(
ξ−1
2

(
ρ

(a ∗ 1)(1)

))−1

. (2.8)

Then, upon combining (2.8) with (2.6)–(2.7) we see that if

M(ρ) � λG[0,1]

(
c2 +

c3

η0
ξ−1
1

(
ρ

(a ∗ 1)(c, d)

))(
ξ−1
2

(
ρ

(a ∗ 1)(1)

))−1

,

then

λ
(
c2 + c3‖u‖∞

)(
M(ρ)

)−1
G[0,1] � ‖u‖∞,

which completes the proof. �
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A unified characterization of convolution coefficients 9

Lemma 2.4. Assume that conditions (H1)–(H2) hold. Then T : V̂ρ2 \ V̂ρ1 → K is
completely continuous and, in particular,

T
(
V̂ρ2 \ V̂ρ1

)
⊆ K .

Proof. The proof is similar to part of the proof of [20, Theorem 3.1], for example.
Therefore, we omit the proof. �

We finalize our preliminary lemmata with the following result, known as the Guo-
Krasnosel’skĭı theorem – see, for example, [58]. This will be the topological fixed
point theorem that we utilize in our existence theorem.

Lemma 2.5. Let B be a Banach space and let K ⊆ B be a cone. Assume that
Ω1 and Ω2 are bounded open sets contained in B such that 0 ∈ Ω1 and Ω1 ⊆ Ω2.
Assume, further, that T : K ∩ (Ω2 \ Ω1) → K is a completely continuous operator.
If either

(1) ‖Ty‖ � ‖y‖ for y ∈ K ∩ ∂Ω1 and ‖Ty‖ � ‖y‖ for y ∈ K ∩ ∂Ω2; or

(2) ‖Ty‖ � ‖y‖ for y ∈ K ∩ ∂Ω1 and ‖Ty‖ � ‖y‖ for y ∈ K ∩ ∂Ω2;

then T has at least one fixed point in K ∩ (Ω2 \ Ω1).

We now present our existence theorem.

Theorem 2.6. Assume that each of conditions (H1) and (H2) holds. In addition,
assume both that

c1λη0G[c,d]

M (ρ1)
� 1 (2.9)

and that

M(ρ2) � λG[0,1]

(
c2 +

c3

η0
ξ−1
1

(
ρ2

(a ∗ 1)(c, d)

))(
ξ−1
2

(
ρ2

(a ∗ 1)(1)

))−1

. (2.10)

If

g(0) <
ρ1

(a ∗ 1)(1)
,

then (1.1) equipped with the boundary data inherited from the Green’s function G
has at least one positive solution, say u0, such that

u0 ∈ V̂ρ2 \ V̂ρ1 .

Moreover, u0 satisfies the localization

ξ−1
2

(
ρ1

(a ∗ 1)(1)

)
< ‖u0‖∞ <

1
η0

ξ−1
1

(
ρ2

(a ∗ 1)(c, d)

)
.
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10 C. S. Goodrich

Proof. First of all, by lemma 2.4 we note that

T
(
V̂ρ2 \ V̂ρ1

)
⊆ K ,

where T is completely continuous on its domain. Furthermore, we note that

0 ∈ V̂ρ1

because (
a ∗ (g ◦ 0)1

)
(1) = g(0)(a ∗ 1)(1) < ρ1

by assumption. And, in addition, we see that

V̂ρ1 ⊆ V̂ρ2

owing both to the definition of V̂ρ and to the fact that ρ1 < ρ2. Finally, by
lemma 2.1 the sets V̂ρi

, i ∈ {1, 2}, are bounded. So, each of the technical conditions
in lemma 2.5 is satisfied.

We first demonstrate that for each u ∈ ∂V̂ρ1 it follows that

‖Tu‖∞ � ‖u‖∞; (2.11)

that is, T is a cone expansion on ∂V̂ρ1 . To this end, first note that since u ∈ ∂V̂ρ1

it follows that (
a ∗ (g ◦ u)

)
(1) = ρ1. (2.12)

Next recall that f satisfies the growth estimate

f(t, u) � c1u, (t, u) ∈ [c, d] ×
[
η0ξ

−1
2

(
ρ1

(a ∗ 1)(1)

)
,

1
η0

ξ−1
1

(
ρ1

(a ∗ 1)(c, d)

)]
.

(2.13)

Note that whenever u ∈ ∂V̂ρ1 , it follows both that

u(t) � η0‖u‖∞ � η0ξ
−1
2

(
ρ1

(a ∗ 1)(1)

)
, t ∈ [a, b]

and that

u(t) � ‖u‖∞ � 1
η0

ξ−1
1

(
ρ1

(a ∗ 1)(c, d)

)
, t ∈ [0, 1].
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Consequently, the growth estimate (2.13) is satisfied for any u ∈ ∂V̂ρ1 . Then it
follows from a combination of both (2.12) and (2.13) that, for each t ∈ [0, 1],

(Tu)(t) = λ

∫ 1

0

(
M (ρ1)

)−1
G(t, s)f

(
s, u(s)

)
ds

� λ

M (ρ1)

∫ 1

0

G(t, s)c1u(s) ds

� c1λ

M (ρ1)

∫ d

c

G(t, s)η0‖u‖∞ ds

�
(

c1λη0

M (ρ1)

∫ d

c

G(t, s) ds

)
‖u‖∞.

(2.14)

Now taking the maximum over t ∈ [0, 1] on both sides of (2.14) yields

‖Tu‖∞ �
(

c1λη0

M (ρ1)
max
t∈[0,1]

∫ d

c

G(t, s) ds

)
‖u‖∞ =

c1λη0G[c,d]

M (ρ1)
‖u‖∞. (2.15)

Finally, using assumption (2.9) in the statement of the theorem, we conclude from
inequality (2.15) that

‖Tu‖∞ �
c1λη0G[a,b]

M (ρ1)︸ ︷︷ ︸
�1

‖u‖∞ � ‖u‖∞. (2.16)

So, inequality (2.16) implies that T is a cone expansion on ∂V̂ρ1 – that is, inequality
(2.11) is satisfied.

We next demonstrate that for each u ∈ ∂V̂ρ2 it follows that

‖Tu‖∞ � ‖u‖∞; (2.17)

that is, T is a cone compression on ∂V̂ρ2 . To this end, first note that since u ∈ ∂V̂ρ2

it follows that (
a ∗ (g ◦ u)

)
(1) = ρ2. (2.18)

Next recall that f satisfies the growth estimate

f(t, u) � c2 + c3u, (t, u) ∈ [0, 1] ×
[
0,

1
η0

ξ−1
1

(
ρ2

(a ∗ 1)(c, d)

)]
. (2.19)

Similar to the first part of the proof, whenever u ∈ ∂V̂ρ2 it follows that

u(t) � ‖u‖∞ � 1
η0

ξ−1
1

(
ρ2

(a ∗ 1)(c, d)

)
, t ∈ [0, 1], (2.20)

where we, once again, have used lemma 2.1; in other words, condition (H2) implies
that for each u ∈ ∂V̂ρ2 it follows that f(t, u(t)) � c2 + c3u(t), t ∈ [0, 1]. Then from
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12 C. S. Goodrich

(2.18)–(2.20), for each t ∈ [0, 1], we deduce that

(Tu)(t) = λ

∫ 1

0

(
M (ρ2)

)−1
G(t, s)f

(
s, u(s)

)
ds

� λ

M (ρ2)

∫ 1

0

G(t, s)
(
c2 + c3u(s)

)
ds

� λ

M (ρ2)

∫ 1

0

G(t, s)
(
c2 + c3‖u‖∞

)
ds.

(2.21)

Taking the maximum over t ∈ [0, 1] on both sides of inequality (2.21) yields

‖Tu‖∞ � λ

M (ρ2)
max
t∈[0,1]

∫ 1

0

G(t, s)
(
c2 + c3‖u‖∞

)
ds =

λG[0,1]

M (ρ2)
(
c2 + c3‖u‖∞

)
.

(2.22)
Finally, an application of lemma 2.3 to inequality (2.22), keeping in mind
assumption (2.10), implies that

‖Tu‖∞ �
λG[0,1]

M (ρ2)
(
c2 + c3‖u‖∞

)
� ‖u‖∞. (2.23)

Thus, (2.23) implies the desired inequality (2.17).
All in all, then, by lemma 2.5 we deduce the existence of

u0 ∈ V̂ρ2 \ V̂ρ1

such that Tu0 ≡ u0. And this function u0 is, therefore, a positive solution of (1.1)
equipped with the boundary data inherited from G. Finally, the conclusion of
lemma 2.1 implies the localization

ξ−1
2

(
ρ1

(a ∗ 1)(1)

)
< ‖u0‖∞ <

1
η0

ξ−1
1

(
ρ2

(a ∗ 1)(c, d)

)
.

And this completes the proof. �

Remark 2.7. Let us consider what conditions (2.9)–(2.10) imply regarding the
constants c1, c2, and c3 appearing in the growth condition (H2.2) imposed on the
forcing function f in (1.1). Figure 2 provides an idealized drawing of the lower and
upper bounding functions for the graph of f . In the drawing, the numbers α1, α2,
and α3 are defined by

α1 := η0ξ
−1
2

(
ρ1

(a ∗ 1)(1)

)
and

αi :=
1
η0

ξ−1
1

(
ρi

(a ∗ 1)(c, d)

)
, i ∈ {2, 3}.

That is, the αi’s are the bounds on the u variable for which (t, u) → f(t, u) satisfies
the various growth restrictions in condition (H2.2).
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Figure 2. The light shaded region shows where the graph of f can live. The dark shaded
region is the set E0 referenced in remark 2.7. The numbers αi, i ∈ {1, 2, 3}, are defined
in remark 2.7.

Note first that (2.9) is equivalent to

c1 � M (ρ1)
λη0G[c,d]

so that as M(ρ1) → 0+, it follows that the lower bound on c1 tends to 0. More
precisely and as in figure 2, define E0 ⊂ [0, +∞) by

E0 :=
{

(u, v) ∈ R
2 : η0ξ

−1
2

(
ρ1

(a ∗ 1)(1)

)
� u � 1

η0
ξ−1
1

(
ρ1

(a ∗ 1)(c, d)

)
, 0 � v � c1u

}
.

Then, denoting by m(E0) the Lebesgue measure of the set E0, we see that

lim
M(ρ1)→0+

m (E0) = 0.

In other words, as M(ρ1) tends to zero, the restriction f(t, u) � c1u is obviated.
On the other hand, (2.10) is equivalent to

M(ρ2) � λη0G[0,1]

(
c2 +

c3

η0
ξ−1
1

(
ρ

(a ∗ 1)(c, d)

))(
ξ−1
2

(
ρ

(a ∗ 1)(1)

))−1

.

So, in a similar way, this implies that if there exists ρ2 such that M(ρ2) � 1, then
c2 and c3 can be very large, thus implying that the upper bound on f is very mild
in this case. Indeed, in terms of the drawing in figure 2, both the slope and the
y-intercept of the line u → c2 + c3u will tend to +∞ as M(ρ2) → +∞, which means
that the upper bound on f becomes less and less restrictive. Thus, in a simplified
sense, we see that if M is alternatively very large somewhere and very close to
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zero somewhere, then the restrictions on f are obviated, and so, there are then
essentially no restrictions on f other than continuity (and nonnegativity).

We conclude with an example in order to clarify the application of theorem 2.6.
The example will demonstrate how the nonlocal coefficient M can eliminate nearly
all restrictions other than continuity and nonnegativity from f .

Example 2.8. Let

g(t) := t + et sin2 t

and

M(t) :=

⎧⎪⎨⎪⎩
−3 + t, 0 � t � 3
(t − 3)(5 − t), 3 � t � 5
−(t − 5)2, t � 5

.

In addition, set a ≡ 1 and

G(t, s) :=

{
t(1 − s), 0 � t � s � 1
s(1 − t), 0 � s � t � 1

.

Then G equips (1.1) with Dirichlet boundary conditions so that we are
considering the problem

−M
(
1 ∗ (g ◦ |u|)(1)

)
u′′(t) = λf

(
t, u(t)

)
, 0 < t < 1

u(0) = 0

u(1) = 0.

(2.24)

Now, one can show that

ξ1(t) := t � g(t) � e2t =: ξ2(t).

Observe that ξ−1
1 (t) = t and ξ−1

2 (t) = ln
√

t. In addition, for the Green’s function

G it is known (see Erbe and Wang [18], for example) that one may choose c :=
1
4
,

d :=
3
4
, and η0 =

1
4
. Then we calculate

G[c,d] = max
t∈[0,1]

∫ 3
4

1
4

G(t, s) ds =
15
32

and

G[0,1] = max
t∈[0,1]

∫ 1

0

G(t, s) ds =
1
2
.

In addition, since a ≡ 1, it follows that

(a ∗ 1)(1) = (1 ∗ 1)(1) = 1
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and that

(a ∗ 1)(c, d) = (1 ∗ 1)
(

1
4
,
3
4

)
:=
∫ 3

4

1
4

ds =
1
2
.

Finally, set, for 0 < ε1 < 1,

ρ1 := 3 + ε1

and

ρ2 := 4.

Note that

g(0) = 0 <
ρ1

(1 ∗ 1)(1)
= ρ1.

Then condition (2.9) is satisfied provided that

ε1 (2 − ε1) = M (3 + ε1) � 15
128

c1λ, (2.25)

whereas condition (2.10) is satisfied provided that

1 = M(4) = M (ρ2)

� λG[0,1]

(
c2 +

c3

η0
ξ−1
1

(
ρ2

(a ∗ 1)(c, d)

))(
ξ−1
2

(
ρ2

(a ∗ 1)(1)

))−1

=
1
2
λ
(
c2 + 32c3

) 1
ln 2

=
1

ln 4
λ
(
c2 + 32c3

)
,

which is equivalent to

c2 + 32c3 � ln 4
λ

. (2.26)

Now, since

lim
ε1→0+

ε1 (2 − ε1) = 0,

it follows that inequality (2.25) can be satisfied for any λ and c1 provided that
ε1 is chosen sufficiently close to 0. So, given any forcing term f satisfying both
(H1)–(H2) and inequality (2.26), there exists ε1 > 0 sufficiently small such that by
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16 C. S. Goodrich

Figure 3. Illustration of the graphs of ξ1, ξ2, and g in example 2.8. The shaded region is
the area bounded between the graphs of ξ1 and ξ2 – i.e., the admissible region for the
graph of g.

theorem 2.6 problem (2.24) admits a positive solution, say

u0 ∈ V̂4 \ V̂3+ε1 ,

where u0 satisfies the localization

ln
√

3 + ε1 = ξ−1
2

(
ρ1

(1 ∗ 1)(1)

)
< ‖u0‖∞ <

1
η0

ξ−1
1

(
ρ2

(1 ∗ 1)
(

1
4 , 3

4

)) = 32.

Finally, observe since

lim
λ→0+

ln 4
λ

= +∞,

it follows from condition (2.25) that any f ∈ C ([0, +∞); [0, +∞)) there exists λ0 >
0 sufficiently small such that for each λ ∈ (0, λ0) problem (2.24) admits a positive
solution. In other words, there is no growth restriction on f .

Remark 2.9. Note that the function g in example 2.8

(1) alternates between concave and convex;

(2) alternates between increasing and decreasing; and

(3) does not satisfy

g(u) � c2 + c3u
q,

for any 1 � q < +∞, c2 � 0, and c3 > 0, seeing as g grows exponentially.

This is seen by the graph of g, which is provided in figure 3. Observation (1) implies
that the results of [24, 30] cannot be applied. Observation (2) also implies that the
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results of [24, 30] cannot be applied. And observation (3) implies that the results
of [22, 25–27, 29, 31] cannot be applied. Moreover, and as discussed in § 1, other
earlier results in the ODEs setting, such as [14, 15, 17, 51, 52], cannot be applied
due both to the sign-changing and vanishing nature of the nonlocal coefficient M as
defined in (2.24); in particular, both lim

t→∞M(t) = −∞ and M(0) < 0 in contrast to

the restrictions imposed (albeit in the PDEs setting) in [4] and [48], respectively.
Therefore, the results presented herein are genuinely more broadly applicable than
those previously reported in the literature.
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