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Introduction

This paper is concerned with versions of Bernstein’s inequality for Haus-
dorff locally compact Abelian groups. The ideas used are suggested by Exercise 12,

p. 17 of Katznelson’s book [4].

The author would like to thank Professor Robert Edwards for his many

helpful suggestions throughout the work for this paper.

1. Definitions and some general results

Let G be a Hausdorff locally compact Abelian group, I its character group,
both written additively. The Haar measures on G, I' are denoted by 4, 6 respec-
tively, and are chosen so that Plancherel’s theorem holds. We will denote by C(G)
(respectively Co(G), Cyo(G)) the space of bounded continuous functions (respec-
tively continuous functions which vanish at infinity, continuous functions with

compact support) on G.

Let L(G) be a translation-invariant linear subspace of L*(G), pe[1, o], with

the following properties:
(@) L'+ L(G) = L(G);
(b) there is a norm ” . ” 1. on L such that
[feefle = felo 7]
for all ke LY(G), fe L(G).

Whenever g € L*(G), Z(g) denotes the spectrum of g (see [3], (40.21)). It is

easily shown that
88
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(L.1) = U Xg=¢).

¢ € Coo(G)

Since for fe L(G), ¢ € Cyo(G), it follows that f* ¢ € L*(G), we are guided by.(1.1)
to extend the definition of spectrum to arbitrary fe L(G): we retain the same

notation, and put

1.2) = U Z(fx9).
¢ € Coo(G)

It follows from (1.2) that

1.3) I(r.f) = Z(f)
for all fe L(G), a € G, where 1, is the translation operator defined by
7,f(x) = f(x — a).

If the Fourier transform of a function fe LP(G) is defined as in [2], 1.1, then it is
straightforward to show that

(1.4) =) = [f1,

where [ f] denotes the support of the quasimeasure f. Note also that when p = oo,

f is actually a pseudomeasure. .
Let K be any subset of I'. We shall write

L(G) = {fe LG): X)) = K},
ﬂllz(a) = sup { ” Taf_f”L :fE LK(G)’ l

fle =1}

and
wy(a) = sup |x(a) - 1],

xeK
where wy is defined to be zero of K is empty. It follows easily that
W_g = Ok, Og, +k, S Wk, + 0k, and wg, ,x, S max {wg, Wk, },

where K, K, K, = T. Furthermore when K is relatively compact, 1.2.6. of [5]

gives immediately that

lim wg(a) = 0.
a-0

LemMA 1.1, Let K be a compact subset of I and choose k,le LY(G) such
that k = 1,] = 0 on a neighbourhood of K. Then

Ha) < | vk — k= 1]
If K is a set of spectral synthesis (S-set) then we can replace ‘“‘on a neigh-
bourhood of K> by “‘on K. ’

ProOF. We show initially that if k, I satisfy the hypotheses of the lemma then
(1.5 Ixf=0and kxf=f
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for every fe Ly(G). For this it suffices to show that (1.5) holds pointwise 1.a.e.
(since a function in LP(G), with p # oo, which vanishes 1l.a.e., vanishes a.e.).

Let ¢ € Coo(G) and suppose ! e L(G) is such that / = 0 on a neighbourhood
of K (orif K is an S-set, / = 0 on K). From (1.2) and the assumption that Z(f) c K,
it follows ([3], (40.7)) that

Ix(¢p+f) =0,

r(l*f) = 0.

Since ¢ € Cyo(G) was chosen arbitrarily, [+ f = 0 La.e.. Furthermore, if ke L'(G)
is such that £ = 1 on a neighbourhood of K (or if K is an S-set, £ = 1 on K)
and ¢ e Cyo(G) then (k* @ — ¢)~ vanishes on a neighbourhood of K (or if K is
an S-set, (k*¢ — ¢)” vanishes on K) and by what has already been established,

$r(kef—f) = (kxd— $)+f = 0 Lacc,
whence it follows that k«f = f La.e. .
From (1.3) and (1.5),

tof—f=@f—f)xk—f*1
=fr(k—k-1D,

or, equivalently,

and by (b),
Voaf = flle = [£]e )2k = k= 1]

from which the result follows.

LemMMA 1.2. Let K be a compact subset of T and let V be a relatively com-
pact non-void open subset of T'. Let g, h be the elements of L(G) having Fourier
transforms &y, Eg oy respectively (where &g denotes the characteristic function
of the set E) and put k = 6(V) 'gh. Then k = 1 on K + V, k vanishes outside
K+V+V-—V,and

(1.6) " Tk —k "1 oM™ " g "2 ” h "2 (0 +v-v(a) + wy(a)).
If K is an S-set, we can replace K + V by K in the statement of the lemma.

ProoF. The first part of Lemma 1.2 is established in Theorem 2.6.1 of [5].

To prove (1.6), consider
|7k —k||y = 60V)™ | (z.h — h)g + (z.9 — 9)tah s
0N (lg 2 |tk =]+ | 1]z |79 - g]2)-

By Plancherel’s theorem,
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o =ali = [ |ta -0 doty
= fy |7(a) — 1> | 63 |* d6(y)

< oy@)’ | g]3,
that is,

" 9 —9 “z < wy(a) ”g "z .
Similarly,

" th—h ”2 < wgyy-pla) " h ”2 ’

giving the desired result.
From Lemmas 1.1, 1.2, we obtain:

THEOREM 1.3. Suppose the hypotheses of Lemma 1.2 are satisfied. Then

K+V-V)

+
(1.7 pi@ = (M) @@ + gy —rla)

If, in addition, K is an S-set then
6K —V)

%+
Bia) < ( —W) (@4(@) + wg—y(a)).

91

COROLLARY 1.4. Suppose the hypotheses of Lemma 1.2 are satisfied, and

OcV. Then

_ £
Bia) < 3 (ﬂm—j,f(;)—")) gy (@) .

If, in addition, K is an S-set then

_ %
BYa) < 3(9(’3—(V)i”-) o a).

Proor. Let ye K. Then 0e — x + K and, since Oe V,
0y(a) £ O~ yigrv-y(a)
S w-Ja) + wgiy-v(a)
S 20g4y-y(a).
Hence, from (1.7),

— %
ﬁl’f(a) =3 (ﬂli%-(—://)—-v)—) Ogy-y(a) .

If K is an S-set, just replace K + V by K.
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For certain K = I', we can obtain estimates of the form

Bi(@) = O(wx(a)) -

THEOREM 1.5. Let K be a compact subset of I' with the property that there
exists a positive integer n such that nK has non-void interior. Then

Bi(a) < cox(a) ,
where ¢ = ¢(K).

Proor. Suppose K, n satisfy the hypothesis of the theorem, and choose any
xe€intnK . Then

KcK—-y+intnK.
We can find V, a relatively compact open neighbourhood of zero, such that

K+ V—-—VcK-—yx+intnkK.
Hence
Wk 1y -v(a) £ 0g(a) + w_(a) + 0;,,.x(a)

< (2n + D) wg(a) .
The result follows from Corollary 1.4.

REMARK 1.6. The hypothesis of Theorem 1.5 is satisfied whenever 6(K) > 0
(see [31, (20.17)).

REMARK 1.7. We can obtain results similar to those obtained in 1.1-1.5 by
considering a norm (” : ”) on Lthat satisfies

(by ks = Jelon 111

where ke LYG), fe L(G), w is a non-negative locally bounded measurable func-
tion satisfying '
w(x + ) = w(x) w(y)

for all x,ye G, and
L\(G) = {keLYG) : | k|1 = fG | k(x)| w(x)dx < 00 } .

However,if we wish to follow the proof of Lemma 1.2, w would be restricted in-
asmuch as gw, hw € L%(G).

2. The Bernstein inequality for bounded functions

We now examine the particular case when L(G) = L°‘5(G), taken with its
usual norm. We put .
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@ B@) = sup { | of ~ fllw :f LR (G, | f] S 1
It follows from Lemma 2.1 that the results of §2 apply equally well to L?(G),
pell, ).

LemMA 2.1. Let K < I" and let L(G) be as in § 1 with the additional prop-
erty that there is a set ® < Cyy(G) such that for any fe L(G),

2.2) [fle=sup{|f*¢|:de®}.

Then, for all ac G,
Br(a) < Bx(a).

PrOOF. Let ¢ € @ and fe Lg(G). Then ¢ +fe LY(G) and, by (2.1) and (2.2),
lo+@f=D]ew = b *f = d+f|
< px@ | #0211
< @) | f]e,

whence,

2.3) sup |6*Gaf =) ]w < Bel@ | f]|-

The combination of (2.2) and (2.3) yields the required result.

We now consider estimates for f(a) in three special cases:
(a) K supports no true pseudomeasure;

(b) K is an S-set which is the closure of its interior;

(c) T has a compactly generated open subgroup.

THeOREM 2.2. If K < T supports no true pseudomeasure then

Bx(a) = cwgl(a),
where ¢ = ¢(K).

Proor. Let fe LR(G). We can use (1.4) and the assumption that K supports
no true pseudomeasure to deduce the existence of a bounded measure u on T,
supported by K, such that
. f = H.

Consider g e C(G) defined by
@.4) o(x) = fr ¥ du)

We show that g = f La.e..
~ We can find a g-measurable function h such that

hd|p| = du and |h(y)| =
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for all yeT. Let te L'(G). Then, using the definition of the Fourier transform of
a bounded function, (2.4) gives

HOER0)
- [ awicodico
@5 = [ (], xoomeoalu @ ) i dics).
G r
Now A, | u| are positive measures, the function v on G x I defined by
v (X, x) = 1(x) () i(x)
is A x | | - measurable, and v vanishes outside a A x | u| — ¢ — finite set. Further-

| [ ([, tramieolaxe ) difeo < 11l Lk < o,

where || ||, = || (). Hence we can apply the Fubini-Tonelli theorem to (2.5),

to obtain
o = [ ([ i ) aucw),
and thus,
& = [ foaun
= (7).
As teL'(G) was chosen arbitrarily, and the Fourier transform is one-to-one,
g=1f1lae..

Since u is supported by K, we now see that
=10 =] [ 6= 0= ) ) b0 e

< ok(@) | 1]l

But as K supports no true pseudomeasure, it must be Helson set (see [1],
(3.2)) and hence there exists ¢ > 0 such that

llae = el ]

(see [3], (41.12)). As ¢ is independent of the choice of f, the result follows.

THEOREM 2.3. Let K be a compact S-set which is the closure of its interior.
Then

https://doi.org/10.1017/51446788700015950 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700015950

(81 Bernstein’s inequality for locally compact Abelian groups 95
Bx(a) = inf{"-r,,k-— k- I”1 :k,le L'(G),k =1,1=0 on K}.

PROOF. Choose integrable functions k, I such that £ = 1, / = 0 on K. From
Lemma 1.1, we have
Bx(a) = |wk — k1],
and hence

(2.6) Pyla) <inf {||r,k —k—1|,:k1eL G),k=1,=00nK}.
To prove the reverse inequality, we consider the complex-valued map
A:Cox(G) - C,
defined by
@7 Af = f(— a) — [0),

where ae G is given.
Since A is clearly linear and | -||,,~ continuous, the Hahn-Banach theorem
ensures that it can extended to a continuous linear functional A’ on Cy(G) such

that
4]

< 4]

Now by the Riesz representation theorem, there is a bounded measure u such
that .
a7 = [ Jau = uss

for all fe Co(G), where .
fix > f(—Xx).

Combining (1.3) and (2.7) yields
(T-xf)( - a) - (T—xf)(o) = A(T—xf) = U* (T_xf)(O) = (T—x(# *f))(O) ’

or equivalently,

Jx —a) — f(x) = p=*f(x)
for all xe G. Hence for every fe Cy x(G) and aeG,

tf—f=p*f
and we have
[l = 4] =] A] =sup {|f(—a)—f(0)] :fe Cox(G), | f ] < 1}
< sup {|| taf = f|lw :fE CoxlG). || f|l < 1}
< sup {[| t.f — || :f€LUG), | fll £ 1},
that is,
(2.8) [#]x < Bx(a).
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Choose & > 0. Now there exists g € L!(G) such that § = 1 on K, § has com-
pact support and ” g "1 <1+¢&(see [5],2.6.8). Puth = uxg.Thenh = fi on K.
Sirice K is an S-set, we have for any fe C, ((G),

2.9) hxf = puxf

= af_f
and, by (2.8) and the choice of g,
(2.10) [h]: £ Bula)1 +2).

Let ke L'(G) be such that £ = 1 on K. We want to show that (h — Tk + k)"
vanishes on K.

Let fe Cy x(G). Then we have, once more using the fact that K is an S-set,

(h—tk +l)+f = t,f—f—tk*f+ k«f
=0

by (2.9), whence it follows that
(2.11) (h — vk + k) vanishes on Z(f).

Let yeint K. We can find f, € L'n Co,intx\ G) such that fl(x) = 1 (see [5], 2.6.2).
By (2.11), (h — v,k + k)~ vanishes on X( f,), and hence (h — 1,k + k)™ vanishes
on U, inx2(f) = int K. But h — 7,k + ke L'(G) and so we appeal to the con-
tinuity of (h — 7,k + k) to deduce that it vanishes on int K = K.

Put — I = h —,k + k. Then le L'(G) and / = 0 on K. Also

|tk —k—1]; = | h]l, < Bula)l +¢)
by (2.10), and hence

(2.12) inf{|tk—k—1];:k1eL(G),k =1,1=00nK} < Be(a)l + o).
But ¢ > 0 was chosen arbitrarily, so (2.6) and (2.12) give the desired result.

REMARK 2.4. We consider the circle group T with K = [ — N, N ]. Noticing
that K is a compact S-set, we can use Theorem 1.3 with V = K to obtain

ﬂK(a) = 3 \/E COK(a) .

It can be shown that if N > 1 and

Bx(a) = a wy(a)

for all aeT, then a > 1; compare the ‘classical’ Bernstein inequality.
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THEOREM 2.5. Let K be a compact subset of I' and let Q be a compactly
generated open subgroup of I'. Then there exists a compact set Ko =T and a
finite set F = K\Q such that

wgla) = N wg(a) + oa),
where N = N(K, K,).

Proor. We can assume without loss of generality that Oe K. Since
{x + Q:xe K} is an open cover of K, the compactness of K implies the existence
of x(, -+, x,€ K such that

Ca

6+ Q)

K c
i=1

where, without loss of generality, we can assume that y;, = 0 and y;¢Q for i > 1.
Now K; = K N(y; + Q) is closed (as Q is closed) and since K; K, K| is compact.

As Q is compactly generated, there is an open neighbourhood W of zero such
that W is compact and

Cs

Q= mW.

1

Since for each ie{1,2,---,n},
Kicxu+Q
and — y; + K, is compact, there is an m; such that

mi
—u+Kec UmW=mw.

m=1
Hence
wg(a) £ | x(@) — 1] + mou(a).
Finally, since K = U}_, K; and %, = 0, it follows that

wg(a) £ max Ix,-(a) -1 l + wy(a) max m;

1<izn 15isn
S o)+ N wKo(a),

where F = {13, X3, **s Xa}» N = max m; and K, = W.

15isn

COROLLARY 2.6. If I is compactly generated then there exists a compact
set Ko = I" and a positive integer N = N(K, K,) such that

wg(a) £ N wg (a).
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3. Diflerentiation along a one-parameter subgroup .

The type of estimate obtained for fg(a) in §1 can be linked with the ‘classical’
Bernstein inequality by considering differentiation along a one-parameter sub-
group of G.

Let H be a one-parameter subgroup of G, that is, H = p(R) where p is a
continuous homomorphism from R into G. We put

D, f(x) = lirf)l r=1(f(x + p(r)) = f(x)).
-
If the limit exists finitely for all xe G then f is said to be differentiable along p.
It will appear in Theorem 3.3 that every bounded continuous function with com-
pact spectrum is differentiable along p, and Corollary 3.5 gives an estimate for
| D,f |- It is not much of a restriction to consider only bounded continuous
functions with compact spectra since if f € LZ(G), where K is a compact subset
of T, then f is equal lLa.e. to a (uniformly) continuous function (see (1.5)).
Let p be a continuous homomorphism from R into G. For y € I', consider the
map
1, : R—>C,
defined by
nr) = x(p(r)).

1, is clearly a continuous homomorphism of R into the circle group, that is, n,
is a continuous character of R, and we can deduce the existence of a unique
A, € R such that for every re R,

n{r) = exp (iA,r).
We require two technical lemmas.
LeEMMA 3.1. The map

F:T' >R,
defined by

F(x) = 1,
is continuous.

PROOF. As F is a homomorphism of I' into R, it suffices to prove that F is
continuous at zero. In view of 1.2.6 of [ 5], it suffices to show that, given a compact
set D = R and ¢ > 0,

3.1 suplexp(iF(x)r) -1 | <e
reD

for all y in some neighbourhood of zero.
Now (3.1) is equivalent to
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sup | x(p(r)) — 1| <&,
reD

which is implied by
(3.2) sup |x(x) — 1] <e.

x € p(D)

Since p is continuous and D « R is compact, p(D) is compact in G; hence, by
[5], 1.2.6 again,

V={xel: sup [x(x)—1|<s}

xen(D)

is a neighbourhood of zero. Using (3.2), we see that (3.1) holds for all ye V.

LEMMA 3.2. Let K be a compact subset of I'. Then there exist k,je L'(G)
such that

(a) £ = 1 on a neighbourhood of K, k e Coo(I);
() lim |r='Gopek —K) =] = 0.

Proor. Let W be a relatively compact neighbourhood of K. Then W+ V— V
is relatively compact, where V is a relatively compact non-void open set. Let
g, h be the elements of L%(G) having Fourier transforms &,, &, _, respectively,
and put k = 0(V)~'gh. Consider the functions s, ¢ on I defined by

s=F¢&y; t=Fly_y.

As F is continuous and V, W — V are relatively compact, s,te L*(I"). Let
p,q € L*G) be chosen so that § = s and § = t. Put

J=i0(V)~'(ph + q9).

Then j e L'(G).
Now consider the difference

| r= gk =0 =i [s
=o)~! || r N (T pmd — Ph + r7 (o yh — B)t_ 9 — iph
—iqt_pmg + ig(t- g — @) "1

3.3)
S0V (| r oy — D —ip| 2 1]

+ala|r Gt =B = ig ]+ [ a2 ] -9 = 9]

We will show that each of the terms in (3.3) tends to zero in the limit as r —» 0.
By Plancherel’s theorem,
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” "_I(T—p(r)g —g)—ip “2 = ” ("_I(T—p(r)g -9) - iP)A ”2
+
= ([ e 17 atotn = 0= g doc

<9l sup |r='p(r) = 1) — iB(0) ]
xe€

A

lg|. sup [r~Yexp(i2,r) — 1) — i2y]s
AxeQv

where Q, = F(P). If 4, # 0,

|~ (exp(id,r) — 1) — id, | = | ™" exp(i32,7) (exp(i4A,r) — exp( — i+A,r) — il ]
= !r— "2sin{d,r — A exp(— i3d,r)| < |Ax|(|(%,lxr)‘ 'sinyd,r—1 I + { 1— CXP("i%’lz)”l)-
The final inequality holds trivially if 1, = 0.

Now @, is compact, and hence we can find A > 0 such that

3.4) Ovc[—214].
Let 1, € Qy. Since 1 — (sin x/x) increases with x on [0, n], reference to (3.4) yields
|GG2,r) " sindd,r — 1| < [(34r) 7" sinddr — 1]
for all re[ — 2r/2,2n/4]. As sinx increases with x on [0, 3n], appealing to (3.4)
again gives
[1 —exp( — i%lzr)l = 2[sin %).xr[ = 2[sin %Arl
for all re[ — 2n/A,2n/A]. Hence

sup |r~!(exp(ilr) — 1) — it | < A(|GAr)™ sinddr — 1 + 2|sin }Ar|)

AxeQv

for all re[ — 2n/4,2xn/1], and it follows that

lim ( sup |r™'(exp(izr) — 1) — ilxl) =0.
2

r-0 \lxe Qv /

Thus the first term in (3.3) tends to zero as r —» 0. The second term in (3.3)
is treated similarly. For the third term in (3.3), see [3], (20.4) and use the
continuity of p.

Finally, we notice that k satisfies hypothesis (a) of the lemma.

THEOREM 3.3. Let K be a compact subset of I and let f be a bounded con-
tinuous function with spectrum contained in K. Then D,f(x) exists finitely for
all xed.
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PrOOF. We use the functions k,j obtained in Lemma 3.2. Consider
|r 1oy f) = SN =i | £ [ 17 @ pinf =) = %S |
= [r Gk = xS —jxf|o = |7 ok =0 =i [/

3.5
(-3 —-0asr—-0.

Hence lim r~!(z_,,f(x) — f(x)) exists finitely for all xe G.
r—0
REMARK 3.4. We notice that the limit (3.5) is attained uniformly with respect
to x in G.

COROLLARY 3.5. Suppose the hypotheses of Theorem 3.3 are satisfied. Then

[Df |0 < d]f]l

where d is independent of the choice of f.

PROOF. [Dof o = 1i xSl = 1ili 7] s

and j depends only on K, W and V.
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