108.09 A visual proof that $b^e < e^b$ when b > e

In a recent visual proof ([1]), the author provided a visual proof of the inequality $\pi^e < e^{\pi}$. However, their visual proof can be used to show the more general inequality $b^e < e^b$, where e < b.

$$\ln b - 1 = \int_{e}^{b} \frac{dx}{x} < \frac{1}{e}(b - e) = \frac{b}{e} - 1$$

and so $b^{e} < e^{b}$.

Reference

- 1. Bikash Chakraborty, A visual proof that $\pi^e < e^{\pi}$, *Mathematical Intelligencer* **41** (2019) p. 60.
- 10.1017/mag.2024.26 © The Authors, 2024 Published by Cambridge University Press on behalf of The Mathematical Association

BIKASH CHAKRABORTY

ty Press Department of Mathematics, sociation Ramakrishna Mission Vivekananda Centenary College, Rahara, West Bengal 700 118, India e-mail: bikashchakraborty.math@yahoo.com, bikash@rkmvccrahara.org

108.10 Proof without words: $\tan \frac{\pi}{12} = 2 - \sqrt{3}$, $\tan \frac{5\pi}{12} = 2 + \sqrt{3}$

The standard proof of $tan \frac{\pi}{12} = 2 - \sqrt{3}$ is to use the less well-known formula

$$\tan \alpha = \frac{-1 + \sqrt{1 + \tan^2 2\alpha}}{\tan 2\alpha}$$

for $\alpha = \frac{\pi}{12}$ and the well-known value $\tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}$. Using only the last fact,