
ON MEASURABILITY FOR VECTOR-VALUED 
FUNCTIONS 

D. O. SNOW 

1. I n t r o d u c t i o n . The problem of developing an abst ract integration 
theory has been approached from many angles (6). The most general of several 
definitions based on the norm topology is t ha t of Birkhoff (1), which includes 
the well-known and widely used Bochner integral (3). 

The original Birkhoff formulation was based on the notion of unconditional 
convergence of an infinite series of elements in a Banach space and the closed 
convex extensions of certain approximating sums. Later simplifications by 
Birkhoff (2), Kunisawa (8), and others, showed tha t it was possible to bypass 
the convex extension and closure, and also to avoid the use of unconditional 
convergence. In connection with two of these simplifications (8; 7) certain 
classes of "measurable" functions were defined which included the functions 
measurable in the sense of Bochner as subclasses. Kunisawa, in particular, 
defines integrability in terms of "*-measurable" functions and shows t h a t 
every Birkhoff-integrable function is *-measurable. 

A classical characterization of Lebesgue-measurable functions is t ha t they 
are "a lmos t" continuous, in the sense of the well-known Lusin theorem (10, 
p. 72). The Bourbaki (4, p. 180), definition of measurabili ty for a func t ion / , 
defined on a locally compact set E with values in an arbi t rary topological 
space, is based on the Lusin property in t ha t / is called measurable if it is 
continuous on each of a collection of compact sets with total measure approxi­
mat ing t ha t of E. I t turns out t ha t when the range space is a Banach space 
this definition is equivalent to Bochner measurabili ty (4, Theorem 3, p. 189). 
There are, however, fairly simple vector-valued functions which are not 
measurable according to the Bourbaki definition, or in the Bochner sense of 
being the limit almost everywhere of a sequence of step functions, or according 
to any definition tha t implies the Lusin property. A classical example (5, 
p. 166) involves the space M of bounded real functions f(t) on 0 < t < 1 with 

||/(0|| = sup 1/(01. 
0<Z<1 

Let x(s) = fs(t), where fs(t) = 0 on 0 < / < s, and fs(t) = 1 on s < t < 1. 
T h u s x{s) is defined on 0 < 5 < 1 and is everywhere discontinuous there . 
Nevertheless, this function is measurable in the Kunisawa sense and is in 
fact Riemann (Graves) integrable. 

In this note we show tha t if one considers functions defined on a separable, 
complete, metric space £2, with a measure defined on a class of subsets of Q 
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which include the Borel sets, then the *-measurable, or Birkhoff-integrable,, 
functions studied in (8) satisfy a generalized form of the Lusin condition in 
that they are "almost" Riemann-integrable on E C 12, m{E) < <», in terms 
of a natural extension of the Riemann (Graves) integral to closed compact 
sets. A definition of measurability based on this idea of a weakened Lusin 
condition has been previously discussed (11) for functions defined on the 
real line with values in a Banach space. 

2. Notation. 12 denotes a separable, complete, metric space, with metric 
p. ra* is a metric outer measure constructed from a sequential covering class 
E, consisting of open sets, which covers 12, and is such that 12 = U"=i Anf 

where An £ Ë and m*(An) < oo. m(E) is the measure function determined 
by w* and defined for the class SDÎ of sets E in 12 which are measurable with 
respect to m*. In particular, all Borel sets are included in 9JÏ (9, p. 101). Also, 
m is a regular measure (9, p. I l l ) in the sense that for any measurable set E 
and any given e > 0 there exists an open set G D E such that m{G — E) < e 
and a closed set P C E such that m{E — P) < e. 

F, Fr, C will denote compact subsets of 12, and P will denote a closed subset 
of 12, not necessarily compact. In addition, X will denote an arbitrary linear 
normed complete space, or Banach space, x(s) and y(s) functions defined on 
a subset of points 5 in 12 and valued in X, and f(s) a, real-valued function 
defined on a subset of 12. 

For any subset E C 12 we define the diameter of E as follows: 

d(E) = sup{p(s, s') | s Ç E, s' 6 E). 

3. An extension of the Riemann (Graves) integral definition. Let 
F be a compact set in 12, and let Su i = 1, . . . , n, be a set of closed spheres, 
with positive finite diameters, which cover F. Let S denote the ordered col­
lection Si, 52, . . . , 5W. 

DEFINITION 3.1. A subdivision of F, generated by a covering 5, is the finite 
collection of subsets of F constructed as follows: 

Fl = S1C\F1 F2 = S2n(F- F{), . . . , Fn = Snn(F- Fn-J. 

We denote a subdivision by A, and the maximum d(Si), 5* Ç 5, by N(A)r 

which we call the norm of A. 

DEFINITION 3.2. Let x(s) be defined and bounded on a compact set F. Let A 
be a subdivision of F. If X contains an element L such that for every rj > 0 there 
exists ô > 0 with 

X) oc{^l)m{Fi) - L <V 

for every subdivision with N(A) < ô and every choice of £t in Ft (i = ! , . . . , « ) , , 
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then L is the Riemann {Graves) integral, or RG-integral of x(s) over F and we 
write 

(RG)jFx(s)ds = L. 

We choose a compact set F as the domain of x(s) over which we define our 
integral because this ensures that F will be closed and totally bounded, i.e., 
for any e > 0, there exists a finite covering of F by open spheres of radius e. 

It is not difficult to see that when F is a closed interval of the real line the 
RG-integral is equivalent to the original Graves formulation (5). 

The following necessary and sufficient condition for RG-integrability 
parallels that of Graves and is easily proved by standard arguments. 

THEOREM 3.1. Let x(s) be defined and bounded on a compact set F. A necessary 
and sufficient condition for the existence of the RG-integral of x(s) over F is 
that, given v\ > 0, there exist 8 > 0 such that for any two subdivisions Ai, A2 
of F with iV(Ax) < Ô, N(A2) < 8, 

IIEAI X(£U) m(Fu) - E A 2 xfe*) m(F2i)\\ < 77, 

where £H, £2* rnay be any points on Fa, F2i, respectively. 

The elementary properties of the RG-integral listed in the next theorem 
are obvious extensions of the corresponding properties of the Riemann integral 
and follow directly from the definition and Theorem 3.1. 

THEOREM 3.2. (i) If x, y, and f are RG-integrable over F and \\x(s)\\ < / ( s ) 
for s on F, then 

(RG)JF (x + y) ds = (RG)J^ x ds + (RG)/F y ds 

and 

||(RG)J",*<fa|| < (RG) JFfds. 
(ii) If F P\ F' = 0 and if x(s) is RG-integrable over F and F', then it is 

integrable over FVJ Ff and 

(RG) f F[)F' x ds = (RG) J*F x ds + (RG) JV x ds. 

(iii) If xn(s) (n = 1, 2, . . .) is RG-integrable over F for each n and if {xn(s)} 
converges uniformly to x(s) in F> then x(s) is RG-integrable over F and 

(RG) j F xn(s) ds —> (RG) jF x(s) ds. 

A further property of the RG-integral is contained in the following theorem. 

THEOREM 3.3. Let F be a compact set contained in 12, and C be any closedy 

hence compact, subset of F. If x(s) is RG-integrable over F, then it is RG-
integrable over C. 

Proof. We shall make use of the following result, which has been proved 
in a variety of ways by Birkhoff (1), Jeffery (7), and others. 
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LEMMA. Let eh e2, . . . , en be any n disjoint measurable sets on a measurable 
subset E C Œ, m(E) < » , ^ aw arbitrary point of eu and T = E#(£i) m{el), 
where x (s) is a bounded function on E with values in X. Let 

Cih ei2i • • • i eik. 

be a partition of et into disjoint measurable sets, and £i;-, £'tj any points on etj. 
Then 

n ki 

II i=l j=l 

for £*, £/ any two points on et. 
Let 7] > 0 be given. Then there exists 8 > 0 such that for any two sub­

divisions A, A' of F into sets Fu F/, with N(A) < 5, TV (A') < 5, we have 

| | £ A * ( $ 0 **(F<) - E A ' x ( f / ) m ( F / ) | | < h . 

We note in particular that 

HEA {*({*) - xfa')} m(Ft)\\ <iv. 
for all £*, f/ in 7*V 

Now let Ai, A2 be any two subdivisions of C into subsets Cm C2i 

{i — 1, • . . , n; j = 1, . . . , m) generated by coverings Si, 6*2 of C, consisting 
of closed spheres, with iV(Ai) < <5, iV(A2) < 5. 

Finally, let A3, A4 be two subdivisions of F into subsets FZij FAJ (i = 1, . . . , p\ 
j — 1, . . . , q) generated by coverings S3 and S± of F, where S3 consists of 
the ordered set of spheres in Si followed by the spheres in the covering used 
to construct the subdivision A. Similarly, S4 consists of the ordered set of 
spheres in S2 followed by the spheres used in constructing A'. Clearly, 
N(A.) < 8, iV(A4) < 8. 

We observe that Cu Ç1 FZi (i = 1, . . . , n) and C2j Q F^j (j = 1, . . . , m). 
Set F*i — Cu = Qzr (i = 1, . . . , n) and FZi = QZi for i > n. Also, set 

Ftj — Cij = QAJ (j = 1, . . . , m) and F^j — QAJ for j > m, and set 

Q = U Qsi = U &,. 

Let T(Q) denote a partition of Q into a finite number of disjoint measurable 
sets Qi by intersecting the sets Qm Q*j in all possible ways. 

Now if £*, £H, I2;, £'3*, %\j are arbitrarily chosen points of Qu Cu, C2h F2i, 
F4J, respectively, we have 

| |EAI*(£H) m(Cu) ~ EA 2 X(£2>) m(C2j)\\ 
< \\ÇEAlx(èu)m(Cli) + T,T(Q)x(èi)m(Qi)) - E A 3 *(£'«,) m(Fti)\\ 

+ | | E A , ^(f'ai) w(F3 i) - E A 4 X ( ^ ) W(^4;)|| 

+ I I E A 4 ^ ( ? / 4 ; ) m(F4j) - (EA2x(?2y) m(C2y) + Er(Q>*(£i) ^(<2i))|| 

< i*7 + h + J*? = *?• 

< sup Z) {*(£i) - x(Z'i)}m(ei) 

Hence x(s) is RG-integrable over C. 

https://doi.org/10.4153/CJM-1963-062-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1963-062-4


VECTOR-VALUED FUNCTIONS 617 

4. Measurability and Riemann-integrability. In his development of 
the Birkhoff integral, Kunisawa (8) considers a function x(s) defined on the 
class 33 = {E} of measurable subsets of a space 12 with m(12) < <». A decom­
position of a measurable set E into a finite number of mutually disjoint 
measurable sets is denoted by IT = [Et\i = 1,2, . . . , n). For any two 
partitions ir\ and 7T2, XI < 7T2 means that every set of -K^ is contained in some 
Set Of 7Ti. 

If x(s) is a function defined on 12, and w is any partition of 12, then, by 
definition, 

n 

*•(*, E) = E *CE n £0 W(E n £*), 

where x(E) = {x(s)|s Ç £ } , i.e., ir(x,E) denotes the set of all sums of the 
form Y,x(Si) m(E C\ Et), where Si Ç £*. 

The following definitions and lemma summarize, for convenience, the main 
features of *-measurable functions (8, pp. 525-526). 

DEFINITION 4.1. x(s) is called basic on 12 if there exists for every e > 0 a 
partition ire of 12 such that d(ir€(x, 12)) < e. 

LEMMA 4.1. A necessary and sufficient condition for x(s) to be basic on 12 is 
the existence of an X-valued set-function I(x, E) defined on S3 with the property 
that for every e > 0 there exists a partition we such that ir€ < T implies 

\\ir(x,E) - I(x,E)\\ < e 

for any E Ç S3. 

DEFINITION 4.2. I(x,E) is the (Birkhoff) integral of the basic function x(s) 
over E. 

DEFINITION 4.3. A sequence of functions {xn{s)\ n = 1, . . .} on 12 is approxi­
mately convergent to an X-valued function x(s) if there exists for every e > 0 a 
sequence {En\ n = 1, . . .} of measurable sets such that 

{s\ \\xn(s) - x(s)\\ > e} Ç En, n = 1, 2, . . . , 

and m (En) —> 0. 

DEFINITION 4.4. A function x(s) is ^-measurable if there exists a sequence of 
basic functions converging approximately to x(s). 

It turns out that x(s) is Birkhoff-integrable if it is *-measurable, and if a 
sequence {xn(s) \ n = 1, 2, . . .} of basic functions converging approximately 
to x(s) can be taken in such a way that 

lim I(xn, E) 
W->oo 

exists strongly for each JE Ç 93. Conversely, every Birkhoff-integrable function 
has this property. 
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THEOREM 4.1. If a measurable set E is contained in 12, m(E) < °°, then 
given e > 0 there exists a subset F in E such that F is compact and 

m(F) > m(E) — e. 

Proof. Because the measure is regular there exists a closed subset P con­
tained in E with m(E — P) < \e. 

Since 12 is separable let {sn} be a sequence of points dense in P and write 
SI for the closed sphere of radius 1/k with centre sn. Set 

F\= u (s înn 
Now given any e > 0 there exists a positive integer n\ such that 

m{Fl
ni) > m(P) - Î6, 

because if ra* is any regular outer measure and {An} is an expanding sequence 
of sets, then 

m*(lim An) = lim m*(An) 
\ n J n 

and our outer measure, constructed as described in § 2, is regular (9, p. 109). 
Similarly there exists a positive integer n2 such that 

m(Fl) > m(P) - |6. 

Hence 

•(à "•) > m{P) - \e 

because it is easy to verify that if m(E — A) < ei, m(E — B) < e2, then 
m{E - (A r\B)) < ei + e2. 

In general, we define tk (k = 1, 2, . . .) as the smallest positive integer such 
that 

•(a "0 m\ n F\{) >m(P) - i«. 

Let 
oo 

Then .F is compact. First of all, F is closed, being the intersection of closed 
sets. Also, for each k, F is covered by a finite set of spheres of the form S%. 
Hence given any infinite set K of points in F there clearly exists a sequence 
of nested closed sets of the form 

Fi = sn(D n F, F2 = sn(2) n Fi, Fk = sn(k) n ^*-i» • • • » 
each containing an infinite number of points of K and with d(Fk) —* 0. 

This leads at once to a Cauchy sequence of points {st}, st G Ftr\Ky 

having a limit point So, which is the unique point contained in every Ft by 
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Cantor's theorem (9, p. 68), and hence s0 € F. Then s0 is a limit point of K 
and so F has the Bolzano-Weierstrass property. 

It is clear, from the way F is obtained, that m(F) > m(P) — \t. Hence 
F is a compact set, contained in E, with m{F) > m(E) — e. 

DEFINITION 4.5 x(s) is almost Riemann-integrable over a measurable set 
E C Œ if, given e > 0 there exists a compact set F C E, m(F) > m(E) — e, 
and such that x(s) is RG-integmble over F. 

THEOREM 4.2. If x(s) is basic on a set E C Œ, m(E) < oo, then it is almost 
Riemann-integrable over E. 

Proof. Let e > 0 be given, and let {en} be a sequence of positive numbers 
with en = e/2n. 

For each en take a partition 

7T€n = {Eni\ i = 1, . . . , j) 

satisfying the condition of Lemma 4.1. 
For each Eni of 7r€n let Fni be a compact set contained in Eni with 

?»(£„< - Fn<) < en/21 

and let Fw = ^JJ
i=1 Fni. Then m(E — Fn) < en. Let F = C\™ Fn. F is therefore 

closed and compact and m(E — F) < e. We shall show that x(s) is RG-
integrable over F. 

Given any 77 > 0 choose a positive integer m such that em < v and take 
T = 7TCm. 

Let F'™* = Fmi r\ F and let d be the minimum distance apart for the 
closed sets F'mi. 

We observe that for the partition ir' composed of the sets F'mi and Emi — F'mit 

i = 1, . . . jj(m), we have 

| |x ' (x,£) - / ( * , £ ) | | <v 

for every £ Ç 5 . In particular we have 

\W(x,F) -I(x,F)\\ < „ . 

Then if we take 8 — d we see that any two subdivisions Ai, A2, with 
iV(Ai) < ô, iV(A2) < 5, are equivalent to two partitions 7n and 7r2 with 
7Ti > 7r' and 7T2 > TT' and we have 

HEAI *(£ii) w(Fu) - EA 2 X(?2Ï ) w(F2i) | | = |ki(x, F) - x2(>, F) | | 

< ||x!(x, F) - I(x, /OH + I M x , 70 - / (* , 7011 < 2ij. 

Thus x(s) is almost Riemann-integrable over E. 

THEOREM 4.3. Let x(s) be defined on a measurable set E C Œ, with m (E) < °°. 
Then a necessary and sufficient condition for x(s) to be ^-measurable on E is 
that x(s) is almost Riemann-integrable over E. 
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Proof. If x(s) is *-measurable there is a sequence of basic functions {xn(s)\ 
satisfying the condition of Definition 4.3. Let any e > 0 be given. Then 
there exists a sub-sequence 

{xnk(s)\, k = 1,2, . . . , 

of {xn(s)\ and a sequence of measurable sets {Ek}, k = 1, 2, . . . , such that 
m(Ek) < e/2k+1 and ||xnfc(s) — x(s)\\ < e/2k in E — Ek. On each measurable 
set E — Ek there exists a compact set Fk such that m{E — 7^) < 6/2* and 
on which xnA(s) is RG-integrable by Theorem 4.2. Let F = P^Li 7v F is 
closed and m{E — F) < e. Also x^fX) is RG-integrable on 7?, for every nk, 
by Theorem 3.3. 

Let us choose, and fix, an n' from among the nk such that 

\\xn'(s) - x(s)\\ < rj/m(F) 

for all ^ in F. 
Then, given any t\ < 0, there exists 8 > 0 such that for any two sub­

divisions Ai, A2 with iV(Ai) < 5, iV(A2) < 5, we have 

H E A I X ( J H ) W ( F U ) - EA 2 *(£2Z) w(F 2 t) | | 

< I IZAJX^H) - ^ ( r i< )} ^(FXOII 
+ IIEAx^tt'li) ^ ( F H ) - ZA2X^(r2z) W(F2«)|| 
+ HEA, {^(^2,) - *({2i)} m(Fu)\\ 

for any points £u, £'u on 7^*, and £2il £'2i on F2 i . 
Thus we see that #(s) is RG-integrable over E and hence the stated con­

dition is necessary. 
Next, let en be a sequence of positive numbers with en —» 0. If x(s) is almost 

Riemann-integrable on E, there exists a compact set Fn C E with 
m{E — Fn) < ew on which x(Y) is RG-integrable. 

For each n, set 

\x (s) on Fw, 
* n W {0 on £ - F». 

For each n> xn(s) is basic on E, because for any rj > 0 there exists 5 > 0 
such that with iV(A) < ô we have 

||EA*({«)m(F<) - E A *(*,') m(F,) | | < 17. 

Then taking the subsets of 7^ under the subdivision A, plus the set E — Fny 

we have a partition irn of £ such that d(7rw(x, JS)) < 77. Moreover, the sequence 
{xw(s)} converges approximately to x(s) on E because given any e > 0 we 
can set En = E — Fn and the sequence {En} is such that 

{s\ \\xn(s) - x(s)\\ > e} Ç En, w = 1, 2, . . . , 

and m(En) —> 0. This proves the sufficiency of the given condition. 
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Thus we see that the *-measurable and Birkhoff-integrable functions 
denned on a subset E, m{E) < °°, of a separable complete metric space, 
satisfy a modified Lusin condition in the sense of being almost Riemann-
integrable over E. It is easy to verify that this modified Lusin condition 
coincides with the original Lusin condition in the case of a real-valued function 
defined on a Lebesgue-measurable set, of finite measure, on the real line. 
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