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Abstract

A new high time resolution observing mode for the Murchison Widefield Array (MWA) is described, enabling full polarimetric obser-
vations with up to 30.72 MHz of bandwidth and a time resolution of ~0.8 ps. This mode makes use of a polyphase synthesis filter to
‘undo’ the polyphase analysis filter stage of the standard MWA’s Voltage Capture System observing mode. Sources of potential error in the
reconstruction of the high time resolution data are identified and quantified, with the S/N loss induced by the back-to-back system not
exceeding —0.65 dB for typical noise-dominated samples. The system is further verified by observing three pulsars with known structure on

microsecond timescales.
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1. Introduction

Some of the most exciting advances in time-domain astronomy
have only been made possible by pushing the capabilities of lat-
est generation telescopes to be sensitive to signals of shorter and
shorter duration. The serendipitous discovery of pulsars in the late
1960s is perhaps the prototypical example (Hewish et al. 1968). In
more recent times, the ongoing effort to detect nanohertz gravita-
tional waves by means of pulsar timing arrays (PTAs) requires the
continual monitoring of the times of arrival of millisecond pul-
sars (MSPs) with microsecond accuracy (e.g. Hobbs & Dai 2017).
Pulsars are also known to exhibit temporal structures on microsec-
ond and even nanosecond time scales (e.g. Craft, Comella, &
Drake 1968; Hankins et al. 2003), providing major clues for the
underlying radio emission mechanism (e.g. Cordes 1981; Popov
et al. 2002). Similarly, fast radio bursts have been shown to exhibit
temporal sub-millisecond structures that either point to the intrin-
sic emission mechanism or to interesting propagation effects
occurring in the intergalactic medium (Farah et al. 2018; Hessels
et al. 2019). All of these examples serve to illustrate the scientifi-
cally important and still largely untapped parameter space that is
only accessible to telescopes equipped with a sufficiently high time
resolution observing mode.

The Murchison Widefield Array (MWA; Tingay et al. 2013)
is a low-frequency (~80 to 300 MHz) aperture array telescope
located at the Murchison Radio Observatory in Western Australia.
Now in its second phase of development (Phase II; Wayth et al.
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2018), it consists of 256 ‘tiles’ (sets of 4 x 4 cross-dipole anten-
nas) distributed over an area approximately 5.3 km in diameter,
128 of which can be used at a single time to form an interferome-
ter. Originally conceived as an imaging telescope (which requires
only the time-averaged cross-correlation products of the tiles, or
‘visibilities’, to be retained on disk), it was subsequently aug-
mented with the functionality to capture the raw complex voltages
of each tile, known as the Voltage Capture System (VCS; Tremblay
et al. 2015). This system has enabled the MWA to be used as a
premier instrument for high time resolution studies of transient
signals, especially pulsars (e.g. Bhat et al. 2016; McSweeney et al.
2017; Meyers et al. 2018; Kirsten et al. 2019).

Although the tile voltages are sampled at a (Nyquist) rate
of 655.36 MHz, these data undergo several stages of processing
before finally being written to disk. After preliminary filtering
and digitisation, the raw voltages are subjected to a two-stage fre-
quency analysis filter, which trades time resolution for increased
frequency resolution. In the MWA’s case, both stages of the analy-
sis filter were implemented as polyphase filterbanks (PFBs; Harris
& Haines 2011; Prabu et al. 2015). The first-stage (‘coarse’) PFB
reduces the effecting sampling rate by a factor of 512, resulting
in an array of complex-valued samples with 1.28 -MHz resolu-
tion in frequency (‘coarse’ channels) and ~0.8 s in time. In the
second-stage (‘fine”) PFB, each coarse channel is further split into
128 x 10 kHz ‘fine’ channels at the cost of decreasing the time
resolution to 100 ps.

In the current MWA system design, only the latter time res-
olution data product (i.e. 100 us) is made available to the user.
While this is sufficient for many pulsar studies (e.g. Oronsaye
et al. 2015; McSweeney et al. 2017; Bhat et al. 2018; Meyers et al.
2018), it is nevertheless too coarse for many science applications
involving MSPs. In principle, the original higher time resolution
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can be recovered from the channelised output (either approxi-
mately or exactly) by means of a synthesis filter which acts as
an ‘inverse’ operation to the analysis filter. The conditions under
which the original time series can be exactly reproduced depend
on the choice of analysis and synthesis filters.

Here, we describe the synthesis filter that is implemented as
the (optional) final stage of the tied-array beamforming pipeline,
the former stages of which are described in detail in Ord et al.
(2019, hereafter Paper I) and Xue et al. (2019, hereafter Paper
IT). The synthesis filter is applied to the fine-channel output of
the beamformer and recovers the coarse channel time series. That
is, it effectively ‘undoes’ the fine PFB, increasing the available
time resolution to ~0.8 ps. A brief review of PFBs in general,
and their particular implementation in the case of the MWA, is
given in Section 2. The design of the synthesis filter is described in
Section 3, including a discussion of its fidelity, that is, the appear-
ance of any temporal and spectral artefacts introduced by the
synthesis filter itself. Finally, the practical use of this functional-
ity is demonstrated in Section 4.1 through three examples: MWA
observations of the pulsars (PSRs) J2241-5236, J0437-4715, and
B0950+-08 (J0953+0755).

2. Polyphase filterbanks

PFBs are a type of analysis filter, designed to extract spectral infor-
mation out of discrete time series data. They can be considered
a generalisation of the more familiar discrete Fourier transform
(DFT) and are designed to overcome the undesirably uneven fre-
quency response (i.e. spectral leakage) inherent in the application
of DFTs to discretely sampled time series of finite length. PFBs are
well described in standard texts (Crochiere & Rabiner 1983; Harris
2004; Oppenheim & Schafer 2009); a clear and concise review of
PFBs in the context of radio astronomy is given in Harris & Haines
(2011). Thus, only a brief review of the salient features is given,
in order to prepare the reader for the description of the synthesis
filter in the following sections.

2.1. General review and mathematical notation

The PFB is a transformation from the time domain, x[#n], to the
frequency domain Xi[m], where the [-] notation denotes a discre-
tised index, k is the channel number, and n, m € Z are the time
indices for the pre- and post-channelised data, respectively. Let K
be the number of (equally spaced) frequency channels required
for some desired spectral resolution. Although applying a DFT
to N =K adjacent time samples in x[n] will produce the desired
resolution, the result will be an imperfect representation of the
true spectrum because of spectral leakage, which is when power
that properly ‘belongs’ to some particular frequency bin appears in
(or, is aliased to) other, nearby bins. The impossibility of perfectly
eliminating spectral leakage can be seen by realising that operat-
ing on a finite-length time series is equivalent to multiplying an
arbitrarily long time series with a rectangular window function,

waln] = 1, 0<n<N, 1)
R 0, elsewhere,

whose effect in the frequency domain is to convolve the ‘true’
spectrum of the signal with the Fourier transform of the win-
dow function. In the case of a rectangular window, this is the sinc
function.

https://doi.org/10.1017/pasa.2020.24 Published online by Cambridge University Press

SJ McSweeney et al.

A common strategy for mitigating spectral leakage is to choose
an alternative window function whose Fourier pair is localised in
the frequency domain, and which therefore produces a tolerable
level of spectral leakage when convolved with the signal’s spec-
trum. Many possible windowing functions have been identified,
which in general trade the ‘amount’ of leakage with the location’
of the leaked components. For our purposes, it is sufficient to
note that the inevitable presence of a windowing function moti-
vates the definition of the analysis filter, h[n], and the generalised
windowed DFT

N-1
Xi[m] =) h[mM — n]x[n]e>"*"/X, )

n=0

where j = /—1 denotes the imaginary number, m is the time index
of the channelised (output) data, and 0 < k < K denotes the chan-
nel number. Equation (2) describes the action of performing DFTs
on short, windowed segments of the input time series of length
K. M is the number of samples that the window is translated
along x[n] between successive DFT operations; thus, the index
of h[mM — n] represents the shift required in order to produce
the spectrum at time m. If M < K, then the windows overlap and
the resulting channelisation is oversampled; if M = K, then it is
critically sampled. The choice of h[n] is motivated by the shape
of its frequency response (i.e. its Fourier pair), whose character-
istics (e.g. width and location of sidelobes) are chosen according
to the advantages they carry in particular contexts. Leaving x[n]
‘unweighted’ is equivalent to choosing h[n] = wg[n], in which case
Equation (2) merely describes a DFT performed on each suc-
cessive window, which in this context is also called a short-time
Fourier transform. On the other hand, choosing h[n] to be the sinc
function will result in a frequency response that approximates a
rectangular window.

It is well known that scaling a function in the time domain
produces the inverse scaling in the Fourier domain. This fact
motivates an alternative strategy for mitigating spectral leakage.
Choosing a larger window size, N = KP (for integer P > 1), and
a corresponding wider analysis filter, will result in a frequency
response that is similar in shape, but P times narrower than the
frequency response of the original analysis filter. A DFT applied
to the larger number of samples will naturally produce a cor-
respondingly larger number of (more closely spaced) frequency
channels, but choosing only every Pth channel and discarding the
rest (known as decimation) ensures that the desired spectral reso-
lution with K channels is retained. In this way, spectral leakage can
be contained arbitrarily close to the ‘correct’ channel by choosing
a sufficiently high value of P.

The two-step algorithm described above (performing a win-
dowed DFT on N =KP samples and decimating the result-
ing spectrum) defines the PFB. Formally, it is equivalent to
Equation (2); however, in this context, the term critically sampled
(i.e. M =K) implies that the N-length windows will now over-
lap. The term ‘polyphase’ derives from the fact that each block of
K = N/P samples (known as taps) in x[#] is included in multiple
applications of the DFT, but appearing at a different relative phase
in each case.

One of the great advantages of the critically sampled PFB is
the existence of a mathematically equivalent but computation-
ally efficient implementation. It can be shown that Equation (2) is
equivalent to first segmenting the windowed time series into taps,
summing their respective samples elementwise, and performing a
single DFT on the resulting array (now also of size K), that is,


https://doi.org/10.1017/pasa.2020.24

Publications of the Astronomical Society of Australia

(a)

=

(b)

FFT

Figure 1. A diagrammatic representation of the weighted overlap-add algorithm, as
defined in Equation (3). Panel (a) shows the filter window being translated along a
discretely sampled signal (in this case, containing a sinusoid and noise) with a step
size of one tap. At each step, panel (b) shows how the signal (first row) is multiplied
by a filter (second and third rows), and each tap is summed (bottom left) and Fourier
transformed to produce the final spectrum (bottom right).

K—-1
Xi[ml =) by[n]e 2" */K, 3)
n=0
where
P—1
bulnl =Y h[Kp — nlx[n+ mM — Kp].
p=0

A short proof of this equivalence is given in Harris & Haines
(2011). The procedure described by Equation (3) is called the
weighted overlap-add algorithm and is illustrated in Figure 1.

https://doi.org/10.1017/pasa.2020.24 Published online by Cambridge University Press

1.0

TR Hanning window
——- Sinc function
—— Analysis filter

0.8 A

0 200 400 600 800 1000 1200 1400

n
01 T\
o —10 A
Z
[} |
g 20
[e)
o
D -30-
R
s
E a0
[e]
=2
_50.
-60 : ! ! ! ;
-30 -20 -10 0 10 20 30
v (kHz)

Figure 2. Top: The coefficients of the MWA’s fine PFB analysis filter, defined in
Equation (4), which is composed of a Hanning window multiplied to a sinc function.
Bottom: The frequency response of the analysis filter (black, solid), showing negligible
attenuation across approximately 10 kHz (the bandwidth of a fine channel) and strong
attenuation elsewhere. The frequency response is repeated for adjacent channels on
either side (grey, dashed) showing crossover points on the channel edges at —3 dB.

2.2. MWA implementation of the fine PFB

The first-stage (coarse) PFB is described in Prabu et al. (2015), and
here we only document a few details pertaining to the second-
stage (fine) PFB. A PFB is specified by (1) the number of output
channels, K, (2) the number of taps, P, and (3) the analysis filter,
h[n]. For the MWA, K = 128 (giving fine channels 10 kHz wide),
P=12,and

wy[nlwin], 0<n<N,
h(n] = 4
[n] 0 otherwise @)
where
. a(n+1
wy[n] = sin’ <%>

is the Hanning window, and

. (n(n—i— 1 —N/2)>
w[n] = sinc] ——m8 —

K

is the scaled sinc(x) = sin (x)/x function. It can be easily checked
that h[n] is defined to be symmetric around sample n =767 =
N/2 — 1. The analysis filter is shown in Figure 2. The MWA’s fine
PFB is critically sampled, with M = K = 128. The rationale behind
the particular design choices for the MW A’s fine PFB is beyond the
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scope of this paper—for the purposes of creating a synthesis filter,
it is sufficient to know merely how the analysis filter is defined,?
and the fact that the PFB is critically sampled.

The fine PFB is implemented on field-programmable gate
arrays (FPGAs)" and was designed in such a way to accommo-
date the data rate and bit depth constraints set by the surrounding
hardware. The input signal values are signed (5+5)-bit complex
integers, and the final outputs are (4+44)-bit complex integers.
The loss of precision associated with the demotion of 1 bit nat-
urally places limits on the ability for any synthesis filter to per-
fectly reconstruct the original coarse channel time series, which
is analysed for our system below. The full details of the FPGA
implementation are given in the appendix.

3. Synthesis filters

In order to regain the time resolution lost during analysis, the
spectral output of the PFB must be transformed back into the
time domain. The inverse to the analysis operation defined in
Equation (2) converts a spectrum Xi[m] into a time series x[n]
by means of a synthesis filter, f[n]:

[ 1 K-1 )
X[n] = [n—mM]— > Xi[m]e* /K, (5)
L L
In this expression, the index m is allowed to run over all integers
in order to accommodate an arbitrarily large synthesis filter.

Back-to-back analysis-synthesis filters can be designed so that
the original time series can be perfectly reconstructed without any
loss of signal (i.e. X[n] = x[n] exactly), and the system as a whole
can be thought of as an identity operation. The condition for
perfect reconstruction can be found by substituting the analysed
spectrum obtained from Equation (2) into the synthesis operation
defined in Equation (5). For a critically sampled system,

Rnl= )" xln—sM] Y fulnlhy [—n]
=x[n] Y fulnlhu[—n] + ©)
> xln—sM] D fulnlhy[—n],
ST;OOO m=—0Q

where, following Crochiere & Rabiner (1983), we have adopted the
shorthand notation

h;[n] =h[n — AM],
filnl=fln—AM].
Perfect reconstruction corresponds to the case when the only non-

zero contribution comes from the s =0 term, giving rise to the
necessary and sufficient condition

D fulnlh [—n] =8, (7)

for all values of n, where 6? is the Kronecker delta.

*Equation (4) is defined on R, but the actual implementation on the MWA’s FPGAs
defines the analysis filter coefficients on Z. The exact implemented values, h*[n], can be
obtained from h[n] via h*[n] = |ah[n]], where | -] denotes rounding to the nearest integer
and o = 117963.875.

bXilinx Virtex4 XC4VSX35
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Finding the synthesis filter that perfectly inverts a given analy-
sis filter is tantamount to solving Equation (7) for f[n]. However,
exact solutions do not always exist, and in general, numerical
methods must be employed to find a synthesis filter that minimises
the reconstruction error.

3.1. Reconstruction error

In the context of an astrophysical signal, it is desirable to quan-
tify the reconstruction error in terms of the signal-to-noise ratio
(S/N). If we assume that individual samples follow, and are domi-
nated by, the same Gaussian noise statistics, then the reduction in
S/N of a reconstructed sample can be estimated by considering the
fraction of the power of the reconstructed sample that came from
the original sample:

( 5 fm[n]hm[—n]>2

m=—00

[S/N]recon = (8)

5 ( 5 fm[nlhms[—w)z'

s=—00 \m=—00

This expression is invariant under the substitution n — n + AM,
A € Z, which indicates that the (average) reconstruction error is
only a function of where the sample in question falls within a tap.
Consequently, any synthesis filter (except the exact inverse of the
analysis filter, if it exists) will introduce a ‘ringing’ effect into the
reconstructed time series that has a period equal to the size of
the PFB tap.

The ‘leakage’ of power into other samples implied by
Equation (8) can also manifest itself as spurious imaging of a ‘true’
signal at intervals of one tap. This can be seen by considering
the effect of a single-sample impulse, with a power much greater
than the ambient noise, on the reconstructed time series. The sam-
ple itself, say, x[n], will be reconstructed with high fidelity, as the
reconstructed error is only comprised of contributions from the
(relatively) low-level noise. The reconstruction error of the sample
x[n + K], however, will be dominated by the term in Equation (6)
involving x[n], according to the relative weighting introduced by
the analysis and synthesis filters. Thus, the impulse will reap-
pear at intervals of one tap, but where the relative power of each
appearance is given by

00 2
p(S)=( > fm[nlhm_s[—n]) : ©)

m=—00

This effect, termed temporal imaging, is discussed further in the
context of specific filters.

3.2. Optimal and sub-optimal filter designs

Minimising the loss of S/N is equivalent to solving Equation (7)
using least-squares regression. Since any given reconstructed sam-
ple only receives contributions from samples spaced one tap apart,
Equation (7) can be thought of as M independent conditions, one
for each tap position, n=0,1,2,...,M — 1. Thus, considering
each tap position separately, each condition can be expressed as
a minimal matrix equation,

H"WF" = p, (10)
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where H™, F™, and D are matrices whose elements are given by
ngjn) = hp_14j-i[—nl,
E" =fn],
D, = 85P’+P)/2

(11)

>

where P is the number of taps in the analysis filter, and the size of
F™ is set to the desired number of (non-zero) taps in the syn-
thesis filter, P’. The indices are chosen such that, owing to the
finite size of the analysis filter, the smallest H™ that captures every
non-trivial term in Equation (7) is the (P’ + P — 1) x P’ matrix

[y 1[—n] 0 . 0
hp_s[—n]  hp_[—n] e 0
H® = (12)
0 e ho[=n]  hi[—n]
o o 0 o[ —n] |

with row number i = (P’ 4 P)/2 (in H" and D) corresponding to
the s =0 term.¢

Once the matrices H™, F™, and D have been defined, solution
by least-squares regression can proceed in the usual way, yielding
the best-fit filter coefficients

o) — (H(")TH(”)>71 H®'D, (13)

where H®™" is the transpose of H". With this notation, the
reconstruction error can be more concisely expressed

Do 2
[S/N]recon = ( (Ii’\Jer/Z) B

BTh (14)

where D = H"F®,

Figure 3 shows the solutions found for the MWA’s analysis
filter defined in Equation (4), for 12-, 18-, and 24-tap synthesis
filter sizes. Despite the complexity of the synthesis filters, they all
share the same basic form as the analysis filter. This resemblance
suggests that choosing a synthesis filter that is the mirror image
of the analysis filter (i.e. f[n] = h[—n]) might also yield a reason-
ably good reconstruction, without having to calculate the optimal
solutions numerically.

The performance of both the (sub-optimal) mirror filter and
the (optimal) set of least-squares solutions can be evaluated
straightforwardly using Equation (14). Figure 4 compares the
loss of S/N due to each filter (under the assumption of noise-
dominated samples), revealing that, as expected, the filters with
the larger number of taps perform better, and the mirror filter
performs the least well.

Figure 4 suggests that one can achieve arbitrarily good perfor-
mance by choosing a sufficiently long filter. However, the better
performance of the longer filters is offset by the increased compu-
tational resources and/or time required to apply them, which may
exceed the system’s design specifications. Note that the mirror fil-
ter, being the same size as the 12-tap least-squares filter, offers
no advantage in terms of minimising the reconstruction error.
On the other hand, the way that the signal power is distributed

“Note that since P = 12 for the PFB considered here, only the case where P’ is even has
been considered.
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Figure 3. The coefficients for four different synthesis filter designs: three generated
using least-squares optimisation methods, and the sub-optimal mirror filter.
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Figure 4. Top: The reconstructed S/N, defined in Equations (8) and (14), as a function
of the position of the reconstructed sample within a tap for the filters displayed in
Figure 3. Bottom: The effect of temporal imaging, quantified in Equation (9), demon-
strating how power ‘leaks’ across adjacent taps during reconstruction. A grey dashed
line is drawn at —25 dB to aid visual comparison.

across multiple taps is markedly different for the two filter types, as
shown in the bottom panel of Figure 4. The mirror filter performs
slightly worse in nearby taps but drops off more quickly further
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out. For applications where the samples are signal-dominated, and
minimising temporal imaging is more important than measuring
the S/N of the signal precisely, the mirror filter may therefore
offer some advantage over the least-squares solution. However,
observations of pulsars only rarely fall into this regime, even for
observations of single pulses, where typically many samples must
be averaged before the signal becomes more significant than the
noise. A more detailed analysis of these effects is therefore outside
the scope of the present work.

3.3. MWA implementation

We initially implemented the mirror filter for the purpose of pro-
totyping the synthesis filter, due to the ease of generating the
coefficients, and the 12-tap least-squares filter was implemented
once proof of concept had been demonstrated. Both of these
synthesis filters are available as optional components of the MWA-
VCS beamforming software VCSTools, described in Paper I. Even
though our system places no stringent limits on computational
resources, we have not implemented the larger filters due to the
identification of other sources of error that dominate over the
reconstruction error defined above, rendering the advantages of
the longer filters relatively minor in comparison. An analysis of
these errors is presented in the following sections.

Viewed as a linear operation, Equation (5) is ideally suited for
graphics processing units (GPUs), and we have implemented it in
VCSTools for NVIDIA’s Compute Unified Device Architecture
(CUDA) architecture. Rather than use existing implementations
of the implied inverse DFT, the N x K exponential terms (the
so-called ‘twiddle factors’) are pre-calculated and stored in a 2D
array of double-precision floating point numbers on the GPUs.
These are then accessed as required for the calculation of a given
sample X[n]. The combined GPU-accelerated calculations for
both beamforming and coarse channel reconstruction run faster
than real time.®

Once the synthesis filter has been applied to each of the MWA’s
polarisation streams for each coarse channel, the resulting high
time resolution time series is written out as complex voltages
(i.e. without converting to Stokes parameters) in the Very-long-
baseline interferometry Data Interchange Format (VDIF) file for-
mat (Whitney et al. 2009). This format was chosen because it is
supported by the coherent de-dispersion functionality of DSPSR’
(van Straten & Bailes 2011), a software suite for processing pul-
sar time series. The VDIF format requires each sample to fit into a
signed 8-bit complex integer data type, which is performed as the
final step before writing to disk.

4. System performance

The MWA implementation of the fine PFB differs from Equation
(3) in a few important respects, causing a reduction in the recon-
structed S/N that would be present even if the synthesis filter
perfectly inverted the analysis filter. The most significant differ-
ence is that both the coefficients b[n] and the final sum undergo
a rounding operation, resulting in the approximate (i.e. both less
precise and biased) spectrum

K-1
Xy [m] = {Z me[ﬂ]J e—mjkn/KJ ’
asym

n=0

(15)

dhttps://github.com/CIRA-Pulsars-and-Transients-Group/vcstools.
Verified for CUDA compute capability >3.5.
fhttp://dspsr.sourceforge.net/.
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where |-] and |- ].sym denote symmetric and asymmetric rounding
operations, respectively, described in Appendix A.

The non-linearity of the back-to-back system induced by
Equation (15) implies that there is no single impulse response
test that can adequately characterise the whole system. To wit, the
results of an impulse response test depend sensitively on at least
three factors: the magnitude of the impulse; its position within a
tap; and the arbitrary scaling factor and quantisation applied at the
end of the test required by the integer-based output formats. For
example, an impulse at tap position # = 0 (mod K) will be perfectly
reproduced if its magnitude is such that the amount of rounding
that takes place during analysis is minimised. On the other hand,
an impulse at n = 64 (mod K) can be chosen such that the response
is significantly worse than that implied by Figure 4.

For this reason, and also because the vast majority of applica-
tions of this system falls in the regime of noise-dominated samples,
we have decided to forego the traditional impulse response test in
favour of a back-to-back test involving real data collected expressly
for this purpose. This is an empirical test of system that made use
of a non-standard observing mode to record a small amount of
simultaneous coarse and fine channel data (i.e. both before and
after the fine PFB analysis filter stage). The fine channels from
one polarisation of a single tile were extracted and subjected to
both the mirror filter and the 12-tap least-squares filter to recon-
struct the 1.28 MHz coarse channel time series, which could then
be compared directly with the original data. The real and imagi-
nary parts of the time series resulting from the least-squares filter
are shown in Figure 5.

With the original and reconstructed time series in hand, we
estimated the S/N loss for each tap position by comparing the vari-
ance of the original time series (the ‘signal’), 6, with the variance
of the residuals (the ‘noise’), UI%,. In analogy with Equation (8),

2
o5

[S/N]recon = (16)

o + oy

Recognising that some of the noise variance is due to the synthe-
sis filter (cf. Figure 4), we have estimated the contribution due to
rounding errors (and any other implementation-specific effects)
by calculating the “filter-subtracted’ S/N loss:

2
Os

S Nliecon=—5—"5—5—
[ / ]eco O—S2+(O']%_O'fflter)

, 17)

where oy, is derived from Equation (8).

Figure 6 shows the results for just under one second’s worth
of data (1278464 x 0.78 s samples), where 1 536 samples (one
tap) were excised due to the synthesis filter being applied to
zero-padded data beyond the edge of the second. The remain-
ing samples were sorted into their respective tap positions, and
the variances calculated for each set (containing 12 78 464/128 =
9988 samples). Near the edges of the tap, the rounding errors
dominate the reconstruction noise, which we estimate contributes
roughly —0.26 dB of signal loss at all tap positions. In more central
tap positions, however, the contributions from the rounding errors
and the filters are comparable, and significant improvements could
made by using longer filters. Nevertheless, unless there is a way to
mitigate the rounding errors during the application of the anal-
ysis filter (explored below), it is unlikely that we will be able to
achieve a total S/N loss better than approximately —0.26 dB at any
tap position.
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Figure 5. 128 high time resolution (1.28 MHz) samples from a single coarse channel
and a single polarisation of one MWA tile. The real (top) and imaginary (bottom) com-
ponents are shown separately. The original coarse channel data (black) are compared
with the data reconstructed using the 12-tap least squares filter (red), with the residu-
als plotted in the lower panels. Because the VDIF data uses an arbitrary scaling factor,
the red line has been rescaled by eye for a better visual comparison.

Mitigation of rounding errors

The original (i.e. before applying the fine PFB) high time reso-
lution samples are (5+5)-bit complex integers, scaled such that
the bit occupancy is not so low that information is lost, and
not so high that individual samples are clipped. Interestingly,
one may question whether or not this known quantisation can
be used to recover some of the information lost by the imper-
fect back-to-back system. If the errors are sufficiently small, then
re-quantising the reconstructed samples will correct more errors
than it introduces, giving overall better performance.

In this section, we offer a short proof of the condition for which
re-quantisation results in a net recovery of S/N for samples fol-
lowing Gaussian statistics. As before, let 0 be the variance of the
residuals which are assumed to be drawn from a normal distribu-
tion with zero mean. The effect of re-quantisation on the variance
is that every sample between k — 5 and k+ 1, for any integer k,
gets ‘counted’ as if it had the value k. The adjusted variance, 62,
can then be expressed in terms of o via the second moment,
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where the last equality takes advantage of the symmetry of the
error function.

Re-quantisation is beneficial precisely when 63 < O'N, which
can be shown by numerical methods to occur when o < 0.29.
The MWA test data set presented above has a variance of
approximately 6.7, which implies that the total S/N loss of the
back-to-back system would have to be smaller than —0.05dB
before re-quantisation would improve the signal reconstruction.
As Figure 6 shows, this is not met for any tap position, so we did
not pursue this possibility further. However, systems that are able
to achieve better than 0% < 0.29 may do better yet by re-quantising
the suitably scaled reconstructed samples.

4.1. Verification using pulsar observations

Observations of three pulsars are presented here to validate the
synthesis filter as a useful tool for undertaking high time reso-
lution studies of pulsars with the MWA: MSPs J2241-5236 and
J0437-4715, and the bright, long-period PSR B0950+08. The first
two pulsars were processed with the mirror filter, and B0950+08
was processed with the 12-tap least-squares filter. As Figure 6
implies, the use of the mirror filter instead of the more optimal
least-squares filter would result in a further ~0.1-dB reduction
in S/N.

4.1.1. PSR J2241-5236

J2241-5236 has a rotation period of 2.18 ms and a dispersion mea-
sure (DM) of 11.41 pc cm ™. The resulting dispersion smear across
10 kHz channels at the central observing frequency of 150.4 MHz
is approximately 0.2 ms, or 45° of rotation phase, consistent with
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Figure 7. The coherently de-dispersed profile of PSR J2241-5236 made from the
reconstructed coarse channels (Kaur et al. 2019) (the flux scales are arbitrary). The
two pre-cursor components on the leading side of the main pulse are separated by
approximately 50 ps and were first detected using the high time resolution mode.

the width of the average profile formed from incoherently de-
dispersed, fine-channelised data recorded with the MWA-VCS
system. Upon applying the synthesis filter and coherently de-
dispersing the reconstructed time series sampled at the much
higher rate of 1.28 MHz, the same data revealed exquisite detail
in the average profile, including a pair of pre-cursor components
that are only marginally visible (if at all) at higher frequencies
(Figure 7). These have since been confirmed during follow-up
observations (Kaur et al. in prep) using the Band 3 receiver (250-
500 MHz) of the upgraded Giant Metrewave Radio Telescope.
In addition, these new, low-frequency observations have allowed
us to measure the DM of this pulsar with unprecedented pre-
cision (~(2—6) x 107® pc cm~3), with important consequences
for measuring DM chromaticity and evaluating its effect on pul-
sar timing experiments. These results are discussed in detail in
Kaur et al. (2019).

4.1.2. PSR J0437-4715

PSR J0437-4715 is a nearby MSP (distance ~ 157 pc; period P~
5.76 ms) and an established target for PTA applications. It boasts
a complex, multi-component polarimetric profile (Figure 8) that
spans more than half of its rotation period (cf. Yan et al. 2011). It
was used in Paper I as a verification of the beamforming method
employed in the VCS processing pipeline, although there is a
noticeable difference between the circular polarisation published
in that work and that shown here (see the Figure caption for
details).

As evident from Figure 8, the application of the synthesis filter
successfully recovers some curious fine structure (e.g. notch-like
features at pulse phases ~0.54 and ~0.7) characteristic to this pul-
sar, first reported in early high time resolution studies made at
430 MHz (Navarro et al. 1997). The pulsar detection (for Stokes I
only) was originally presented in Bhat et al. (2018), where the com-
bination of a lower time resolution (100 ps) and a non-negligible
dispersive smearing (~45 j1s) obscured the detection of these fine
structures. Figure 8 thus presents the highest-fidelity detection of
this important pulsar at frequencies below 200 MHz.
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Figure 8. Profiles of PSR J0437-4715 formed from the same data set. Top: incoher-
ently de-dispersed with 10 kHz (fine) frequency channels formed from the standard
PFB analysis filter. Bottom: coherently de-dispersed using 1.28 MHz (coarse) frequency
channels reconstructed using the synthesis filter described in this paper. The higher
time resolution profile shows features (e.g. notches in the total intensity profile at
pulse phases ~0.54 and ~0.7) that are obscured by dispersion smear at the lower time
resolution. A comparison with these profiles with that published in Paper | reveals an
excess of circular polarisation on both the leading and trailing edges of the profile. The
reason for the discrepancy is not clear, but it should be noted that the earlier profiles
were published before the polarimetric verification of Paper Il was carried out.

4.1.3. PSR B0950+4-08

B0950+08 is a bright, long-period (P =0.253 s) pulsar known to
exhibit microstructure (Popov et al. 2002; Kuzmin et al. 2003).
A total of 80 seconds (315 pulses) of data (128 x 10 kHz fine chan-
nels) were recorded, beamformed, and subjected to the polyphase
synthesis filter. Across the MW A bandwidth, we used the rotation
measure (RM) synthesis technique® (Brentjens & de Bruyn 2005)
to measure an RM of 1.43 = 0.15rad m-2, which is consistent
with previous measurements of this pulsar’s RM (e.g. Noutsos
et al. 2015). The mean profile formed from the one coarse chan-
nel is shown in Figure 9. Several individual pulses were suffi-
ciently bright to see substructure. One such pulse is showcased in
Figure 10, where all 24 coarse channels were integrated to max-
imise the S/N. To highlight the pulse’s substructure, we show it at

8https://github.com/gheald/RMtoolkit.
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Figure 9. Polarisation profile formed using 80 s (315 pulses) of B0950+-08 data. The
time resolution is ~250 ps.

three different time resolutions (corresponding to the chosen bin
width of each plot).

Using observations at 102.5 MHz, Kuzmin et al. (2003) report
microstructure with a characteristic timescale of ~60 s, which we
are able to unambiguously identify in our data. We suggest that the
finest observable structures (Figure 10, bottom plot) might corre-
spond to the ~10 ps structures reported by Popov et al. (2002) at
1.65 GHz. However, Kuzmin et al. (2003) used only a single linear
polarisation feed, and Popov et al. (2002), only a left-handed cir-
cularly polarised feed. With the benefit of full Stokes polarimetry,
we are able to verify that on the smallest time scales, the emission
is almost 100% polarised—mostly linear, but with a small amount
of circular polarisation during the brightest part of the pulse. This
is evidence that the errors introduced by the analysis-synthesis fil-
ter do not contribute a significant amount of polarisation leakage
into neighbouring time bins—in particular, at intervals of 50 ps.

5. Conclusion

The MWA-VCS telescope system outputs voltage data with a fre-
quency resolution of 10 kHz and a time resolution of 100 s, which
is suitable for many pulsar applications, as demonstrated in sev-
eral pulsar science papers published to date. In this paper, we have
presented an algorithm to undo the fine channelisation stage (fine
PFB) of the VCS pipeline by using a synthesis polyphase filter,
implemented as part of our processing software suite, VCSTools.
The result is a reconstructed, coarse channelised (pre-PFB) time
series, suitable for high time resolution studies of MSPs and other
rapid transient signals. Although the reconstruction is not perfect,
the average error does not exceed —0.65 dB for noise-dominated
samples.

We have further verified our system by observing PSRs J2241-
5236, J0437-4715, and B0950+08, all of which are known to
exhibit structures on ~1—10 s timescales. In each case, our
results have been shown to be consistent with observations at other
radio frequencies. The advent of the VCS high time resolution
observing mode thus distinguishes the MWA as a premier low-
frequency instrument for studying pulsars and other transients
at microsecond resolution, with important implications for stud-
ies of the pulsar emission mechanism, the characterisation of the
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interstellar medium in the ongoing search for gravitational waves,
and others.
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A. The FPGA implementation of the fine PFB

Each coarse channel is independently processed by dedicated
FPGAs to convert (5+5)-bit complex integers sampled at
1.28 MHz into a series of spectra composed of 128 (4+4)-bit
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lation of 5-bit samples was drawn from a rounded Gaussian distribution with mean
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bottom panel compares the distributions of the resulting population of 8-bit samples.

complex integers sampled at 10 kHz. The PFB is implemented in
two stages: (1) a ‘front-end’ stage which prepares the array b[n]
(see Equation (3)), and (2) the fast Fourier transform (FFT) stage,
which calculates the 128-point spectrum, X [m].

The first stage involves a multiplication of a window of 1 536
consecutive coarse channel samples with the analysis filter shown
in Figure 2, and then a summation of the 12 taps together to pro-
duce a single array of 128 complex integers. The combination of
the allowed input values [—16, 15] and the filter values guaran-
tees that the magnitudes of the summed (signed) numbers do not
exceed 22! =2097 152. At this stage of the processing, they are
stored as 48-bit signed integers, of which only the bottom 22 bits
are therefore significant. Each integer n (either real or imaginary)
is then reduced from 48 bits to 8 bits in the following manner.
If n is positive, then bits 14 through 21 (counting from the least-
significant bit) are selected to form the 8-bit integer, and 1 is
subsequently added if bit 13 is 1. This is equivalent to rounding
the number 1/2' to the nearest integer, where fractional values of
0.5 are always rounded up. If n is negative, then bits 14 through 21
are selected, but no rounding occurs. This is equivalent to applying
the floor operation to n/2'. It should be noted that this rounding
scheme introduces a bias into the distribution of values. In par-
ticular, the distribution of 8-bit values has a different mean than
the distribution of the original 5-bit values, and it results in an
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artificial deficit in the number of values that get rounded to zero. The second stage calculates the spectrum of b[n] using the stan-
The rounding scheme and its effect on the distribution are illus-  dard fixed point FFT algorithm that is implemented on (Xilinx
trated in Figure A1, including a displaced mean which artificially =~ Virtex4 XC4VSX35) FPGAs. The output values are scaled and
adds power to the DC bin of the spectrum. (symmetrically) rounded, producing (4+4-4)-bit output values.
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