GROUPS WITH PRESCRIBED AUTOMORPHISM GROUP: A CLARIFICATION

by DEREK J. S. ROBINSON

(Received 15th April, 1983)

In Theorems 1 and 2 of [1] necessary and sufficient conditions were given for a group G to have a finite automorphism group $\operatorname{Aut} G$ and a semisimple subgroup of central automorphisms $\operatorname{Aut}_c G$. Recently it occurred to us, as a result of conversations with Ursula Webb, that these conditions could be stated in a much simpler and clearer form. Our purpose here is to record this reformulation. For an explanation of terminology and notation we refer the reader to [1].

Theorem 1*. Let G be a group such that Aut G is finite and Aut_c G is semisimple. Then one of the following holds: here Q is a finite group with trivial centre and $q = |Q_{ab}|$.

- (i) $G \simeq \overline{G}(Q, F, \varepsilon) \equiv G(Q, F, \varepsilon)/M(Q)_{q'}$ where F is a torsion-free abelian group, $\varepsilon \in \operatorname{Ext}(Q_{ab}, F)$ and $C_{\operatorname{Aut} F}(\varepsilon) = 1$.
- (ii) $G \simeq (G(Q, 1, 0)/K) \times D$ where $K \subseteq M(Q)_{q'}, D$ is an elementary abelian 2-group of order different from 4 and

$$q \cdot |M(Q)_{q'} \cdot K|$$
 is prime to $|D|$.

The point here is that if G is infinite, then $G \simeq \overline{G}(Q, F, \varepsilon)$, which is a central extension of F by Q, the cohomology class being determined by ε . If G is finite, its structure is given by (ii); note that G(Q, 1, 0) is a central extension of $M(Q)_q$ by Q whose cohomology class is determined by the canonical projection $M(Q) \to M(Q)_q$.

Proof of Theorem 1*. We know that G has the structure described in Theorem 1 of [1]. Assume that G is infinite, so that $F \neq 1$. Now F is divisible by $l = |D| \cdot |M(Q)_{q'}:K|$. The mapping $x \mapsto x^l$ is an automorphism of F, say α ; this induces an automorphism in $E = \operatorname{Ext}(Q_{ab}, F)$ which is just multiplication by l. Since (q, l) = 1, there is a positive integer n such that $l^n \equiv 1 \mod q$. Also qE = 0. Hence α^n operates trivially on E. But $C_{\operatorname{Aut} F}(\varepsilon) = 1$, so in fact l = 1. Therefore D = 1 and $M(Q)_{q'} = K$, as required.

Theorem 2 of [1] provides an immediate converse of Theorem 1*.

Theorem 2*.

(i) If $G = \overline{G}(Q, F, \varepsilon)$ as in Theorem 1* (i), then Aut $G \simeq \operatorname{St}_{\operatorname{Aut} O}(\varepsilon^{\operatorname{Aut} F})$ and $\operatorname{Aut}_{\varepsilon} G = 1$.

(ii) If $G = (G(Q, 1, 0)/K) \times D$ as in Theorem 1*(ii), then $\operatorname{Aut} G \simeq N_{\operatorname{Aut} Q}(K) \times \operatorname{Aut} D$ and $\operatorname{Aut}_c G \simeq D$.

Finally, as a result of these simplifications we may refine Theorem 7 of [1] by replacing statement (v) by

(v)* An infinite group G satisfies $\operatorname{Aut} G \simeq S_4$ if and only if $G \simeq G(F, \varepsilon)/\mathbb{Z}_2 \equiv \overline{G}(A_4, F, \varepsilon)$ where F is a non-trivial torsion-free abelian group, and ε in F/F^3 is such that $C_{\operatorname{Aut} F}(\varepsilon) = 1$.

REFERENCE

1. D. J. S. Robinson, Groups with prescribed automorphism group, *Proc. Edinburgh Math. Soc.* 25 (1982), 217–227.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF ILLINOIS 1409 WEST GREEN STREET URBANA, ILLINOIS 61801 U.S.A.