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Certain Operators
with Rough Singular Kernels

Jiecheng Chen, Dashan Fan and Yiming Ying

Abstract. We study the singular integral operator

TΩ,α f (x) = p.v.

∫

Rn
b(|y|)Ω(y ′)|y|−n−α f (x − y) dy,

defined on all test functions f ,where b is a bounded function, α ≥ 0, Ω(y ′) is an integrable function

on the unit sphere Sn−1 satisfying certain cancellation conditions. We prove that, for 1 < p < ∞,

TΩ,α extends to a bounded operator from the Sobolev space L
p
α to the Lebesgue space Lp with Ω being

a distribution in the Hardy space Hq(Sn−1) where q =
n−1

n−1+α
. The result extends some known results

on the singular integral operators. As applications, we obtain the boundedness for TΩ,α on the Hardy

spaces, as well as the boundedness for the truncated maximal operator T∗

Ω,m.

1 Introduction

Let Sn−1 be the unit sphere in Rn, n ≥ 2, with normalized Lebesgue measure dσ =

dσ(x ′). Let Ω(x) be a homogeneous function of degree 0, with Ω ∈ L1(Sn−1) and

(1.1)

∫

Sn−1

Ω(x ′) dσ(x ′) = 0,

where x ′
= x/|x| for any x 6= 0.

Suppose b(|x|) is an L∞ function; the singular integral operator SIb( f ) is defined
by

(1.2) SIb( f )(x) = p.v.

∫

Rn

b(|y|)Ω(y ′)|y|−n f (x − y) dy

for all test functions f , where y ′
= y/|y| ∈ Sn−1.

We denote SIb( f ) by SI( f ) if b = 1. This operator SI was first studied by Calderon
and Zygmund in [CZ1, CZ2]. They proved that if Ω ∈ L log+ L(Sn−1) satisfies the
mean zero condition (1.1) then the operator SI with kernel Ω(x ′)|x|−n is a bounded
operator on Lp(Rn), 1 < p < ∞. Below let us recall briefly the idea used in Calderon-

Zygmund’s proof.
Suppose that Ω ∈ L1(Sn−1)is an odd function; then one can easily show that

(1.3) SI( f )(x) =
1

2

∫

Sn−1

Ω(y ′)
{∫ ∞

−∞

f (x − t y ′)t−1 dt
}

dσ(y ′).
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Certain Operators with Rough Singular Kernels 505

By the method of rotation and the well-known Lp-boundedness of the Hilbert trans-
form one then obtains the Lp-boundedness of SI under the weak condition Ω ∈
L1(Sn−1).

For even kernels, the condition Ω ∈ L1(Sn−1) is insufficient. It turns out the
right condition is Ω ∈ L log+ L(Sn−1) (as far as the size of Ω is concerned). The idea
of Calderon-Zygmund is to compose the operator SI with the Riesz transform R j ,

1 ≤ j ≤ n, and show that R j(SI) is a singular integral operator with an appropriate
odd kernel. Thus

‖R j(SI)( f )‖p ≤ C p‖ f ‖p

for all test functions f ∈ S. Furthermore, one can obtain

‖ SI( f )‖p =

∥∥∥
( n∑

j=1

R2
j

)
SI( f )

∥∥∥
p
≤

n∑

j=1

∥∥R j

(
R j SI( f )

)∥∥
p

≤ nC

n∑

j=1

‖R j SI( f )‖p ≤ n2CC p‖ f ‖p

for all test functions f ∈ S, since −
∑n

j=1 R2
j is the identity map. Using the above

method, Ricci and Weiss [RW] obtained the same Lp-boundedness of SI( f ) under a
weaker condition Ω ∈ H1(Sn−1), where H1(Sn−1)is the Hardy space which contains

L log+ L(Sn−1) as a proper subspace.

In [Fe], R. Fefferman generalized this Calderon-Zygmund singular integral by re-
placing the kernel Ω(x ′)|x|−n by b(|x|)Ω(x ′)|x|−n, where b is an arbitrary L∞ func-
tion. This allows the kernel to be rough not only on the sphere, but also in the ra-

dial direction. For the singular integral operator SIb f (x) with the kernel K(x) =

b(|x|)Ω(x ′)|x|−n, the formula (1.3) now is

(1.3 ′) SIb( f )(x) =

∫

Sn−1

Ω(y ′)
{∫ ∞

0

f (x − t y ′)t−1 dt
}

dσ(y ′).

Clearly, the method by Calderon and Zygmund can no longer be used to estimate the
above integral in (1.3 ′) even if Ω is odd, since the integral in the parenthesis can not
be reduced to the Hilbert transform for an arbitrary b(t). Thus one needs to find a
new approach.

Using a method which is different from Calderon and Zygmund, R. Fefferman
showed in [Fe] that if Ω satisfies a Lipschitz condition then SIb is bounded on Lp(Rn)
for 1 < p < ∞. Later, in [DR], using Littlewood- Paley theory and Fourier trans-
form methods, Duoandikoetxea and Rubio De Francia improved Fefferman’s result

by assuming a roughness condition Ω ∈ Lq(Sn−1) (see also [Ch],[Na] and a recent
survey paper [GS]). By modifying the method in [DR], recently, Fan and Pan ob-
tained the following theorem.

Theorem A [FP1] Let SIb be the singular integral operator defined by (1.2). If Ω ∈
H1(Sn−1) satisfies (1.1), then SIb is bounded on Lp(Rn), 1 < p < ∞.
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506 Chen, Fan and Ying

In this paper, we will study the singular integral operator TΩ,α f (x) (formally) de-
fined by

(1.4)

TΩ,α f (x) = p.v.

∫

Rn

b(|y|)Ω(y ′)|y|−n−α f (x − y) dy

= lim
ε→0

TΩ,α,ε f (x) = lim
ε→0

∫

|y|>ε

b(|y|)Ω(y ′)|y|−n−α f (x − y) dy

for all functions f ∈ S(Rn), where b ∈ L∞, α ≥ 0 and Ω ∈ Hq(Sn−1) satisfies

(1.5)

∫

Sn−1

Ω(y ′)Ym(y ′) dσ(y ′) = 0

for all spherical polynomials Ym(y ′) with degrees m ≤ [α]. We recall that the Hardy
space Hq(Sn−1) is a distribution space if 0 < q < 1. So (1.4) and (1.5) are well-

defined only if Ω ∈ L1(Sn−1). In general, the way in which the above integrals have
to be interpreted.

Let χ(a,b)(t) be the characteristic function of the interval (a, b), and let

Cε(|x|) = b(|x|)|x|−n−αχ(ε,∞)(|x|), Lε(t) = b(t)χ(ε,∞)(t)t−1−α.

For f ∈ S(Rn), write f (x − y) = fx,t (y ′) with t = |y|. Denote 〈Ω, φ〉 the pairing

between Ω and a C∞ function φ on Sn−1. The operators TΩ,α,ε and TΩ,α are defined
on the test function space S(Rn) as

(1.4 ′)
TΩ,α,ε f (x) =

∫ ∞

0

Lε(t)〈Ω, fx,t〉 dt,

TΩ,α f (x) = lim
ε→0

TΩ,α,ε f (x)

where Ω ∈ Hq satisfies

(1.5 ′) 〈Ω,Ym〉 = 0

for all sphere polynomials Ym with degrees ≤ [α].
As we will mention in the second section, a distribution Ω ∈ Hq(Sn−1) has an

atomic decomposition Ω =
∑

λ ja j in the distribution sense, where each a j is called
a (q, r) atom that is an integrable function having the same cancellation conditions

as that of Ω, and
∑

|λ j |
q ∼= ‖Ω‖

q

Hq(Sn−1)
. Thus, the pairing in (1.4 ′) is

〈Ω, fx,t〉 =

∑
λ j〈a j , fx,t〉.

It is known (see [Co2]) that the dual space of Hq is the Lipschitz space Λ
β(Sn−1) with

β = (1/q−1)(n−1). Let k be an integer greater than β. If β > 0, the space Λ
β(Sn−1)

is the set of all functions g ∈ L∞(Sn−1) with norm

‖g‖Λβ (Sn−1) = ‖g‖L∞(Sn−1) +
{

sup
∥∥∥ dk

drk
g(r·)

∥∥∥
L∞(Sn−1)

(1 − r)k−β : 0 ≤ r < 1
}

< ∞.
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Λ
0 is the BMO space. So

|〈Ω, fx,t〉| ≤
∑

|λ j | ‖a j‖Hq(Sn−1)‖ fx,t‖Λβ(Sn−1).

It is known from [Co1, Co2] or [CTW] that ‖a j‖Hq(Sn−1) ≤ C uniformly for atoms
a j . It is also not difficult to check that ‖ fx,t‖Λβ(Sn−1) ≤ C uniformly on t > 0 (see
Appendix). By the Lebesgue dominated convergence theorem we have, for ε > 0,

TΩ,α,ε f (x) =

∑
λ j

∫ ∞

0

Lε(t)〈a j , fx,t〉 dt.

We define the distribution kernel

KΩ,ε =

∑
λ jCεa j .

Now the operators TΩ,α,ε can be written as

TΩ,α,ε f (x) ∼= KΩ,ε ∗ f (x) =

∑
λ j(Cεa j) ∗ f (x).

The definition in (1.4 ′) is well-defined, since limε→0 TΩ,α,ε( f )(x) exists for all x ∈ Rn.
To see this fact, we use the Taylor’s expansion

f (x − y) =

∑

|K|≤[α]

CK yK (DK f )(x) +
∑

|K|=[α]+1

CK yK

∫ 1

0

(1 − s)[α](DK f )(x − sy) ds,

where CK are certain constant coefficients depending on the multi-indices K. Let

gx,t (y ′) =

∑

|K|=[α]+1

CK y ′K

∫ 1

0

(1 − s)[α](DK f )(x − st y ′) ds.

By the cancellation condition of Ω, we have

〈Ω, fx,t〉 = 〈Ω, gx,t〉t
[α]+1

which gives, in (1.4 ′), that

TΩ,α,ε f (x) =

∫ ∞

0

Lε(t)
(
χ(0,1)(t)t [α]+1〈Ω, gx,t〉 + χ(1,∞)(t)〈Ω, fx,t〉

)
dt.

Since f is a test function, there is a constant C (perhaps depending on x) such that

χ(0,1)(t)‖gx,t‖Λβ(Sn−1) ≤ C, χ(1,∞)(t)‖ fx,t‖Λβ (Sn−1) ≤ C

uniformly for all t > 0. So

∣∣Lε(t){χ(0,1)(t)t [α]+1〈Ω, gx,t〉 + χ(1,∞)(t)〈Ω, fx,t〉}
∣∣

≤ C‖Ω‖Hq(Sn−1)

∣∣χ(0,1)(t)b(t)t [α]−α + χ(1,∞)(t)L1(t)b(t)t−1−α
∣∣ .
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By the Lebesgue dominated convergence theorem we obtain

lim
ε→0

TΩ,α,ε f (x) =

∫ ∞

0

b(t){χ(0,1)(t)〈Ω, gx,t〉t
[α]−α + χ(1,∞)(t)t−1−α〈Ω, fx,t〉} dt.

Clearly (1.4 ′) (1.5 ′) are consistent with (1.4) (1.5) if Ω ∈ L1(Sn−1).

We have the following theorem.

Theorem 1 Let 1 < p < ∞ and p̃ = max{p, p/(p − 1)} and let TΩ,α be defined in

(1.4 ′). Suppose that Ω ∈ Hq(Sn−1) with q = (n − 1)/(n − 1 + α) and satisfies

(1.5 ′ ′ ′) 〈Ω,Ym〉 = 0

for all Ym(y ′) with degree m ≤ N, where N is an integer larger than α p̃/2 − 1. Then

we have

(1.6) ‖TΩ,α f ‖Lp (Rn) ≤ C‖Ω‖Hq(Sn−1)‖ f ‖L
p
α(Rn)

for all f ∈ S(Rn), where L
p
α is the homogeneous Sobolev space whose definition can be

found in the appendix. Thus the operator TΩ,α can be extended to the full L
p
α(Rn) in the

usual manner.

It is clear that Theorem 1 is an extension of Theorem A, since L
p
α = Lp if α = 0.

On the other hand, although TΩ,α is a translation-invariant operator, it is hard to see
whether it belongs to the symbol class Sα (see [St] for the definition of Sα). One can
not use the results in [T] to cover our result.

Let L
p
α be the inhomogeneous Sobolev space which is the set of all functions f

satisfying ‖ f ‖
L

p
α

= ‖ f ‖Lp + ‖ f ‖L
p
α

< ∞. Define the operator SΩ,α on S(Rn) by

SΩ,α f (x) = p.v.

∫

Rn

Γ(|y|)Ω(y ′) f (x − y) dy,

where |Γ(t)| ≤ Ct−n−α if t ∈ (0, 1) and |Γ(t)| ≤ Ct−n if t ≥ 1. Then by Theorem A

and Theorem 1, we easily obtain the following result on SΩ,α.

Theorem 1 ′ Let 1 < p < ∞. Suppose that Ω ∈ H1(Rn) satisfies (1.5 ′). Then

‖SΩ,α f ‖Lp ≤ C‖ f ‖
L

p
α
.

We recall also a result by Muckenhoupt and Wheeden in the following.

Theorem B [MW] If −n < α < 0, q = n/(n + α), and Ω ∈ Lq(Rn) (no cancellation

condition needed), then

(1.7) ‖TΩ,α f ‖Lr(Rn) ≤ C‖ f ‖Lp(Rn)

with 1/r = 1/p + α/n. In order to clarify the relations among Theorem 1 and Theo-

rems A–B, we remark that on Sn−1, Lq ⊂ L Log+ L ⊂ H1 ⊂ L1 ⊂ Hr , 0 < r < 1 < q

and all the inclusions are proper, while Lq
= Hq if 1 < q < ∞. Let Ḟ

α,q
p be the Triebel-

Lizorkin space defined in [FJW]. It is known that on Rn, Ḟ0,2
p = Lp, Ḟα,2

p = L
p
α if α ≥ 0;

Lp ⊂ Ḟ
α,2
p if α < 0 and 1/r = 1/p + α/n. Thus, our theorem also can be viewed as a

partial extension of Theorem B.
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Define the truncated maximal operator by T∗
Ω,α f (x) = supε>0 |TΩ,α,ε f (x)|.

When α = m is an integer, we have a stronger result.

Theorem 2 Let m = 0, 1, 2, . . . , and Ω ∈ Hq(Sn−1) satisfy (1.5 ′ ′) in Theorem 1 with

q =
n−1

n−1+m
. For 1 < p < ∞, we have

(1.8) ‖T∗
Ω,m( f )‖Lp(Rn) ≤ C‖Ω‖Hq(Sn−1)‖ f ‖L

p
m(Rn).

Below we briefly outline the strategy of our proofs.
From (1.6) we have

(1.9) T∗
Ω,α( f )(x) ≤

∑
|λ j |T

∗
a j ,α( f )(x).

so by the Minkowski inequality

‖T∗
Ω,α( f )‖Lp ≤

∑
|λ j | ‖T∗

a j ,α( f )‖Lp .

To show the boundedness of T∗
Ω,α( f ), it suffices to show

(1.10) ‖T∗
a j ,α( f )‖Lp ≤ C‖ f ‖L

p
α
,

where C is independent of f and atoms a j ; because by (1.10) one has

‖T∗
Ω,α( f )‖Lp ≤ C‖ f ‖L

p
α

(∑
|λ j |

q
) 1

q

= C‖ f ‖L
p
α(Rn)‖Ω‖Hq(Sn−1).

To establish (1.10), in the third section, we will prove for α ≥ 0,

‖Ta j ,α( f )‖Lp ≤ C‖ f ‖L
p
α
,(1.11)

‖Ta j ,α,ε( f )‖Lp ≤ C‖ f ‖L
p
α
,(1.11 ′)

where C is independent of f , a j and ε > 0.
In Section 4, we will use (1.11) to establish (1.10) for α = 0, 1, 2, . . . , which proves

Theorem 2. (Recently, we proved this theorem for all α ≥ 0 [CF].)

To prove Theorem 1, since limε→0 TΩ,α,ε f (x) exists for all x, by the Fatou Lemma

‖TΩ,α( f )‖Lp =

{∫

Rn

lim inf
ε→0

|TΩ,α,ε( f )(x)|p dx
} 1

p

≤ lim inf
ε→0

{∫

Rn

|TΩ,α,ε( f )(x)|p dx
} 1

p

Here without loss of generality we assume that {ε} is a sequence of positive num-

bers going to zero. Thus, by the atomic decomposition of Ω,

‖TΩ,α( f )‖Lp ≤ lim inf
ε→0

∑
|λ j |‖Ta j ,α,ε( f )‖Lp ,
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which with (1.11 ′) proves Theorem 1.

We will introduce some known lemmas in the second section. The proof of (1.11)
and (1.11 ′) can be found in Section 3. We prove (1.10) for integers α in Section 4.
As applications, we will study the boundedness property of TΩ,α on the Hardy spaces

in the fifth section. In the sixth section(Appendix), we will review the definitions of
Triebel-Lizorkin spaces and the Sobolev spaces L

p
α.

Throughout this paper, the letter C will denote a positive constant that may vary
at each occurrence but is independent of the essential variables.

2 Definitions and Lemmas

Recall that the Poisson kernel on Sn−1 is defined by

Pry ′(x ′) =
1 − r2

|ry ′ − x ′|n
,

where 0 ≤ r < 1 and x ′, y ′ ∈ Sn−1.
For any f ∈ S ′(Sn−1), we define the radial maximal function P+ f (x ′) by

P+ f (x ′) = sup
0≤r<1

|〈 f , Prx ′〉|,

where S ′(Sn−1) is the space of Schwartz distributions on Sn−1.
The Hardy space Hq(Sn−1), 0 < q ≤ 1, is the linear space of distributions f ∈

S ′(Sn−1) with the finite norm ‖ f ‖Hq(Sn−1) = ‖P+ f ‖Lq(Sn−1) < ∞. The space Hq(Sn−1)
was studied in [Co1, Co2] (see also [CTW]). S1 and S3 are compact Lie groups. For

Hq on a compact Lie group, the reader can see [BF].
An important property of Hq(Sn−1) is the atomic decomposition, which will be

reviewed below.
An exceptional atom E(x) is an L∞(Sn−1) function bounded by 1. A (q, r) regular

atom is an Lr(Sn−1), r > 1 function a(x ′) that satisfies

supp(a) ⊂ {x ′ ∈ Sn−1, |x ′ − x ′
0| < ρ} for some x ′

0 ∈ Sn−1 and 0 < ρ ≤ 2;(2.1)
∫

Sn−1

a(x ′)Ym(x ′) dσ(x ′) = 0,(2.2)

for any sphere polynomial Ym with degree m ≤ N , where N is any fixed integer larger
than [(n − 1)( 1

q
− 1)];

(2.3) ‖a‖Lr(Sn−1) ≤ ρ−(n−1)/(1/q−1/r),

From [Co1, Co2] or [CTW], we find that any Ω ∈ Hq(Sn−1) has an atomic decom-
position

Ω =

∞∑

j=1

λ ja j +

∞∑

i=1

µiEi ,
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where each a j is a regular (q,∞) atom; each Ei is an exceptional atom, and

∑
|λ j |

q +
∑

|µi |
q ≤ C‖Ω‖

q

Hq(Sn−1)
.

we note that for any x ∈ Sn−1,

∣∣∣
∑

µiEi(x)
∣∣∣ ≤

∑
|µi | ≤

{∑
|µi |

q
} 1

q

.

Without loss of generality, we can assume

∣∣∣
∑

µiEi(x)
∣∣∣ ≤ ‖Ω‖Hq(Sn−1).

Thus we write
∞∑

i=1

µiEi(x) = ‖Ω‖Hq(Sn−1)A(x),

with

A(x) =

∑
µiEi(x)

‖Ω‖Hq(Sn−1)

.

In this new definition,

Ω =

∑
λ ja j + ‖Ω‖Hq(Sn−1)A, and ‖A‖L∞ ≤ 1

If Ω has the cancellation conditions for all Ym whose degrees ≤ N , (since a j ’s are

regular atoms whose cancellation property (2.2) can be chosen for any large N), we
see that A(x) has the same cancellation conditions as that of Ω. In other words, A(x)
can be viewed as a regular (q,∞) atom whose support is Sn−1. As a conclusion, if
Ω ∈ Hq(Sn−1) has the cancellation condition (1.5 ′′), then all the atoms satisfy (2.2)

uniformly for the N in (1.5 ′ ′). Furthermore, we can see

Ωk =

k∑

j=1

λ ja j ∈ Hq(Sn−1) ∩ L1(Sn−1)

and
lim

k→∞
‖Ωk − Ω‖Hq(Sn−1) = 0.

Throughout this paper, we always assume that N is a fixed integer larger than

α p̃/2 − 1.
In the rest of the paper, for any non-zero ξ = (ξ1, . . . , ξn) ∈ Rn, we write ξ/|ξ| =

ξ ′
= (ξ ′

1, . . . , ξ
′
n) = (ζ1, . . . , ζn) = ζ . Thus ζ ∈ Sn−1. Also we use ζ∗ to denote

(ζ2, . . . , ζn) and use ξ∗ to denote (ξ2, . . . , ξn).

Lemma 2.1 Suppose n ≥ 3 and a(·) is a (q,∞) atom on Sn−1 supported in Sn−1 ∩
B(ζ, ρ), where B(ζ, ρ) is the ball with radius ρ and center ζ = ξ ′ ∈ Sn−1. Let

Fa(s) = (1 − s2)
n−3

2 χ(−1,1)(s)

∫

Sn−2

a
(

s, (1 − s2)
1
2 ỹ

)
dσ( ỹ).
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Then there exist s0 ∈ R and a constant C independent of a(·) such that

supp(Fa) ⊆
(

s0 − 2r(ξ ′), s0 + 2r(ξ ′)
)

;(2.4)

‖Fa‖∞ ≤ Cρ(1−1/q)(n−1)r(ξ ′)−1;(2.5)
∫

R

Fa(s)sk ds = 0 for any integer k ∈ [0, N],(2.6)

where r(ξ ′) = |Aρξ
′| = |ξ|−1|Aρξ| and Aρξ = (ρ2ξ1, ρξ2, . . . , ρξn).

Lemma 2.2 Suppose n = 2 and a(·) is a (q,∞) atom supported in S1 ∩ B(ζ, ρ). Let

Fa(s) = (1 − s2)−
1
2 χ(−1,1)(s)

(
a(s, (1 − s2)

1
2 + a(s,−(1 − s2)

1
2

)
.

Then Fa(s) satisfies (2.4), (2.6) and

‖Fa‖r ≤ C|Aρ(ξ ′)|−1+ 1
r ρ1− 1

q .

for some r ∈ (1, 2).

Lemma 2.1 and Lemma 2.2 can be found in [FP2, Lemma 2.1 and 2.2 and their
remarks]. Or see [FP3] for the case q = 1.

3 Proof of Theorem 1

Let a(x ′) be a (q,∞) atom with q =
n−1

n−1+α , recall that Ta,α( f ) = limε→0 Ta,α,ε( f )
and Ta,α,ε( f ) is defined by

Ta,α,ε( f )(x) =

∫

|y|>ε

b(|y|)|y|−n−αa(y) f (x − y) dy.

The main purpose of this section is to prove that for any (q,∞) atom a(x ′) with
the cancellation conditions in Theorem 1, one has

(3.1) ‖Ta,α( f )‖Lp (Rn) ≤ C‖b‖∞‖ f ‖L
p
α(Rn),

(3.2) ‖Ta,α,ε( f )‖Lp (Rn) ≤ C‖b‖∞‖ f ‖L
p
α(Rn),

where C is a constant independent of a(x ′), ε > 0, b ∈ L∞ and f ∈ S(Rn). As we
mentioned in the introduction, Theorem 1 will be proved as soon as we establish the
inequality (3.2).

Without loss of generality we may assume that supp(a) is the ball B(1, ρ) ∩ Sn−1,

where 1 = (1, 0, . . . , 0). Let Ik be the interval (2k, 2k+1), k = 1, 2, . . . . Then

(3.3) Ta,α f (x) =

∞∑

k=−∞

Tk f (x),
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where

Tk f (x) =

∫

Rn

b(|y|)|y|−n−αa(y ′)χIk
(|y|) f (x − y) dy.

It is easy to see (Tk f )∧(ξ) = σ̂k(ξ) f̂ (ξ), where

(3.4) σk(x) = b(|x|)|x|−n−αa(x ′)χIk
(|x|).

We have the following L2 estimates for σk.

Lemma 3.5

|σ̂k(ξ)| ≤ C‖b‖∞2−kα|2kAρξ|
N+1ρ(1−1/q)(n−1)(∗)

|σ̂k(ξ)| ≤ C‖b‖∞2−kα|2kAρξ|
− 1

2 ρ(1−1/q)(n−1)(∗∗)

where N and Aρξ are as in (2.6); C is independent of k ∈ Z and ρ > 0.

Proof We will only prove the case n > 2 since the proof for n = 2 is essentially the

same (using Lemma 2.2 instead of Lemma 2.1).
For any fixed ξ ∈ Rn we choose a rotation O such that O(ξ) = |ξ|1 =

|ξ|(1, 0, . . . , 0). Let y ′
= (s, y ′

2, y ′
3, . . . , y ′

n). Then it is easy to see that σ̂k(ξ) is equal

to, up to a constant C ,
∫

Ik

b(t)t−1−α

∫

Sn−1

a
(

O−1(y ′)
)

e−it|ξ|〈1,y ′〉 dσ(y ′) dt,

where O−1 is the inverse of O. Now a
(

O−1(y ′)
)

is again a (q,∞) atom with support

in B(ξ ′, ρ) ∩ Sn−1, since supp a(y ′) ⊆ B(1, ρ) ∩ Sn−1. Thus we have

(3.5) σ̂k(ξ) = C

∫

Ik

b(t)t−1−α

∫

R

Fa(s)e−it|ξ|s ds dt,

where Fa(s) is the function defined in Lemma 2.1. By the Lemma 2.1, without loss

of generality, we may assume that Fa is supported in
(
−2r(ξ ′), 2r(ξ ′)

)
. Thus using

(2.4) and (2.5) we have

|σ̂k(ξ)| ≤ C‖b‖∞

∫

Ik

t−1−α
∣∣∣
∫

R

Fa(s)e−it|ξ|s ds
∣∣∣ dt

≤ C2−kα‖b‖∞|2kAρξ|
N+1ρ(1−1/q)(n−1),

which proves (∗) of the lemma.

Using Holder’s inequality on (3.5), we have

σ̂k(ξ)| ≤ C‖b‖∞2−kα

∫ 2k+1|ξ|

2k|ξ|

t−1
∣∣∣
∫

R

Fa(s)e−its ds
∣∣∣ dt

≤ C‖b‖∞2−kα(2k|ξ|)−
1
2

{∫

R

|F̂a(t)|2 dt
} 1

2

≤ C‖b‖∞2−kα(2k|ξ|)−
1
2

{∫

R

|Fa(t)|2 dt
} 1

2

.
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By (2.5), we know

{∫

R

|Fa(t)|2 dt
} 1

2

≤ Cρ(1−1/q)(n−1)|Aρξ
′|−

1
2 .

Thus we have (∗∗) of the lemma.

Now we return to the proof of (3.1). Let {Φ j}
∞
−∞ be a smooth partition of unity

in (0,∞) adapted to the intervals (2 j−1, 2 j+1). To be precise, we choose a radial
function Φ ∈ C∞(Rn) satisfying supp(Φ) ⊆ {x, 1

2
< |x| ≤ 2}, 0 ≤ Φ(x) ≤ 1 and

Φ(x) > c > 0 if 3
5
≤ |x| ≤ 5

3
. We let Φ j(x) = Φ(2 jx) and require that Φ satisfies

∞∑

j=−∞

Φ j(t)2
= 1 for all t.

It is easy to see supp(Φ) ⊆ (2− j−1, 2− j+1).

Define the multiplier operators S j on S(Rn) by

(S j f )∧(ξ) = f̂ (ξ)Φ j(Aρξ).

Following the proof of Lemma in [DR, p. 544], we decompose the operator Ta,α by

(3.6) Ta,α( f ) =

∞∑

j=−∞

T̃ j f ,

where

T̃ j f =

∑

k

S j+k

(
Tk(S j+k f )

)
.

By Littlewood-Paley theory, for any p ∈ (1,∞), we have

(3.7) ‖T̃ j f ‖Lp(Rn) ≤ C
∥∥∥

(∑

k

|Tk(S j+k f )|2
) 1

2
∥∥∥

Lp(Rn)
.

Thus

‖T̃ j f ‖2
2 ≤ C

∑

k

∫

Rn

|Tk(S j+k f )(y)|2 dy

= C
∑

k

∫

Rn

|Φ j+k(Aρξ)σ̂k(ξ) f̂ (ξ)|2 dξ

≤ C
∑

k

∫

D j+k

|σ̂k(ξ) f̂ (ξ)|2 dξ

where D j = {ξ : 2− j−1 ≤ |Aρξ| ≤ 2− j+1}.
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If j ≥ 0, by (∗) of Lemma 3.5,

‖T̃ j f ‖2
2 ≤ C‖b‖∞

∑

k

2−2kαρ2(1/q−1)(n−1)

∫

D j+k

| f̂ (ξ)|2(2k|Aρξ|)
2N+2 dξ

≤ C‖b‖∞2−(2N+2) j
∑

k

ρ2(1/q−1)(n−1)

∫

D j+k

| f̂ (ξ)|22−2kα dξ.

Noting that α + (1/q − 1)(n − 1) = 0 and on the domain D j+k, 2−kα ∼= 2 jα|Aρξ|
α ≤

2 jαρα|ξ|α, we have

‖T̃ j f ‖2
2 ≤ C‖b‖∞2−2 j(N−α+1)

∑

k

∫

Dk

| f̂ (ξ)|2ξ2α dξ.

Therefore, for j ≥ 0, we

(3.8) ‖T̃ j f ‖2 ≤ C‖b‖∞2− j(N+1−α)‖ f ‖L2
α(Rn).

Similarly, using (∗∗) in Lemma 3.1, we have for j < 0,

(3.9) ‖T̃ j f ‖2 ≤ C‖b‖∞2
j
2 ‖ f ‖L2

α(Rn).

Next, we estimate the Lp norm of T̃ j f . First we assume p > 2. Let s = (
p
2

) ′ =
p

p−2
. By (3.7), we can take a non-negative g ∈ Ls(Rn) with ‖g‖s = 1 such that

(3.10) ‖T̃ j f ‖2
p ≤

∞∑

k=−∞

∫

Rn

|Tk(Sk+ j f )|2g dx.

Since |Tk(Sk+ j f )(x)|2 is bounded by

C‖b‖2
∞ρ−(n−1)(1−1/q)2−kα

∫

2k≤|y|≤2k+1

|A(y ′)||y|−n|Sk+ j f (x − y)|2 dy

= C‖b‖2
∞ρ−(n−1)(1−1/q)2−kαLk(|S j+k f |2)(x),

where A(y ′) = ρ(n−1)(1−1/q)a(y ′) is a (1,∞) atom, and

(3.11) Lk f (x) =

∫

2k≤|y|≤2k+1

|A(y ′)| |y|−n f (x − y) dy,

we have that

∑

k

∫

Rn

|Tk(Sk+ j f )|2g dx ≤ C‖b‖2
∞ρ−2(n−1)(1−1/q)

∫

Rn

∑

k

22kα|Sk+ j f (x)|2NAg(x) dx,
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where NAg(x) = supk L∗
k g(x), and

L∗
k g(x) =

∫

2k≤|y|≤2k+1

|y|−n|A(y ′)|g(x + y) dy.

By the rotation method and the Lp boundedness of the Hardy-Littlewood maximal

function, it is easy to see that

‖NAg‖Ls ≤ C‖g‖Ls ≤ C.

Thus by Holder’s inequality, we have

(3.12) ‖T̃ j f ‖Lp (Rn) ≤ C‖b‖∞ρ(n−1)(1−1/q)
∥∥∥

(∑

k

|2−kαSk+ j f |2
) 1

2
∥∥∥

Lp (Rn)
.

By checking the definition of Sk and the definition of the Triebel-Lizorkin spaces in
[FJW], one can easily see that (or see the lemma in Appendix)

∥∥∥
(∑

|(2−k/ρ)αSk f |2
) 1

2
∥∥∥

Lp (Rn)

∼= ‖ f ‖Ḟ
α,2
p (Rn)

∼= ‖ f ‖L
p
α(Rn).

Thus we obtain

(3.13) ‖T̃ j f ‖Lp(Rn) ≤ C‖b‖∞2 jα‖ f ‖L
p
α(Rn).

(3.13) means that for any sufficiently large r, we have

(3.13 ′) ‖T̃ j f ‖Lr (Rn) ≤ C‖b‖∞2 jα‖ f ‖Lr
α(Rn).

Now for any p ≥ 2, let r > p. Using the Riesz-Thorin interpolation theorem between

(3.13 ′) and (3.8), we have that, for any j ≥ 0

‖T̃ j f ‖Lp(Rn) ≤ C‖b‖∞2− j{θ(N+1−α)−(1−θ)α}‖ f ‖L
p
α(Rn).

where θ =
2(r−p)
p(r−2)

. We can see that if r → ∞, then θ goes to 2
p

and {θ(N + 1 − α) −

(1− θ)α} goes to 2N
p

+ 2
p
−α > 0, because the choice of the N . Therefore we choose

a sufficiently large r such that for any j ≥ 0

(3.14) ‖T̃ j f ‖Lp(Rn) ≤ C‖b‖∞2− jδ‖ f ‖L
p
α(Rn).

where δ = {θ(N + 1 − α) − (1 − θ)α} > 0 and θ =
2(r−p)
p(r−2)

.

Similarly interpolating between (3.9) and (3.13 ′), we have a θ > 0 such that for

j < 0

(3.15) ‖T̃ j f ‖Lp(Rn) ≤ C‖b‖∞2θ j‖ f ‖L
p
α(Rn).

https://doi.org/10.4153/CJM-2003-021-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-021-4


Certain Operators with Rough Singular Kernels 517

By (3.6), (3.14) and (3.15) we now have

‖T̃a,α f ‖Lp ≤
∞∑

−∞

‖T̃ j f ‖Lp ≤ C‖b‖∞‖ f ‖L
p
α(Rn)

∑

j≥0

(2− jδ + 2− jθ).

which proves (3.1) for p ≥ 2.

If p < 2, then p ′ ≥ 2. Remember

‖T̃ j f ‖Lp (Rn) ≤ C‖b‖∞ρ(n−1)(1/q−1)
∥∥∥

(∑

k

2−kα|Lk(|S j+k f |)|2
) 1

2
∥∥∥

Lp(Rn)
.

Take a sequence of functions gk, then

∣∣∣
∫

Rn

∑

k

2−kαLk(|S j+k f |)gk(x) dx
∣∣∣

= C|

∫

Rn

∑

k

2−kα|S j+k f |L∗
k gk(x) dx|

≤ C
∥∥∥

(∑

k

2−kα|S j+k f |2
) 1

2
∥∥∥

p

∥∥∥
(∑

k

|L∗
k gk(x)|2

) 1
2
∥∥∥

p ′

.

Taking the supremum over {gk} with

∥∥∥
(∑

k

|L∗
k gk(x)|2

) 1
2
∥∥∥

p ′

≤ 1

we obtain, for 1 < p < 2,

‖T̃ j f ‖Lp (Rn) ≤ C‖b‖∞ρ(n−1)(1/q−1)
∥∥∥

(∑

k

2−kα|S j+k f |2
) 1

2
∥∥∥

p
.

Thus as in the proof of (3.13 ′), for any r > 0 we have

(3.16) ‖T̃ j f ‖Lr (Rn) ≤ C‖b‖∞2 jα‖ f ‖Lr
α(Rn).

Choosing r sufficiently close to 1, similar to the case p ≥ 2, we can complete the
proof of (3.1) for 1 < p < 2 by interpolating (3.8), (3.9) and (3.16).

Now, (3.2) can be obtained easily from (3.1). For any ε > 0, let b̃(t) =

b(t)χ(ε,∞)(t). Then ‖b̃‖∞ ≤ ‖b‖∞ for any ε > 0. Replacing b by b̃ in (3.1), we
have

‖Ta,α,ε( f )‖Lp (Rn) ≤ C‖b̃‖∞‖ f ‖L
p
α(Rn).

Corollary 1 For the operator TΩ,α defined in Theorem 1, we have

‖TΩ,α( f )‖Ḟ
−α,2
p (Rn) ≤ C‖ f ‖Lp for all 1 < p < ∞.
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Proof Let T∗ be the dual operator of T = TΩ,α. It is easy to see that T∗ has the same
boundedness as T. For any p ∈ (1,∞), take its conjugate index p ′ and recall that the

dual space of Ḟ
−α,2
p (Rn) is Ḟ

α,2
p ′ (Rn). Thus for f ∈ Lp and any g ∈ Ḟ

α,2
p ′ (Rn), we have

|〈T f , g〉| = |〈T∗g, f 〉| ≤ ‖ f ‖p‖T∗g‖p ′ ≤ ‖ f ‖p‖g‖Ḟ
α,2

p ′
(Rn).

Corollary 2 For any β ∈ R, we have

‖TΩ,α( f )‖
Ḟ
−β,2
p

≤ C‖ f ‖
Ḟ

α−β,2
p

.

Proof First we assume β > 0. Let Rβ be the Riesz potential operator. Then we know

that Rβ is an isomorphism of Ḟ
0,2
p onto Ḟ

−β,2
p . Namely ‖Rβ f ‖Ḟ

α,2
p

∼= ‖ f ‖
Ḟ

α−β,2
p

. Thus

we have

‖TΩ,α( f )‖
Ḟ
−β,2
p

∼= ‖TΩ,α(Rβ f )‖Ḟ
0,2
p
≤ C‖Rβ f ‖Ḟ

α,2
p

≤ C‖ f ‖
Ḟ

α−β,2
p

.

Using duality, we can obtain the corollary for β < 0.

Remark For γ ≥ 1, let ∆γ denote the collection of measurable functions b(t) on R+

satisfying

‖b‖∆γ
=

(
sup
R>0

1

R

∫ R

0

|b(t)|γ dt
) 1

γ

< ∞.

By checking the proof, in Theorem 1 we can replace the requirement b being

bounded by a less restrictive one b ∈ ∆2.

4 Maximal Operators: Proof of Theorem 2

In this section we will study the truncated maximal operator

(4.1) T∗
Ω,α f (x) = sup

ε>0

|TΩ,α,ε f (x)|.

As we discussed in (1.9), to prove Theorem 2, it suffices to show the uniform bound-
edness of T∗

a j ,α( f ) for all (q,∞) atoms a j . Thus in this section, for the sake of sim-
plicity, we may assume that Ω is a (q,∞) atom. For any such atom Ω, we define the

maximal operator

(4.2) MΩ,α f (x) = sup
k

∫

Ik

t−1−α
∣∣∣
∫

Sn−1

Ω(y ′) f (x − t y ′) dσ(y ′)
∣∣∣ dt,

where Ik is the interval (2k, 2k+1]. We have the following lemma.

Lemma 4.3 Let α = m, m = 0, 1, 2, . . . , and Ω be a (q,∞) atom satisfying (1.5) with

q =
n−1

n−1+m
. Then for 1 < p < ∞,

(4.3) ‖MΩ,m f ‖Lp(Rn) ≤ C‖ f ‖L
p
α(Rn),

where the constant C is independent of the atom Ω.
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Proof Without loss of generality, we may assume supp Ω ⊆ B(1, ρ) ∩ Sn−1. Now for
any test function f , by (2.2), we have

MΩ,m f (x) = sup
k

∫

Ik

t−1−m
∣∣∣
∫

Sn−1

Ω(y ′)
(

f (x − t y ′) − f (x − t1)
)

dσ(y ′)
∣∣∣ dt.

By Taylor’s Theorem, for y ′ ∈ supp Ω we have that

∣∣∣
∫

Sn−1

Ω(y ′)
(

f (x − t y ′) − f (x − t1)
)

dσ(y ′)
∣∣∣

is less than or equal to

C
∑

|β|=m

∫ 1

0

∫

Sn−1

|Ω(y ′)|
∣∣ (Dβ f )(x − t1 + st

(
y ′ − 1)

)
{t(1 − y ′)}β

∣∣ dσ(y ′) ds

≤ Ctmρm
∑

|β|=m

∫ 1

0

∫

Sn−1

|Ω(y ′)|
∣∣ (Dβ f )(x − t1 + st

(
y ′ − 1)

) ∣∣ dσ(y ′) ds

Therefore, ‖MΩ,α f ‖Lp(Rn)is dominated by

C
∑

|β|=m

∫ 1

0

∫

Sn−1

ρm|Ω(y ′)| ‖µγ(s,y ′)(Dβ f )‖Lp(Rn) dσ(y ′) ds,

where

µγ(s,y ′) f (x) = sup
k

∫

Ik

∣∣ f
(

x − γ(t, s, y ′)
) ∣∣ t−1 dt

and γ(t, s, y ′) = t(1 + sy ′ − s1). It is known from [St, p. 477] that

(4.4) ‖µγ(s,y ′) f ‖p ≤ C‖ f ‖p,

where C is independent of s and y ′. Noting that
∫

Sn−1 ρm|Ω(y ′)| dσ(y ′) ≤ C with C

independent of Ω, by (4.2) we have

‖MΩ,m f ‖p ≤ C
∑

|β|=m

‖Dβ f ‖p
∼= C‖ f ‖L

p
m(Rn).

The lemma is proved.

We can obtain Theorem 2 by (1.9) and showing the following proposition.

Proposition 1 Let m = 0, 1, 2, . . . , and Ω be a (q,∞) atom satisfying (1.5) with

q =
n−1

n−1+m
. For 1 < p < ∞, we have

(4.5) ‖T∗
Ω,m f ‖Lp(Rn) ≤ ‖ f ‖L

p
m(Rn),

where the constant C is independent of Ω
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Proof Without loss of generality, we may assume that Ω is supported in B(1, ρ).
Since

TΩ,m f =

∑

k

Tk f =

∑

k

σk ∗ f ,

for any ε > 0, there is a k such that 2k−1 < ε ≤ 2k. So it is easy to see that

T∗
Ω,m f ≤ MΩ,m f + sup

k

∣∣∣
∞∑

j=k

σ j ∗ f
∣∣∣ .

Write Jk( f ) =
∑∞

j=k σ j∗ f . By Lemma 4.3, to prove the proposition it suffices to show

the boundedness of J∗k ( f ) = supk | Jk( f )|. Let δ be the Dirac delta function. Take a

radial function ϕ ∈ S(Rn) such that ϕ(ξ) = 1 when |ξ| ≤ 1 and ϕ(ξ) = 0 if |ξ| > 2.
Let Aρξ be defined as in Lemma 2.1. Let ϕk(ξ) = ϕ(2k|Aρξ|) and Φ̂k(ξ) = ϕk(ξ).
Now

Jk( f ) = (δ − Φk) ∗
∞∑

j=k

σ j ∗ f + Φk ∗ (TΩ,m f ) − Φk ∗
k−1∑

−∞

σ j ∗ f

= Ik,1( f ) + Ik,2( f ) + Ik,3( f )

clearly,

(4.6) ‖ sup
k

|Ik,2( f )| ‖p ≤ C‖TΩ,m f ‖Lp ≤ C‖ f ‖L
p
m

Next,

sup
k

|Ik,3( f )| = sup
k

∣∣∣
∞∑

j=1

Φk ∗ σk− j ∗ f
∣∣∣

≤
∞∑

j=1

sup
k

|Φk ∗ σk− j ∗ f |

=

∞∑

j=1

∆ j( f ).

Each ∆ j( f ) is bounded from L
p
m to Lp because of the boundedness of MΩ,m in

Lemma 4.3. By Plancherel’s theorem

‖∆ j( f )‖2
2 ≤ C

∞∑

k=−∞

∫

Rn

|Φ̂k(ξ)σ̂k− j(ξ) f (ξ)|2 dξ

Noting Φ̂k(ξ) = ϕ(2k|Aρξ|) and the choice for this ϕ, taking N = m+1 in Lemma 3.5,
we have that ‖∆ j( f )‖2

2 is dominated by, up to a constant C ,

2−2(m+1) jρ2(1−1/q)(n−1)

∫

Rn

|Aρξ|
2m

∑

k

|Φ̂k(ξ)|2|2kAρξ| | f (ξ)|2 dξ

≤ C2−2(m+1) j sup
ξ 6=0

∑

k

|Φ̂k(ξ)|2|2kAρξ| ‖ f ‖2
L2

m(Rn),
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Since |Aρξ| ≤ ρ|ξ| and m + (1 − 1/q)(n − 1) = 0.

Noting the choice of Φ̂k, we have ‖∆ j( f )‖2 ≤ C2−(m+1) j‖ f ‖L2
m

. This shows the

(L
p
m, Lp) boundedness for supk |Ik,3( f )| by interpolating ‖∆ j‖L

p
α→Lp and ‖∆ j‖L2

α→L2 .
Finally,

sup
k

|Ik,1( f )| ≤

∞∑

j=1

G j( f ),

where

G j( f ) = sup
k

|(δ − Φk) ∗ σk+ j ∗ f |.

Clearly by Lemma 4.3 we have ‖G j( f )‖Lp ≤ C‖ f ‖L
p
m

.

On the other hand by Plancherel’s formula and Lemma 3.5 we have

‖G j( f )‖2
2 ≤ ρ2(1−1/q)(n−1)2− j

∫

Rn

2−2kα
∣∣∣
∑

k

(
1 − ϕ(2k|Aρξ|)

) ∣∣∣2kAρξ|
− 1

2 f̂ (ξ)|2 dξ

By the choice of ξ, we know that for any ξ such that 1 − ϕ(2k|Aρξ|) 6= 0, it satisfies

2−kα ≤ C|Aρξ|
α. Thus we have

‖G j( f )‖2 ≤ C2−
j
2 ‖ f ‖L2

m(Rn) sup
ξ 6=0

∑

2k>|Aρξ|−1

2−
k
2 |Aρξ|

− 1
2

≤ C2−
j
2 ‖ f ‖L2

m(Rn).

Thus the boundedness of supk |Ik,1( f )| follows by the Riesz-Thorin interpolation.
Proposition 1 is proved.

5 Boundedness on H p Sobolev Spaces

In this section, we will study the operator TΩ,α on the space F
α,2
p for 0 < p ≤ 1. It is

known from [FJW] that H p
= Ḟ

0,2
p , where H p are the classical Hardy spaces. Thus,

we denote, for 0 < p ≤ 1, H
p
α = Ḟ

α,2
p and call H

p
α the H p Sobolev spaces. The Triebel-

Lizorkin space Ḟ
α,q
p has a standard atomic decomposition obtained in [HPW]. Below

we only review the case q = 2 (see also [Str]), which is what we need in this section.

Definition 5.1 (see [HPW]) For α ≥ 0. A function a(x) is said to be a (p, 2, α) atom

if

(i) supp a ⊆ Q, Q is a cube in Rn.

(ii) ‖a‖L2
α
≤ |Q|

1
2
− 1

p .

(iii) For every polynomial P of degree at most N = [n(1/p − 1) − α],∫
Rn a(x)P(x) dx = 0.

In [HPW], we know that any f ∈ H
p
α has an atomic decomposition f =

∑
λ ja j

with (
∑

|λ j |
p)

1
p ∼= ‖ f ‖H

p
α
, where all a j(x) are (p, 2, α) atoms.
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Now we are in a position to state the main result in this section.

Theorem 3 Let 0 < α < n
2

and Ω ∈ L1(Sn−1) satisfy (1.5) for all m ≤ [α]. We have

a constant C > 0 such that

‖TΩ,α f ‖H p(Rn) ≤ C‖ f ‖H
p
α(Rn),

for all f ∈ C∞
c (Rn)∩H

p
α(Rn), where n

n+α < p ≤ 1. Thus TΩ,α is extended to be defined

on H
p
α in the usual manner.

Proof Let

KΩ,ε(x) = b(|x|)|x|−n−αχ(ε,∞)(|x|)Ω(x ′).

Then KΩ = p.v.KΩ,ε defines a distribution in D ′(D = C∞
c ) and TΩ,α f = KΩ∗ f . It is

known that H p(Rn) can be characterized by the Riesz transforms R j , j = 1, 2, . . . , n,
and their compositions (the higher Riesz transforms). For instance, if n

n+1
< p ≤ 1,

then

‖ f ‖H p ∼= ‖ f ‖Lp +

∞∑

j=1

‖R j( f )‖Lp .

Thus

‖TΩ,α( f )‖H p ∼= ‖KΩ ∗ f ‖Lp +

∞∑

j=1

‖KΩ ∗ R j( f )‖Lp .

It is also known (see [T] among many references) that the Riesz transforms are
bounded on H

p
α. To prove the theorem, it suffices to show

(5.1) ‖TΩ,α( f )‖Lp ≤ C‖ f ‖H
p
α
.

Checking the proof in [HPW], it is easy to see that for f ∈ C∞
c , one can choose an

atomic decomposition
∑

λ ja j(x) such that for any multi-index β,

lim
m→∞

sup
x∈K

∣∣∣Dβ(

m∑

j=1

λ ja j(x)Dβ f (x)
∣∣∣ = 0

for any compact set K. In other words,
∑

λ ja j(x) = f (x) in the topology of E test
space, where E is the set of all C∞ functions. Now, following [St, p. 115], we write
the distribution kernel KΩ = K0

Ω
+ K∞

Ω
, where K∞

Ω
is an L1 function since α > 0, and

K0
Ω

is a distribution in D ′ having compact support so that K0
Ω

must be a distribution

in E ′. Thus
TΩ,α( f ) =

∑
λ jTΩ,α(a j),

and
‖TΩ,α( f )‖

p
Lp (Rn) ≤

∑
|λ j |

p‖TΩ,α(a j)‖
p
Lp (Rn).

We now only need to show that there exists a constant C independent of atoms, such
that for any (p, 2, α) atom a(x)

(5.2) ‖TΩ,α(a)‖Lp(Rn) ≤ C.
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Also without loss of generality, we may assume that the support of a(x) is the ball
B = B(o, ρ).

We first show the case p = 1.

‖TΩ,α(a)‖L1 ≤

∫

|x|≤8ρ

|TΩ,αa(x)| dx +

∫

|x|>8ρ

|TΩ,αa(x)| dx

:= I1 + I2.

By Theorem 1 and (ii) in Definition 5.1, we have

(5.3) I1 ≤ Cρ
n
2 ‖TΩ,α(a)‖L2 ≤ Cρ

n
2 ‖a‖L2

α
≤ C.

By Fubini’s Theorem,

I2 ≤ C

∫

B

|a(y)|

∫

|x|>8ρ

|x − y|−n−α|Ω(x − y)| dx dy

≤ C

∫

B

|a(y)| dy

∫

|x|>4ρ

|x|−n−α|Ω(x)| dx

≤ C‖Ω‖L1(Sn−1)ρ
−α

∫

B

|a(y)| dy.

Noting a(y) is a (1, 2, α) atom, we obtain I2 ≤ C if we can prove the following lemma:

Lemma 5.5 For any (p, 2, α) atom with support in B = B(o, ρ) we have

∫

B

|a(x)| dx ≤ Cρn− n
p

+α.

Proof Let χB be the characteristic function of B and let ã(x) =
(

sign a(x)
)
χB(x).

Then by duality

∫

B

|a(x)| dx =

∫

Rn

a(x)ã(x) dx ≤ ‖a‖L2
α
‖ã‖Ḟ

−α,2
2

≤ Cρ
n
2
− n

p ‖ã‖Ḟ
−α,2
2

.

Let Rα be the Riesz potential. It is well known that (see [FJW])

‖ã‖Ḟ
−α,2
2

∼= ‖Rα(ã)‖L2 ≤ ‖ã‖Lr

with r =
2n

n+2α . Here r > 1, since α < n
2

. Now ‖ã‖Lr ≤ Cρα+ n
2 . The lemma is proved.

Next we show (5.2) for the case n
n+α < p < 1.

‖TΩ,α(a)‖
p
Lp ≤

∫

|x|≤8ρ

|TΩ,αa(x)|p dx +

∫

|x|>8ρ

|TΩ,αa(x)|p dx

:= I1 + I2.
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By Theorem 1 and (ii) in Definition 5.1, we have

(5.4) I1 ≤ Cρn(1− p
2

)‖TΩ,α(a)‖
p

L2 ≤ Cρn(1− p
2

)‖a‖
p

L2
α
≤ C.

By Holder’s inequality,

I2 ≤ C

∞∑

j=3

(2 jρ)n(1−p)
(∫

B

|a(y)|

∫

2 jρ≤|x|<2 j+1ρ

|x − y|−n−α|Ω(x − y)| dx dy
) p

≤ C

∞∑

j=2

(2 jρ)n(1−p)
(∫

B

|a(y)| dy

∫

2 jρ≤|x|<2 j+1ρ

|x|−n−α|Ω(x)| dx
) p

≤ C‖Ω‖
p

L1(Sn−1)

∞∑

j=2

(2 jρ)n(1−p)2−α j p
(

ρ−α

∫

B

|a(y)| dy
) p

.

Thus by Lemma 5.5,

I2 ≤ C‖Ω‖
p

L1(Sn−1)

∞∑

j=2

2 j(n−np−αp) ≤ C,

because n − np − αp < 0. The theorem is proved.

To enlarge the range of p in Theorem 3, we need to assume some “smoothness”
on the function Ω. Here we will use the Lr-Dini condition that was used in [KW] and
[DL]. For Ω ∈ Lr(Sn−1), let ωr(δ) denote the integral modulus of continuity of order

r of Ω,

ωr(δ) = sup
|R|<δ

(∫

Sn−1

|Ω(Ry ′) − Ω(y ′)|r dσ(y ′)
) 1

r

,

where R is the rotation in Rn and |R| = ‖R − I‖.

Theorem 4 Let 0 < α ≤ n
2

. Suppose that Ω ∈ L1(Sn−1) satisfies (1.5) for all m ≤ [α],

and ∫ 1

0

t−1−γω1(t) dt < ∞ for some 0 < γ ≤ 1.

Then there is a C such that

‖TΩ,α f ‖H p ≤ C‖ f ‖H
p
α

for all f ∈ H p
α ∩C∞

c (Rn),

where p ∈ ( n
n+α+γ , n

n+α ].

Proof Similar to the proof of Theorem 3, it suffices to show that there is a constant
C > 0 such that (5.2) holds for all (p, 2, α) atoms a(x) with support in the ball
B = B(O, ρ). By checking the proof of Theorem 3, we only need to show I2 =∫
|x|>8ρ

|TΩ,αa(x)|p dx ≤ ∞.
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By Holder’s inequality and the cancellation condition on a(y), we have

I2 ≤

C

∞∑

j=3

(2 jρ)n(1−p)
(∫

2 jρ≤|x|<2 j+1ρ

∫

B

|a(y)||x − y|−n−α|Ω(x − y) − Ω(x)| dy dx
) p

+ C

∞∑

j=2

(2 jρ)n(1−p)
(∫

B

ρ|a(y)| dy

∫

2 jρ≤|x|<2 j+1ρ

|x|−n−α−1|Ω(x)| dx
) p

= J1 + J2.

It is easy to see that

J2 ≤ C‖Ω‖
p

L1(Sn−1)

∞∑

j=2

(2 jρ)n(1−p)2−(α+1) j p
(

ρ−α

∫

B

|a(y)| dy
) p

.

By Lemma 5.5, we have

J2 ≤ C‖Ω‖
p

L1(Sn−1)

∞∑

j=2

2 j(n−np−αp−p) ≤ C.

because n − np − αp − p < 0. It remains to estimate J1. By Fubini’s Theorem,

J1 ≤ C

∞∑

j=3

(2 jρ)n(1−p)
(∫

B

|a(y)|

∫

2 jρ≤|x|<2 j+1ρ

|x|−n−α|Ω(x − y) − Ω(x)| dx dy
) p

.

Pick some β such that β
1−p

> 1. By Holder’ inequality, we have

J1 ≤ C
(∫

B

|a(y)|

∞∑

j=3

(2 jρ)n(1/p−1) j
β
p Ω̃α, j (y) dy

) p

where

Ω̃α, j(y) =

∫

2 jρ≤|x|<2 j+1ρ

|x|−n−α|Ω(x − y) − Ω(x)| dx.

By the same argument as in Lemma 5.5, we have that

(5.5)

J1 ≤ Cρn(p/2−1)
∥∥∥

∞∑

j=3

(2 jρ)n(1/p−1) j
β
p Ω̃α, j

∥∥∥
p

Lr (Rn)

≤ Cρn(p/2−1)
( ∞∑

j=3

(2 jρ)n(1/p−1) j
β
p Ω̃α, j(y)

) p
r
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where r =
2n

n+2α .
By [DL], we know that for y ∈ B,

Ω̃α, j(y) =

∫

2 jρ≤|x|<2 j+1ρ

|x|−n−α|Ω(x − y) − Ω(x)| dx

≤ C

∫ 2 j+1ρ

2 jρ

t−1−αω1(|y|/t) dt.

Changing variable, we have

Ω̃α, j (y) ≤ C2− jαρ−α2−γ j

∫ |y|/2 jρ

|y|/2 j+1ρ

t−1−γω1(t) dt.

Thus a simple computation shows that J1 is bounded by

Cρ−αp−np/2
(∫

B

∣∣∣
∞∑

j=3

2 jn(1/p−1) j
β
p 2− j(α+γ)

∫ |y|/2 jρ

|y|/2 j+1ρ

t−1−γω(t) dt
∣∣∣

r

dy
) p

r

≤ Cρ−αp−np/2
(∫ 1

0

t−1−γω(t) dt
) p(∫

B

1 dy
) p

r

≤ C

since n(1/p − 1) − α − γ < 0. The theorem is proved.

Theorem 3 and Theorem 4 can viewed as a supplement of the convolution case of

Theorem 1 in [CDF].
In [CDF], we studied singular integrals with variable kernels. The function ω(x, z)

defined on Rn × Rn is said to belong to L∞(Rn) × Lr(Sn−1), r ≥ 1, if it satisfies the
following conditions:

(i) ω(x, λz) = ω(x, z) for all λ > 0 and all x, z ∈ Rn.

(ii) ‖ω‖L∞×Lr := supx∈Rn

(∫
Sn−1 |ω(x, z ′)|r dσ(z ′)

) 1
r < ∞,

where z ′ = z/|z|.
For α > 0, we define the operator Tω,α f (x) with variable singular kernel by

Tω,α f (x) = p.v.

∫

Rn

ω(x, x − y)|x − y|−n−α f (y) dy,

where f ∈ S(Rn) and ω(x, y) ∈ L∞(Rn) × L1(Sn−1) satisfies

(5.6)

∫

Sn−1

ω(x, y ′)Ym(y ′) dσ(y ′) = 0

for all spherical harmonic polynomials Ym with degree≤ [α]. We recall the following
theorem by Calderon and Zygmund.

Theorem C [CZ3] If ω ∈ L∞(Rn) × Lr(Sn−1), r > 2(n − 1)/n, satisfies

(5.6 ′)

∫

Sn−1

ω(x, y ′) dσ(y ′) = 0,
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then there is a C > 0 such that

‖Tω,0 f ‖L2(Rn) ≤ C‖ f ‖L2(Rn)

for all f ∈ S(Rn).

As an extension of the above theorem, we will establish the following theorem.

Theorem 5 Let α ≥ 0. If ω ∈ L∞(Rn) × Lr(Sn−1) with r > max{1, 2(n−1)
n+2α }. Addi-

tionally, assume that ω satisfies (5.6). Then there is a C > 0 such that

‖Tω,α f ‖L2(Rn) ≤ C‖ f ‖L2
α(Rn).

Proof Using the spherical harmonic development [CZ3] and (5.6), we have

ω(x, ·) =

∞∑

m=[α]+1

N(m)∑

j=1

am, j(x)Ym, j ,

am, j(x) =

∫

Sn−1

ω(x, y ′)Ym, j (y ′) dσ(y ′),

where each Ym, j is a spherical harmonic polynomial with degree m and N(m) ∼=

mn−2. In the following, for simplicity we denote
∑∞

m=[α]+1 by
∑

m and denote
∑N(m)

j=1

by
∑

j . Let

Tα,m, j f (x) =

∫

Rn

f (x − y)|y|−n−αYm, j(y ′) dσ(y ′).

By Holder’s inequality, we now have

|Tω,α f (x)|2 ≤
(∑

m

∑

j

|am, j(x)|2m−ε(1+2α)
)(∑

m

mε(1+2α)
∑

j

|Tα,m, j f (x)|2
)

,

where ε is less than and sufficiently close to 1. Now we can see that the series in the
first parenthesis on the right side of the above inequality, for each x fixed, is equal to
‖ω(x, ·)‖2

L2
−β (Sn−1)

, where L2
−β(Sn−1) is the Sobolev space on Sn−1 with β = ε( 1

2
+ α)

for any 0 < ε < 1. So choosing ε sufficiently close to 1, by the Sobolev imbedding
theorem Lr ⊂ L2

−β , (or use Proposition 4.4 in [Co2]),

sup
x∈Rn

‖ω(x, ·)‖L2
−β (Sn−1) ≤ C‖ω‖L∞(Rn)×Lr(Sn−1)

with r > max{1, 2(n−1)
n+2α }. So to prove the theorem it remains to show that for ε close

to 1, we have

(5.7)
∑

m

mε(1+2α)
∑

j

‖Tα,m, j f ‖2
L2(Rn) ≤ C‖ f ‖2

L2
α(Rn).
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By Plancherel’s theorem,

(5.8) ‖Tα,m, j f ‖2
2
∼= ‖ f̂ Iα,m, j‖

2
2

where

Iα,m, j (ξ) =

∫

Rn

|y|−n−αYm, j(y ′)e−2πi〈y,ξ〉 dy.

Noting m ≥ [α] + 1, so by Theorem 3.10 on [SW, p. 158] and the Weber-Sonine

integral formula (see [S]) we have

Iα,m, j (ξ) ∼= m− n
2
−α|ξ|αYm, j(ξ).

Thus, noting
∑

j |Ym, j(ξ)|2 ≤ Cmn−2, we have

∑

j

‖ f̂ Iα,m, j‖
2
2 ≤ Cm−n−2α

∑

j

∫

Rn

| f̂ (ξ)|2|ξ|2α|Ym, j(ξ)|2 dξ.

By (5.8) and the above inequality, we obtain

(5.9)

∑

j

‖Tα,m, j f ‖2
2 ≤ Cm−2−2α

∫

Rn

| f̂ (ξ)|2|ξ|2α dξ

≤ Cm−2−2α‖ f ‖2
L2

α(Rn)

which implies (5.7). The theorem is proved.

By Theorem 5 and the proof of Theorem 3, we can easily obtain:

Theorem 6 Let 0 < α < n
2

and ω ∈ L∞(Rn) × Lr(Sn−1), r > max{1, 2(n−1)
(n+2α)

}. If ω
satisfies (5.6), then there is a C > 0 such that

‖Tω,α f ‖H p(Rn) ≤ C‖ f ‖H
p
α(Rn) for all f ∈ C∞

c (Rn) ∩ H p
α(Rn).

where n
n+α < p ≤ 1.

6 Appendix

6.1 Triebel-Lizorkin Spaces and Sobolev Spaces

Fix a radial function Φ ∈ C∞(Rn) satisfying supp(Φ) ⊆ {x : 1
2

< |x| ≤ 2}, 0 ≤
Φ(x) ≤ 1, and Φ(x) > c > 0 if 3

5
≤ |x| ≤ 5

3
. Let Φ j(x) = Φ(2 jx). Define the

function Ψ j by Ψ̂ j(ξ) = Φ j(ξ), so that Ψ̂ j ∗ f (ξ) = f̂ (ξ)Φ j(ξ).
For 1 < p, q < ∞ and α ∈ R, the homogeneous Triebel-Lizorkin space Ḟ

α,q
p (Rn)

is the set of all distributions f satisfying

(6.1) ‖ f ‖Ḟ
α,q
p (Rn) =

∥∥∥
(∑

k

|2−kα
Ψk ∗ f |q

) 1
q
∥∥∥

Lp (Rn)
< ∞
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The homogeneous Sobolev spaces L
p
α has several equivalent definitions. One of them

is L
p
α = Ḟα,2

p , namely ‖ f ‖Ḟ
α,2
p

= ‖ f ‖L
p
α
. From [FJW] we know that for any f ∈ L2

α(Rn),

(6.2) ‖ f ‖L2
α(Rn)

∼=
( ∫

Rn

| f̂ (ξ)|2|ξ|2α dξ
) 1

2

)

if α is a nonnegative integer, then for any f ∈ L
p
α,

(6.3) ‖ f ‖L
p
α(Rn)

∼=
∑

|l|=α

‖Dl f ‖Lp(Rn).

It is also know (see [Tr] or [FJW]) that the choice of Φ in the definition of Ḟ
α,q
p is

quite flexible. For instance, for the above Φ and any fixed number γ between 1
2

and 1,

let Φ j,γ(x) = Φ(2 jγx). Define the functions Ψ j,γ by Ψ̂ j,γ(ξ) = Φ j,γ(ξ). Then using

Ψk,γ instead of Ψk in (6.1), we obtain a Triebel-Lizorkin norm equivalent to the norm
in (6.1). Also the ratio of these two norms is between two positive constants c1 and
c2, that are independent of γ ∈ [ 1

2
, 1]. Furthermore, for any ρ > 0, we have

(6.4) c1‖ f ‖Ḟ
α,q
p

≤
∥∥∥

(∑

k

|(2kρ)−α
Ψk,ρ ∗ f |q

) 1
q
∥∥∥

Lp
≤ c2‖ f ‖Ḟ

α,q
p

where c2 ≥ c1 are independent of ρ > 0.

In fact, for any ρ > 0, there is an integer m such that 1
2

< ρ2m ≤ 1. Let γ = ρ2m.

Then by the definitions, it is easy to see that

∑

k

|(2kρ)−α
Ψk,ρ ∗ f (x)|q = C

∑

k

|γ−α(2k−m)−α
Ψk−m,γ ∗ f (x)|q

= C
∑

k

|2−αk
Ψk,γ ∗ f (x)|q,

where C is independent of ρ > 0. Substituting this in the middle term of (6.4) we

obtain (6.4).

Let Φ and Φ j be defined as above. Define the multiplier operators S j by Ŝ j f (ξ) =

Φ j(|Aρξ|) f̂ (ξ), where Aρ = diag(ρ2, ρ, . . . , ρ), 0 < ρ ≤ 2. We have the following

easy lemma:

Lemma For any fixed ρ ∈ (0, 2], we have

∥∥∥
(∑

k

|(2kρ)−αSk f |2
) 1

2
∥∥∥

Lp
≤ C‖ f ‖Ḟ

α,2
p

,

where the constant C is independent of ρ.
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Proof For x = (x1, x2, . . . , xn), let f ρ be the function defined by f ρ(x) =

f (ρx1, x2, . . . , xn). Changing variables and using (6.2), it is easy to check

∥∥∥
(∑

k

|(2kρ)−αSk f |2
) 1

2
∥∥∥

Lp
≤ C‖ρ

1
p f ρ‖Ḟ

α,2
p

= C‖ρ
1
p f ρ‖L

p
α

= C‖Lρ f ‖L
p
α
,

where Lρ is the linear operator defined by Lρ f = ρ
1
p f ρ. When α = 0, it is clear

‖Lρ f ‖Lp = ‖ f ‖Lp .
If α = 1, 2, . . . , by (6.3), noting 0 < ρ ≤ 2, a simple computation also shows

(6.5) ‖Lρ f ‖L
p
α
≤ C‖ f ‖L

p
α
,

with C independent of ρ. We invoke an interpolation in the Sobolev spaces (L
p
s , L

p
t )θ,2

= Ḃu
p,2, u = (1 − θ)s + θt , 0 ≤ θ ≤ 1 [BL, p. 147], where Ḃu

p,q are the homogeneous

Besov spaces. From [FJW], we know Ḃu
p,2 = L

p
u . Thus we obtain (6.5) for all α ≥ 0.

6.2 Lipschitz Spaces on Unit Sphere

Let β > 0 and k greater than β, the space Λ
β(Sn−1) is the set of all g ∈ L∞(Sn−1)

with norm

‖g‖Λβ = ‖g‖L∞(Sn−1) + sup
{∥∥∥ dk

drk
g(r·)

∥∥∥
L∞(Sn−1)

(1 − r)k−β : 0 ≤ r < 1
}

< ∞.

It is shown in [Co2] that (Hq)∗ = Λ
β with β = (n − 1)(1/q − 1). Particularly,

if q = (n − 1)(n − 1 − α) then (Hq)∗ = Λ
α. For a test function f ∈ S(Rn), let

fx,t (y ′) = f (x − t y ′). Then it is not difficult to see that there is a constant C > 0,
that might depend on x but not on t , such that ‖ fx,t‖Λα < C . For simplicity and
illustration, we check this fact for α > 0 and n = 2.

Clearly, we only need to check for j = 1, 2,

(6.6) sup
{∥∥∥ dk

drk
fx,t (re2πiθ)

∥∥∥
∞

(1 − r)k−α : r ∈ I j

}
< C,

where I1 = [0, 4
5
] and I2 = [ 4

5
, 1).

On I1, we write fx,t by its Fourier expansion

fx,t (re2πiθ) =

∞∑

m=−∞

r|m|am(x, t)e2πimθ,

where

am(x, t) =

∫ 1

0

f (x − te2πiτ )e−2πmiτ dτ .

Thus for all e2πiθ, r ∈ I1 and all x,t we have

∣∣∣ dk

drk
fx,t (re2πiθ)

∣∣∣ (1 − r)k−α ≤ C
∑

|m|k
( 4

5

) |m|

< C.
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If t ≥ 5|x| and r ∈ [ 4
5
, 1), since f is a test function,

∣∣∣ dk

drk
fx,t (re2πiθ)

∣∣∣ (1 − r)k−α
=

∣∣∣ dk

drk
f (x − tre2πiθ)

∣∣∣ (1 − r)k−α

≤ tk| f (k)(x − tre2πiθ)|

≤ Ctk
{∣∣∣ 4

5
t
∣∣∣ − |x|

}−k

≤ C.

If t < 5|x| and r ∈ [ 4
5
, 1), then

∣∣∣ dk

drk
fx,t (re2πiθ)

∣∣∣ (1 − r)k−α ≤ C|x|k ≤ C,

uniformly for θ, r ∈ I2 and t > 0.
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