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Certain Operators
with Rough Singular Kernels

Jiecheng Chen, Dashan Fan and Yiming Ying

Abstract. 'We study the singular integral operator
Toaf6) = pav. | DO fx = ) dy
RVI

defined on all test functions f,where b is a bounded function, @ > 0, Q(y’) is an integrable function
on the unit sphere $"~! satisfying certain cancellation conditions. We prove that, for 1 < p < oo,
T, extends to a bounded operator from the Sobolev space L, to the Lebesgue space L? with 2 being

a distribution in the Hardy space H1(S"~!) where g = ﬁ The result extends some known results

on the singular integral operators. As applications, we obtain the boundedness for Tq ,, on the Hardy
spaces, as well as the boundedness for the truncated maximal operator T,

*
Q.m*

1 Introduction

Let S"~! be the unit sphere in R”, n > 2, with normalized Lebesgue measure do =
do(x"). Let £2(x) be a homogeneous function of degree 0, with 2 € L!($"~!) and

(1.1) Qx")do(x") =0,
51171
where x” = x/|x| for any x # 0.
Suppose b(|x|) is an L function; the singular integral operator SI;(f) is defined
by

(1.2) SL(f)() = pov. / by Y~ fx — ) dy

for all test functions f, where y’ = y/|y| € S~ L.

We denote SI(f) by SI(f) if b = 1. This operator SI was first studied by Calderon
and Zygmund in [CZ1, CZ2]. They proved that if Q € Llog" L(S"~!) satisfies the
mean zero condition (1.1) then the operator SI with kernel Q(x")|x|~" is a bounded
operator on L?(R"), 1 < p < oc. Below let us recall briefly the idea used in Calderon-
Zygmund’s proof.

Suppose that 2 € L}(S"!)is an odd function; then one can easily show that

(1.3) SI(f)(x) = % Q(y’){/ f(x—ty’)t_ldt} do(y").

snfl
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Certain Operators with Rough Singular Kernels 505

By the method of rotation and the well-known L?-boundedness of the Hilbert trans-
form one then obtains the L?-boundedness of SI under the weak condition §2 €
L'(s" 1.

For even kernels, the condition Q € L'(S"™!) is insufficient. It turns out the
right condition is Q € Llog" L(S"™!) (as far as the size of 2 is concerned). The idea
of Calderon-Zygmund is to compose the operator SI with the Riesz transform R,
1 < j < n, and show that R;(SI) is a singular integral operator with an appropriate
odd kernel. Thus

IR (SD(Nlp < Cpllf1lp

for all test functions f € 8. Furthermore, one can obtain

Hmﬁm—MfygmmM<§m&mﬂqm“
=1 =1

< "CZ IR; SI(f)l, < n*CCylIfll,

j=1

for all test functions f € §, since — Z;’:l R? is the identity map. Using the above
method, Ricci and Weiss [RW] obtained the same L?-boundedness of SI(f) under a
weaker condition € H'(S"~!), where H!(S"!)is the Hardy space which contains
Llog" L(S"~') as a proper subspace.

In [Fe], R. Fefferman generalized this Calderon-Zygmund singular integral by re-
placing the kernel Q(x")|x| " by b(]x|)2(x")|x| ™", where b is an arbitrary L*° func-
tion. This allows the kernel to be rough not only on the sphere, but also in the ra-
dial direction. For the singular integral operator SI, f(x) with the kernel K(x) =
b(|x|)Q(x")|x| ", the formula (1.3) now is

(13') mmm:/

Q(}’/){/ f(x—ty’)tildt} do(y").

sn—1 0

Clearly, the method by Calderon and Zygmund can no longer be used to estimate the
above integral in (1.3") even if € is odd, since the integral in the parenthesis can not
be reduced to the Hilbert transform for an arbitrary b(¢). Thus one needs to find a
new approach.

Using a method which is different from Calderon and Zygmund, R. Fefferman
showed in [Fe] that if € satisfies a Lipschitz condition then SI; is bounded on L?(R")
for 1 < p < oo. Later, in [DR], using Littlewood- Paley theory and Fourier trans-
form methods, Duoandikoetxea and Rubio De Francia improved Fefferman’s result
by assuming a roughness condition 2 € L1(S"~!) (see also [Ch],[Na] and a recent
survey paper [GS]). By modifying the method in [DR], recently, Fan and Pan ob-
tained the following theorem.

Theorem A [FP1] Let SI;, be the singular integral operator defined by (1.2). If Q) €
HY(S"1) satisfies (1.1), then SI,, is bounded on LF(R"), 1 < p < oc.
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In this paper, we will study the singular integral operator Tq , f(x) (formally) de-
fined by

nmﬂmzpm/bmmwwmr“%u—yMy
(1.4) 5
= llir(l) TQ,a,af(x) = llir(l) b(|}’|)9()’/)\)’|7n7"f(x - )’) d}/

ly|>e

for all functions f € S(R"), where b € L™, a > 0 and Q2 € H1(S"!) satisfies

(1.5) : QU OYly')do(y) =0
for all spherical polynomials Y,,(y’) with degrees m < [«]. We recall that the Hardy
space H1(S"™!) is a distribution space if 0 < q < 1. So (1.4) and (1.5) are well-
defined only if Q € L'(S""!). In general, the way in which the above integrals have
to be interpreted.

Let x(a,0) () be the characteristic function of the interval (a, b), and let

Ce(lx]) = bUxDIx ™" “X(eroo) ([xD); L) = b(E)X(e.00) (1)1

For f € 8(R"), write f(x — y) = f.,(y') with t = |y|. Denote (€2, ¢) the pairing
between €2 and a C* function ¢ on $"~'. The operators T, - and Tq,, are defined
on the test function space S(R") as

vmgm:/ L), o) dr,
(1.4) 0

To.o f(3) = lim To,o. f(x)
where (2 € H1 satisfies
(1.5") (Q,Y,) =0

for all sphere polynomials Y,, with degrees < [«].

As we will mention in the second section, a distribution 1 € H49(S"~!) has an
atomic decomposition 2 = > A ja; in the distribution sense, where each a; is called
a (g, 7) atom that is an integrable function having the same cancellation conditions

as that of ©,and ) |7 = ||Q||?ﬂ(sn_l). Thus, the pairing in (1.4") is

(@ fo) = D Ailag, fur):

It is known (see [Co2]) that the dual space of H1 is the Lipschitz space A(S"~!) with
B =(1/q—1)(n—1). Let k be an integer greater than 3. If 3 > 0, the space AP(S"1)
is the set of all functions ¢ € L°°(S"~!) with norm

dk .
llgllas(si—1) = llgl|Loe(sn—1) + {supH ﬁg(r)H )(1 —fio<r< 1} < 0.

Loo(sn—l
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A% is the BMO space. So

[, fi)] < Z IAjl @l zagsn—1) | el ascsn—1)-

It is known from [Col, Co2] or [CTW] that ||a;]|pa(s—1) < C uniformly for atoms
a;. It is also not difficult to check that || fc;|[zs—1) < C uniformly on ¢t > 0 (see
Appendix). By the Lebesgue dominated convergence theorem we have, for ¢ > 0,

Tou- f0) = 3, / L(t){aj, fur) dt

We define the distribution kernel
Koc =Y ACea;.
Now the operators Tq o . can be written as
To.acf(x) = Kae * f(x) = Z Aj(Ceaj) * f(x).

The definition in (1.4") is well-defined, since lim._,o T o < (f)(x) exists for all x € R".
To see this fact, we use the Taylor’s expansion

fa-n= 3 cofO @+ S co / (1 = (DX )(x — sy) ds,
IK|<[a] |K|=[a]+1
where Ck are certain constant coefficients depending on the multi-indices K. Let
s = Y ¢ y’K/ (1 — 919D f)(x — sty’) ds.
[K|=[a]+1
By the cancellation condition of €2, we have
(Q, fo> = <Q’gx,!>t[a]+l

which gives, in (1.4"), that

Toac-f(x) = / Lo(8) (X0 TR, ger) + X(1,00) (Y, fur)) dt
0
Since f is a test function, there is a constant C (perhaps depending on x) such that

X Ogellazs—1 < Co Xro0) O fesllase—y < C

uniformly for all > 0. So

| L () {0 O, ge) + X(1,00) (D(S2, fer)}|
< Cll ags—1) | X0 OB + x (1 o) (L1 ()b(E)E ]
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By the Lebesgue dominated convergence theorem we obtain
lim To,0. f(x) = / () {x0.) (D, ge )™ + X(1.00) ()T, fir) } .
- 0

Clearly (1.4") (1.5") are consistent with (1.4) (1.5) if Q € L}(S"™1).
We have the following theorem.

Theorem 1 Let1 < p < oo and p = max{p, p/(p — 1)} and let T, be defined in
(1.4"). Suppose that 2 € HI(S" V) withq = (n — 1)/(n — 1 + «) and satisfies

(1.5""") (0, Y,)=0

for all Y,,,(y") with degree m < N, where N is an integer larger than ap/2 — 1. Then
we have

(1.6) ITa.0 fllern < ClU o [ F 1l gy

for all f € 8(R™), where L%, is the homogeneous Sobolev space whose definition can be
found in the appendix. Thus the operator T, can be extended to the full L5 (R") in the
usual manner.

It is clear that Theorem 1 is an extension of Theorem A, since LY = L? if ¢ = 0.
On the other hand, although Tg ,, is a translation-invariant operator, it is hard to see
whether it belongs to the symbol class S (see [St] for the definition of §%). One can
not use the results in [T] to cover our result.

Let L4 be the inhomogeneous Sobolev space which is the set of all functions f
satistying || f1| .2 = | fllr + [|fll;2 < 0o. Define the operator Sq , on 8(R") by

Soa f(x) = pov. / Ty D) flx — y) dy,
.

where [['(¢)| < Ct— "% ift € (0,1) and [['(¢)| < Ct+~"ift > 1. Then by Theorem A
and Theorem 1, we easily obtain the following result on Sq 4.

Theorem 1’ Let 1 < p < oo. Suppose that Q2 € H'(R") satisfies (1.5'). Then

1S0.0 flle < Cllfll -
We recall also a result by Muckenhoupt and Wheeden in the following.

Theorem B[MW] If -n < a < 0,9 =n/(n+ «), and Q € L1(R") (no cancellation
condition needed), then

(1.7) [ To.o fllerws < Cll fllee)

with 1/r = 1/p + a/n. In order to clarify the relations among Theorem 1 and Theo-
rems A-B, we remark that on S" ', 11 C LLog" LC H' CL' CH,0<r<1<gq
and all the inclusions are proper, while L1 = H1if 1 < q < oo. Let Fg"q be the Triebel-
Lizorkin space defined in [FJW]. It is known that on R", Fg"z =[P, F’;*z =L ifa>0;
L? C F;’Z ifa < 0and1/r = 1/p + a/n. Thus, our theorem also can be viewed as a
partial extension of Theorem B.

https://doi.org/10.4153/CJM-2003-021-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2003-021-4

Certain Operators with Rough Singular Kernels 509
Define the truncated maximal operator by T¢, , f(x) = sup_. [T .o f(x)].
When o = m is an integer, we have a stronger result.

Theorem2 Letm =0,1,2,...,and Q) € H1(S""!) satisfy (1.5") in Theorem 1 with
q= nf:m. For1 < p < 00, we have

(1.8) 1T (e ey < ClI aes—1) | f1] gy

Below we briefly outline the strategy of our proofs.
From (1.6) we have

(1.9) Taa(NE) <D INITE (NG
so by the Minkowski inequality

1 T80 (Nl < D INHITE 0Dl

To show the boundedness of Taa( f), it suffices to show

(1.10) 175 «(Dllr < CIIf

Lk

where C is independent of f and atoms a; because by (1.10) one has

s(S ) =clr

To establish (1.10), in the third section, we will prove for o > 0,

1Toa (Nl <ClIf

LZ(Rn)HQHHq(Snﬂ),

(1.11) 1 Ta,0(Hllr <CIIf
(111,) HTaj.,a,s(f)”Ll’ S CHf

Lh>

Lk

where C is independent of f,a; and ¢ > 0.
In Section 4, we will use (1.11) to establish (1.10) fora = 0, 1, 2, . . ., which proves
Theorem 2. (Recently, we proved this theorem for all « > 0 [CF].)

To prove Theorem 1, since lim. ¢ T o f(x) exists for all x, by the Fatou Lemma

1

ITaa(Nlir = { [ timipf 7o, (117 dr}

1

< lim inf{ | To.0:(NE)P dx} '
o

e—0

Here without loss of generality we assume that {¢} is a sequence of positive num-
bers going to zero. Thus, by the atomic decomposition of €2,

IToa(Nllr < liminfy A1 T, (Hller,
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which with (1.11") proves Theorem 1.

We will introduce some known lemmas in the second section. The proof of (1.11)
and (1.11') can be found in Section 3. We prove (1.10) for integers « in Section 4.
As applications, we will study the boundedness property of Tq , on the Hardy spaces
in the fifth section. In the sixth section(Appendix), we will review the definitions of
Triebel-Lizorkin spaces and the Sobolev spaces L.

Throughout this paper, the letter C will denote a positive constant that may vary
at each occurrence but is independent of the essential variables.

2 Definitions and Lemmas

Recall that the Poisson kernel on $"~! is defined by

1—172
N —
Pry’(x ) - |r}’/ _x,|n7

where 0 <r < landx’, y’ € S"7L.
For any f € 8(S"~!), we define the radial maximal function P* f(x’) by

P+f(x/) = sup [(f, Pur)l;

0<r<1

where 8'(5"~!) is the space of Schwartz distributions on $"~!.

The Hardy space H1(S"71),0 < g < 1, is the linear space of distributions f €
8/(8"!) with the finite norm || f|| ga¢si—1) = ||P* 1| ra(sn—1) < 00. The space H1(S"~")
was studied in [Col, Co2] (see also [CTW]). S' and S* are compact Lie groups. For
H1 on a compact Lie group, the reader can see [BF].

An important property of H1(S"~!) is the atomic decomposition, which will be
reviewed below.

An exceptional atom E(x) is an L°°(S"~!) function bounded by 1. A (g, r) regular
atom is an L'(S"~1), r > 1 function a(x’) that satisfies

(2.1) supp(a) C {x’ € "' |x" —xj| < p} forsomex, € S" 'and0 < p < 2;

(2.2) / a(x"Y,(x"Ydo(x") =0,
Snfl

for any sphere polynomial Y,,, with degree m < N, where N is any fixed integer larger

than [(n — 1) % - 1]

(2.3) lla

gy < pm /a1

From [Col, Co2] or [CTW], we find that any 2 € H9(S"~!) has an atomic decom-

position
s3] oo
Q= Z /\jaj + Z:,U,iE,'7
=1 i=1
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where each a; is a regular (g, c0) atom; each E; is an exceptional atom, and

oDl < cl@

we note that for any x € $"!,

’ZUiEi(x)’ <D lwil < {Z|#i|q} %-

Without loss of generality, we can assume

q
Ha(§n—1)*

> B )| < 19l
Thus we write
o0
Z/LiEi(x) = |2 gas-1)Ax),
i=1
with 5
Alx) = > wiEi(x) '
12| fasn—1)
In this new definition,
Q=>"Xa;+||Q s A, and [Al;~ <1

If Q has the cancellation conditions for all Y;,, whose degrees < N, (since a;’s are
regular atoms whose cancellation property (2.2) can be chosen for any large N), we
see that A(x) has the same cancellation conditions as that of 2. In other words, A(x)
can be viewed as a regular (g, c0) atom whose support is $"~!. As a conclusion, if
Q € Hi(S"~1) has the cancellation condition (1.5""), then all the atom:s satisfy (2.2)
uniformly for the N in (1.5””). Furthermore, we can see

k
Q=Y Na; € HI(S"H)nL'(s"™)
j=1
and
kll>n<;10 HQk — QHHq(sn—l) =0.

Throughout this paper, we always assume that N is a fixed integer larger than
ap/2—1.

In the rest of the paper, for any non-zero £ = (&,...,&,) € R", we write £/|¢| =
& = (&,...,€) = ((1,.-.,¢) = ¢ Thus ¢ € $" L. Also we use (, to denote
(&, ...,Cy) and use &, to denote (&, ..., &),
Lemma 2.1 Suppose n > 3 and a(-) is a (q, 00) atom on S"~! supported in "' N
B(C, p), where B(C, p) is the ball with radius p and center { = &' € S"7L. Let

Fo(s) = (1 =)' T xans) [ a(s,(1—5)7) do(7).
Snfz
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Then there exist sy € R and a constant C independent of a(-) such that

(2.4) supp(F,) C (so — 2r(&"), 50 + 2r(£")) 5

(2.5) IFalloe < 11D (g™

(2.6) /Fu(s)sk ds =0 forany integer k € [0, N],
R

wherer(€£') = |A&'| = |E] 7 ALl and A € = (0*&1, p&as - - -, PEn).
Lemma 2.2 Suppose n = 2 and a(-) is a (q, o) atom supported in S' N B(C, p). Let
Fo(9) = (1= )7 1O a6, (1 =97 +als, =1 = )1).
Then F,(s) satisfies (2.4), (2.6) and
IFallr < ClA, (€77 p! 5

for somer € (1,2).

Lemma 2.1 and Lemma 2.2 can be found in [FP2, Lemma 2.1 and 2.2 and their
remarks]. Or see [FP3] for the case g = 1.

3 Proof of Theorem 1

Let a(x’) be a (g, c0) atom with g = n"_;liu, recall that T, (f) = lim._¢ Tan-(f)
and T, o (f) is defined by

Tpoe(f)(x) = / b(yDly| " a() f(x — y) dy.

ly|>e

The main purpose of this section is to prove that for any (g, co) atom a(x’) with
the cancellation conditions in Theorem 1, one has

3.1 1 Taa(Hllerwy < Clibllsoll fll 2 ey

(32) ||Tu,a,s(f)||L1’(R”) < CHb”OO”f

LE(R)

where C is a constant independent of a(x’), e > 0, b € L*° and [ € S(R"). As we
mentioned in the introduction, Theorem 1 will be proved as soon as we establish the
inequality (3.2).

Without loss of generality we may assume that supp(a) is the ball B(1, p) N $"~,
where 1 = (1,0,...,0). Let I; be the interval (2¥, 2¥1), k = 1,2, .... Then

oo

(3.3) Toaf(x) = > Tif(x),

k=—o00
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where

1) = [ D aly Wl s = )y

It is easy to see (Ty /)" (€) = &k(f)f(f), where

(3.4) or(x) = b(lx]) x| ™" alx")x, (|x])-
We have the following L? estimates for 0.
Lemma 3.5
(+) O1(E)] < Cblloc2 ™" [2°4,¢[ Y p1 71D
(+%) 0K(O)] < ClIbll o2~ 2 A4,¢] 7 1 70D

where N and A, are as in (2.6); C is independent of k € Z and p > 0.

Proof We will only prove the case n > 2 since the proof for n = 2 is essentially the
same (using Lemma 2.2 instead of Lemma 2.1).

For any fixed £ € R" we choose a rotation O such that O(§) = [£|]1 =
|€](1,0,...,0). Let y' = (s, ¥2, ¥4, -, ¥1). Then it is easy to see that 64(¢) is equal
to, up to a constant C,

/b(t)tilia/ a(oil(}//)) eiit‘ﬂ(lﬁ)’/) da.(y/) dt,
Iy sn—1

where O~ is the inverse of O. Now a ( o~! (y’)) is again a (g, 0o) atom with support
in B(¢', p) N S"~1, since supp a(y’) C B(1, p) N S"~L. Thus we have

(3.5) 56 =C [ b1 / Fa(s)e™ ™Ik ds dy
Iy R
where F,(s) is the function defined in Lemma 2.1. By the Lemma 2.1, without loss

of generality, we may assume that F, is supported in (—2r(¢’),2r(¢’)). Thus using
(2.4) and (2.5) we have

164(6)] < Cl1Blloe / i
I

/ F,(s)e~l¢ls ds‘ dt
R

< 27 [b] oo [2"A [N p T,
which proves () of the lemma.
Using Holder’s inequality on (3.5), we have

2k+1|£|

54(6)] < Cllb]l 2~ /
2k|¢]

<clpl2 @ H{ [
R

- ] / E,(s)e* ds‘ dt
R

Fa(t)|2dt}%

< clpl2 e H [ IRopar)}
R
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By (2.5), we know

{A|Fﬂ(t)|2 dt} : S Cp(lfl/q)(n71)|Ap§/|,%'

Thus we have (xx) of the lemma.

Now we return to the proof of (3.1). Let {®;}°__ be a smooth partition of unity
in (0,00) adapted to the intervals (2/~!,2/™1). To be precise, we choose a radial
function ® € C>(R") satisfying supp(®) C {x,3 < |x| < 2},0 < ®(x) < 1and
P(x) >c>0 if% < x| < g We let @;(x) = ®(27x) and require that ® satisfies

> @) =1 forallt.

j=—o0

It is easy to see supp(®) C (27771, 277,
Define the multiplier operators S; on 8(R") by

(SN = f©OP(A,).
Following the proof of Lemma in [DR, p. 544], we decompose the operator T, , by

o

(36) Ta,a(f) = Z T]f7
j=—00
where

Tif = Z Sivk( Te(Sjskf)) -
k

By Littlewood-Paley theory, for any p € (1, 00), we have

Lp(Rn).

() I e < || (XTS5 PF)
k
Thus

IT; 13 SCZ/ | Te(Sjk )N dy
Kk R
—C Y [ 1@jua 0O O de
kIR
<cy / |61 f (€I de
k Dj+k

where D; = {£: 27771 < |A €] <2774
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If j > 0, by (*) of Lemma 3.5,

IT;f113 < Clbllo Y _ 272 pM/a =D / | FOP(24A,€))™N " dg

k D j+k

< C|[bl|oo2™ NIy 7 p2( /a1l / |f©)P2 % de.

k Djiy

Noting that o + (1/g — 1)(n — 1) = 0 and on the domain D, 2 ko o 2f‘1|A,,£\O‘ <
279 p|€]*, we have

ITi I} < Cllblloc2 N0~ [ f(€)P&> de.
k Dk

Therefore, for j > 0, we
(3.8) ITfll2 < Cllbllao2 "N = £l 2 R

Similarly, using (#x) in Lemma 3.1, we have for j < 0,

- i
(3.9) ITjfll2 < ClIblloo2? | £l 22 rr)-

Next, we estimate the L” norm of T;f. First we assume p > 2. Lets = (*;i)’ =
ﬁ. By (3.7), we can take a non-negative g € L°(R") with ||g||s = 1 such that

(3.10) 1T < S [ TS igd
oo R"
Since | T(Sk+; f)(x)|* is bounded by

C”b”zoop—(n—l)(l—l/q)z—ka/ |A()//)H)/|_n|5k+]f(x _ y)|2 d}/
2Ly <2k

= C|[b|)2p~ "IV D2TRL (1S ) (),

where A(y") = p"= D=1/ g(y")isa (1, 00) atom, and

(3.11) Lfto = | AG 917" fx— ) dy.
2k< || <2kt
we have that

> / | TSk )P g dx < Cl|b||2, p~ 2~ DA=1 / D 2% Sk (0 Nag(x) dx,
K VR Rk
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where Nyg(x) = sup; Ljg(x), and

Lig(x) = / ly|7"AGY ) |g(x + p) dy.
2<[y|<amn

By the rotation method and the L? boundedness of the Hardy-Littlewood maximal
function, it is easy to see that

[INaglle: < Cligll- < C.
Thus by Holder’s inequality, we have
3.12 Tifllereny < ClIblloo (”‘““‘W)H( 27kegy, 2)E :
(312) [ Tifluw) < Cllbloop ;i ki)l

By checking the definition of S and the definition of the Triebel-Lizorkin spaces in
[FJW], one can easily see that (or see the lemma in Appendix)

| (i)

Thus we obtain

: =||f Ry = 1122 -

LP (R

(3.13) 1T fllerwey < Cllblloc2™ ] f

LE(R):
(3.13) means that for any sufficiently large r, we have

(3.13") 1T fll < ClIblloc2’llf

LL (Rn) .

Now forany p > 2,letr > p. Using the Riesz-Thorin interpolation theorem between
(3.13") and (3.8), we have that, for any j > 0

IT;fllony < Cllbl|oc2 HONFImI=0=00k £, o

where 6 = 12)((::12);. We can see that if r — oo, then 6 goes to % and {0(N+1—a) —
(1—0)a} goesto 2 + 2 — a > 0, because the choice of the N. Therefore we choose

a sufficiently large r such that for any j > 0

(3.14) I T; flleerny < Cllblloc2™ | L2(RY)"
whered = {(N+1—a) — (1 —0)a} >0andf = 127((::2;'
Similarly interpolating between (3.9) and (3.13"), we have a § > 0 such that for
j<o0
(3.15) 1Tl < ClONo2” 1 £l 2 -
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By (3.6), (3.14) and (3.15) we now have

I Toafllee <Y NITifller < Clbllooll Fll iz ey > 277 +277).
—00 j=>0
which proves (3.1) for p > 2.
If p < 2, then p’ > 2. Remember

T < Clibll pn=D01/a=1)
175l < Clelocp .

(2t
k

Take a sequence of functions g, then

‘/ Z27kaLk(|5j+kf\)gk(x)dx’
R" k
:c|/ D 278 L gel(x) dx]
R

<o (2 sps?) | (S miswr) | .
k k

Taking the supremum over {g;} with

[ (Zk:ILng(x)z) %Hp, <1

|

we obtain, for 1 < p < 2,

T n— — —ka %
Il < Clblloop™ DD (3027151001
k

Thus as in the proof of (3.13’), for any r > 0 we have

(3.16) 1T e < Cllblloc2 1 f

LL (Rn) .

Choosing r sufficiently close to 1, similar to the case p > 2, we can complete the
proof of (3.1) for 1 < p < 2 by interpolating (3.8), (3.9) and (3.16).

Now, (3.2) can be obtained easily from (3.1). For any ¢ > 0, let b(t) =
b(£)X(c.00) (). Then ||b]|c < ||b]|oo for any € > 0. Replacing b by b in (3.1), we
have

HTaﬁa,e(f)”LP(R”) < CHb”OO”f”Lf,(R”)'

Corollary 1 For the operator Tq , defined in Theorem 1, we have

||TQ_a(f)||Fp—u,2(Rn) <C|flle foralll < p < oco.
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Proof Let T* be the dual operator of T = Tgq . It is easy to see that T* has the same
boundedness as T. For any p € (1, c0), take its conjugate index p’ and recall that the
dual space of F, @2 (R") is F;}Z(R”). Thus for f € L? and any g € FZ}Z (R™), we have

KTf. 81 = KT8 AL < I IT 8l < NI fllpllgle2 rey-

Corollary 2 For any 3 € R, we have

HTQ,Q(f)”F;"-Z < CHf

po— 3,2«
FP

Proof First we assume 3 > 0. Let R be the Riesz potential operator. Then we know

that Ry is an isomorphism of F)* onto £, **. Namely ||Rs f|/zo2 2 || f]|;«s2. Thus
' ’ P P

we have

[ Toa(Hllys = [ Tan®sflg: < ClRsS g2 < Cllfllpass
Using duality, we can obtain the corollary for 8 < 0.

Remark Fory > 1,let A, denote the collection of measurable functions b(t) on R,
satisfying

1R d
= - O dr) :
lols, = (sup [ oo dr) " <o

By checking the proof, in Theorem 1 we can replace the requirement b being
bounded by a less restrictive one b € A,.

4 Maximal Operators: Proof of Theorem 2

In this section we will study the truncated maximal operator

(4.1) T f(x) = sup | Toae f(x)].

As we discussed in (1.9), to prove Theorem 2, it suffices to show the uniform bound-
edness of T:j:a( f) for all (g, 00) atoms a;. Thus in this section, for the sake of sim-
plicity, we may assume that {2 is a (g, c0) atom. For any such atom {2, we define the

maximal operator

(4.2) Mg o f(x) = sup / gl
Ik

k

/Si1 Q" fx—ty")do(y")| dt,

where I is the interval (2, 2"1]. We have the following lemma.

Lemma4.3 Leta=m,m=0,1,2,...,and$) bea (q,00) atom satisfying (1.5) with
q= 2= Thenfor1 < p < oo,

n—1+m"*

(4.3) 1Mo fller@ny < Cllfll g ey

where the constant C is independent of the atom €.
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Proof Without loss of generality, we may assume supp 2 C B(1, p) N S"~!. Now for
any test function f, by (2.2), we have

dt.

Mo f(x) = sup/ t_l_’"‘ Q") (flx—ty") = flx—t1)) do(y")
k Iy Sn—1
By Taylor’s Theorem, for y’ € supp €2 we have that

]/ Q) (flx—ty') — flx — t1)) doly’)
Sﬂ—l

is less than or equal to

1
c /0 /SH Q0| (D Plx — 11 +st(y" — 1) {t(1 — y")}?| do(y’) ds

|Bl=m

1
<Ct"p" Y / / Q)| | (D f)x—t1+st(y" — 1)) | do(y’) ds
0 Js1

|B]=m
Therefore, || Mg, f||1r(r)is dominated by
1
S [ [ 00 ey @ Dl oty s,
|B]=m 70 I

where

Htey S = Sup/\f(x —(t.s,y") [ de
k JI
and y(t,s,y’) = (1 + sy’ — s1). It is known from [St, p. 477] that

(4.4) ”,uw(s,y’)fllp < CHJ(HP’

where C is independent of s and y’. Noting that [, , p"|Q(y")|do(y") < C with C
independent of 2, by (4.2) we have

IMamfll, <C > ID°fll, = ClIf

|Bl=m

Li,(R")

The lemma is proved.
We can obtain Theorem 2 by (1.9) and showing the following proposition.

Proposition 1 Let m = 0,1,2,..., and Q be a (q,c0) atom satisfying (1.5) with
q= nffjm. For1 < p < 00, we have

(4.5) 1 T6 Sy < N1l ey

where the constant C is independent of )
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Proof Without loss of generality, we may assume that €2 is supported in B(1, p).
Since
Tomf = Zka: Zak*f7
k k

for any € > 0, there is a k such that 21 <« e <2k Soitis easy to see that
oo
Tomf < MQ’mf‘f'Sup’ZO']‘ *f‘
k 14
j=k

Write Ji(f) = Z]Oik o j* f. By Lemma 4.3, to prove the proposition it suffices to show
the boundedness of J(f) = sup; |Ji(f)|. Let ¢ be the Dirac delta function. Take a
radial function ¢ € 8(R") such that p(§) = 1 when |¢| < 1 and (&) = 0if |¢] > 2.
Let A ¢ be defined as in Lemma 2.1. Let px(§) = @(2"|Ap§|) and i)k(f) = @i(§).

Now
o) k—1
J(f) = (0= @)+ Y 0k f+ Ok (Touf) — Dpx Y oy f
j=k —oo
= I (f) + Lo (f) + Is(f)
clearly,
(4.6) [ sup TN lp < CllTamflle < ClIfll,
Next,

(oo}
sup [Iis(f)| = sup‘ Z(bk *op_j* f
k k

j=1

o
< ZSlip|¢k*O'k_j*f|
j=1

M

Aj(f).

-
Il
—

Each Aj(f) is bounded from LP to LP because of the boundedness of Mg, in
Lemma 4.3. By Plancherel’s theorem

INGIEEDS / b€k () FIO)I* de
k=—o00 R

Noting br(6) = <p(2k|Ap§|) and the choice for this ¢, taking N = m+1 in Lemma 3.5,
we have that || A;(f)]|3 is dominated by, up to a constant C,

a7 A=y / AEP" D 19k©)P12°A,€] | F©F de
Rn

k

< ca7Hm Sup > 1Bk 12481 1 FIZ: ooy
0
k
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Since [A,&| < pléland m + (1 — 1/gq)(n — 1) = 0. ‘
Noting the choice of @, we have [|A;(f)[, < C27Vi|f]|;>. This shows the
(L}, L) boundedness for sup; I 3(f)| by interpolating 1Al e and [[Ajlz —p2.
Finally,

sup i ()] < Gi(f),
j=1

where
Gi(f) = sup (6 — ®x) * opsj * f]-

Clearly by Lemma 4.3 we have ||G;(f)|l» < C||f||2 .
On the other hand by Plancherel’s formula and Lemma 3.5 we have

HGJ(f)”% sz(lfl/q)(nfl)zfj/ 272ka

n

(11— 92 AuD) [ 244,60 flOP dg

k

By the choice of &, we know that for any & such that 1 — ¢(2F|A,£]) # 0, it satisfies
27k < C|A,€|°. Thus we have

_ i _k _1
IGi(Nll2 < C27 2| fllzmysup Y 273|A8]
£#0 2k>]A,€] !

_i
< C272 [ f e ey

Thus the boundedness of sup, |Ix1(f)| follows by the Riesz-Thorin interpolation.
Proposition 1 is proved.

5 Boundedness on H? Sobolev Spaces

In this section, we will study the operator T , on the space Fg’z for0 < p <1.1tis
known from [FJW] that H? = Fg’z, where H? are the classical Hardy spaces. Thus,

we denote, for 0 < p <1, H? = F‘;’Z and call HY, the H? Sobolev spaces. The Triebel-
Lizorkin space Fg"q has a standard atomic decomposition obtained in [HPW]. Below
we only review the case g = 2 (see also [Str]), which is what we need in this section.

Definition 5.1 (see [HPW]) For o > 0. A function a(x) is said to be a (p, 2, o) atom
if

(i) suppa C Q, QisacubeinR".

(i) [lall;; <[Q>77.
(iii) For every polynomial P of degree at most N = [n(1/p — 1) — «],
S a(x)P(x) dx = 0.

In [HPW], we know that any f € HX has an atomic decomposition f = > \ja;
with (3 |)\j|P)% = || fll 2> where all a;(x) are (p, 2, ) atoms.
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Now we are in a position to state the main result in this section.

Theorem3 Let0 < o < % and Q € L'(S"™") satisfy (1.5) for all m < [«]. We have
a constant C > 0 such that

[ Too fllme sy < Clfll g g

forall f € C2(R")NHA(R"), where - < p < 1. Thus Tq,, is extended to be defined
on HE in the usual manner.

Proof Let

Ko (%) = b(|x])]x] ™"~ X (e.00) (]X)Q(x").
Then K = p.v.Kq . defines a distribution in D’(D = C2°) and To o f = Kox* f. Itis
known that H?(R") can be characterized by the Riesz transforms R;, j = 1,2,...,n,

and their compositions (the higher Riesz transforms). For instance, if % <p<l,
then

fllie 2 0 flle + > IRl
j=1
Thus -
I Taa(Hllar = Ko * fllie + > 1Ko Ri(£)l|ze-
j=1

It is also known (see [T] among many references) that the Riesz transforms are
bounded on HZ. To prove the theorem, it suffices to show

(5.1) [ Ta.a (Nl < Cllf]

HE:

Checking the proof in [HPW], it is easy to see that for f € C>°, one can choose an
atomic decomposition ) Aja;(x) such that for any multi-index /3,

m

lim sup ‘ D> Aa:(x)D’fx)| =0
M= xeX JZ:; ™

for any compact set X. In other words, > © A\ja;j(x) = f(x) in the topology of € test

space, where € is the set of all C*° functions. Now, following [St, p. 115], we write

the distribution kernel K, = Kg +K§°, where K&° is an L! function since o > 0, and

K3 is a distribution in D’ having compact support so that K must be a distribution
in &’ Thus

Toa(f) =Y AjToala)),

and
1Tl Eswn < D NP To.a@)]s -

We now only need to show that there exists a constant C independent of atoms, such
that for any (p, 2, &) atom a(x)

(5.2) | Toa(@ e < C.
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Also without loss of generality, we may assume that the support of a(x) is the ball

B = B(o, p).
We first show the case p = 1.

|Taqa(x)| dx + / |Ta,qaa(x)| dx

|x|>8p

Tl < [
x| <8p

= Il + 12.
By Theorem 1 and (ii) in Definition 5.1, we have

(5.3) I < Cp*||Tan(a)lp < Cp?llall <C.

By Fubini’s Theorem,

bSC/MUN/ = y| =" Qx — y)| dedy
B |x|>8p

§C/\a(y)|dy/ |x| 7"~ |Q(x) | dx
B |x|>4p
<l [ larldy.

B

Notinga(y)isa (1,2, a) atom, we obtain I, < C if we can prove the following lemma:

Lemma 5.5 For any (p,2, o) atom with support in B = B(o, p) we have
/|a(x)| dx < Cp"~ it
B

Proof Let xp be the characteristic function of B and let d(x) = (sign a(x)) x5(x).
Then by duality

i lall ez < Cp2 7 ] e,

/|a(x)|dx:/ a(x)a(x) dx < ||a
B Rn

Let R, be the Riesz potential. It is well known that (see [FJW])

||€1||F;u > ||Ro (@) 2 < a1

2n
n+2o

Next we show (5.2) for the case == < p < 1.

1 < Cp™i. The lemma is proved.

with r = . Here r > 1, since < 5. Now ||@

HMMMmS/

|x|<8p

|TQA,aa(x)|p dx + / ‘TQ,aa(pr dx

|x|>8p

= Il +Iz.
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By Theorem 1 and (ii) in Definition 5.1, we have
(5.4) I < Cp"' = Toa(@)|f. < Cp" =2 lall}, < C.

By Holder’s inequality,

L<C 3 2p)nd=p) / /
)< Z( o ([ latr) |

ip<|x|<2itp

<COO 27 pyn=p) / d/
< ;( P! [ larldy |

P
e =70 = ) dxdy)

x|~ Q)| dx) !

Ip<|x|<2i*lp

<. P P
< ClQR 5y D@ P20 / la(]dy) "

j=2

Thus by Lemma 5.5,

oo
L < C”QHfl(S”*l) Zz](n—np—ap) <,
=2

because n — np — ap < 0. The theorem is proved.

To enlarge the range of p in Theorem 3, we need to assume some “smoothness”
on the function €2. Here we will use the L"-Dini condition that was used in [KW] and
[DL]. For 2 € L'(S"™!), let w,(8) denote the integral modulus of continuity of order
rof €,

wr(0) = sup (/571 IQ(Ry") — Q(},/)|rda(},/)) :7

|R|<0
where R is the rotation in R" and |R| = ||[R — I

Theorem 4 Let0 < o < 5. Suppose that () € LY(S"7Y) satisfies (1.5) for allm < [al],
and

1
/ t 7w () dt < oo forsome0 <y < 1.
0
Then there is a C such that
| Taafllue < Cllfllge  forall f € HE NCZ(RY),

where p € (2 ],

nt+a+y’? nt+o

Proof Similar to the proof of Theorem 3, it suffices to show that there is a constant
C > 0 such that (5.2) holds for all (p,2,«a) atoms a(x) with support in the ball
B = B(O, p). By checking the proof of Theorem 3, we only need to show I, =
f‘x|>8p |Tona(x)[P dx < oco.
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By Holder’s inequality and the cancellation condition on a(y), we have

L <

Y@ ([ [l y = ) - 00l dy )

e 2p<|x|<2itip JB

Y@ [ planlay [
=2 B

2ip<|x|<2i*1p

p
x|~ 0()] dx)

=h+ L

It is easy to see that

o0
I, < CHQHfl(sn—l) Z(sz)n(l—P —(a+1) ]P /|a(y)| dy
j=2
By Lemma 5.5, we have
o0
]2 S CHQ”fl(snfl) Z 2](n—np—wp—p) S C.
j=2

because n — np — ap — p < 0. It remains to estimate J;. By Fubini’s Theorem,

I <CZ(2J o /\a(y)l/ \xr"*am(x—y)—Q(x)|dxdy)p.
20 p<|x|<2/*p

Pick some 3 such that ;= > > 1. By Holder’ inequality, we have
B~ p
I §C(/|a(y)|2(21p)n Yp=Di5 0, i (y )dy)
j=3

where
Quj) = [ ) - 0] d
2i p<|x| <271

By the same argument as in Lemma 5.5, we have that

ZQJP)"(W D O

j=3

o] 4
Cpr 2D (S @I Y 5 00 () |
j=3

]1<Cp n(p/2—1)

L7(R")
(5.5)
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_ 2n
wherer = 2.

By [DL], we know that for y € B,

Quf) = [ ) - 0] d
2ip<|x|<2i*tp

2j+1p
< C/ t=17w1(|y|/t) dt.
2

ip
Changing variable, we have

~ ) ool
Qq,i(y) < CZ_J‘”p_“Z_”/ 1w, (8) dt.
[yl/27*1p

Thus a simple computation shows that J; is bounded by

0 Q
Cpfapfnpﬂ(/‘sznu/pfn]-;—?zfjmm/
8= |

y1/27%p

Iy1/2'p roN2
1 0() dt’ dy)

< cp—“f’—"l’/z(/1 t—l—w(t)dt)p(/my)? <C
0 B

since n(1/p — 1) — @ — v < 0. The theorem is proved.

Theorem 3 and Theorem 4 can viewed as a supplement of the convolution case of
Theorem 1 in [CDF].

In [CDF], we studied singular integrals with variable kernels. The function w(x, z)
defined on R" x R" is said to belong to L°(R") x L(S"~'), r > 1, if it satisfies the
following conditions:

(i) w(x, A\z) = w(x,z) forall A > 0andall x,z € R".
1
(i) ||w|lzeoxrr == SqueR"(fyH lw(x, z')|’da(z')) " < 0o,

where z/ = z/|z|.
For o > 0, we define the operator T, , f(x) with variable singular kernel by

Toaf(x) =p.v. / wlx,x — y)lx =y f(y) dy,

where f € §(R") and w(x, y) € L°(R") x L'(S"™!) satisfies

(5.6) / W, YWy do(y) = 0
Sﬂfl

for all spherical harmonic polynomials Y, with degree < [«]. We recall the following
theorem by Calderon and Zygmund.

Theorem C [CZ3] Ifw € L™®(R") x L'(S"~'), r > 2(n — 1)/n, satisfies

(5.6') / w(x,y") doly') = 0,
51171
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then there is a C > 0 such that
1T o fllzwny < ClIfllezeny

forall f € S(R").

As an extension of the above theorem, we will establish the following theorem.

Theorem 5 Leta > 0. Ifw € L>(R") x L'(S"™!) with r > max{1, znﬁ’di)} Addi-
tionally, assume that w satisfies (5.6). Then there is a C > 0 such that

1 Twa fllzwe < Cll Fllzz vn-
Proof Using the spherical harmonic development [CZ3] and (5.6), we have

%) N(m)

W)= > Y an ()Y,

m=[a]+1 j=1
ap,j(x) = /S ]w(x Yy Yo i (y) do(y"),

~

where each Y, ; is a spherical harmonic polynomial with degree m and N(m)
m" =2, In the following, for simplicity we denote 3 1., by 3=, and denote Zi\f T

by > j- Let
Tom,jf () :/ fa =y Y j(y") do(y").
RH

By Holder’s inequality, we now have

|Tw,af(x)|2 < (Z Z |am ](x)|2 —e(14+2a) ) (Z m€(1+2u) Z |Ta,m,jf(x)|2) 7
j

m

where ¢ is less than and sufficiently close to 1. Now we can see that the series in the

first parenthesis on the right side of the above inequality, for each x fixed, is equal to

[lw(x, )7 (1) Where L2 4(8"~") is the Sobolev space on "~ with § = £(3 + a)
—3 !

forany 0 < ¢ < 1. So choosing ¢ sufficiently close to 1, by the Sobolev imbedding

theorem L" C Lz_ﬁ, (or use Proposition 4.4 in [Co2]),

sup [[w(x, )2 (s-1) < Cllwl|zoo rryxr(sr-1)
XER" f

with 7 > max{1, =1

)1, So to prove the theorem it remains to show that for & close

? nta
to 1, we have
(5.7) > mee) Z||Tam,f||Lz &) < Clf Il roy-
m
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By Plancherel’s theorem,

(5.8) I Tmi f12 22 M fTaamjll3

where
Ia’m’j(g):/ ‘y|7’17“Ym,j()//)eizﬁi<y’£> dy.
Rn

Noting m > [a] + 1, so by Theorem 3.10 on [SW, p. 158] and the Weber-Sonine
integral formula (see [S]) we have

Ia,mﬁj(f) = m_g_a|§|(¥ m](g)

Thus, noting 3~ ; [V, j (©)]? < Cm"~2, we have

S a2 < G223 /
. . RVI
J ]

FEOPIEP Y mj ()] dE.

By (5.8) and the above inequality, we obtain

S [T IR < G220 /
j R

< Cm7272&|\f“%g(w)

FOPIE d¢

(5.9)

which implies (5.7). The theorem is proved.
By Theorem 5 and the proof of Theorem 3, we can easily obtain:

Theorem 6 Let0 < o < % andw € L>(R") x L'($"~"), r > max{1, %E:g{i;} Ifw
satisfies (5.6), then there is a C > 0 such that

I Toafllmr@) < Cllflggn  forall f € CF(R") N HERY).

n
wherem <p<L

6 Appendix
6.1 Triebel-Lizorkin Spaces and Sobolev Spaces

Fix a radial function ® € C*°(R") satisfying supp(®) C {x: 1 < |x] < 2},0 <

P(x) < l,and ®(x) > c > 0 if% < |x| < % Let ®;(x) = ®(27x). Define the

function W; by ¥;(€) = ®;(€), so that U « f(£) = f(£)®;(€). .
For1 < p,q < oo and a € R, the homogeneous Triebel-Lizorkin space F,(R")
is the set of all distributions f satisfying

o Pl = || (3 s 71
k

LP(R?)
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The homogeneous Sobolev spaces L, has several equivalent definitions. One of them

is Lh = F3?, namely || f B = || fI| 2. From [FJW] we know that for any f € L2 (R"),

1
(6.2 Iz ([ 17@PIeP" de) )
RH
if o is a nonnegative integer, then for any f € L5,

(6.3) I ez eny 22 > 1D fllurqen.

=

It is also know (see [Tr] or [FJW]) that the choice of ® in the definition of F,? is
quite flexible. For instance, for the above ® and any fixed number 7 between % and 1,
let ®; . (x) = & (2/yx). Define the functions U, by \Tlm(f) = ®;,(£). Then using
Wy instead of Wy in (6.1), we obtain a Triebel-Lizorkin norm equivalent to the norm
in (6.1). Also the ratio of these two norms is between two positive constants ¢; and
¢y, that are independent of v € [%, 1]. Furthermore, for any p > 0, we have

(64) C]”f

]
FP

1
< || (1@, 10) || <elf
k

where ¢; > ¢ are independent of p > 0.
In fact, for any p > 0, there is an integer m such that % < p2™ < 1. Lety = p2™.
Then by the definitions, it is easy to see that

> 1@ Wy SN = C Y IR T W ¢ S0
k k

=C Z 27 * f(x)]Y,
k

where C is independent of p > 0. Substituting this in the middle term of (6.4) we
obtain (6.4). .

Let ® and ®; be defined as above. Define the multiplier operators S; by S; f(§) =
<I>j(|A,,§\)f(§), where A, = diag(p?, p,...,p), 0 < p < 2. We have the following
easy lemma:

Lemma For any fixed p € (0,2], we have

| (1@ sisr)’

k

< )
= Cllf”]?;z’

where the constant C is independent of p.
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Proof For x = (x1,x,...,%,), let f? be the function defined by ff(x) =
f(px1,%2,...,x,). Changing variables and using (6.2), it is easy to check

1
iz = Cllor fPll = ClIL, flliz»

[(Siatst) |, scleis

where L, is the linear operator defined by L,f = p% fP. When @ = 0, it is clear

1o fllee = [ £zr-

Ifa=1,2,...,by(6.3), noting 0 < p < 2, a simple computation also shows

(6.5) Lo flle < Clifllges

with C independent of p. We invoke an interpolation in the Sobolev spaces (LY, L)y,
= B;’ﬂ, u=(1-0)s+0t,0<0 <1[BL,p. 147], where B;_q are the homogeneous

Besov spaces. From [FJW], we know B;z = L?. Thus we obtain (6.5) for all & > 0.

6.2 Lipschitz Spaces on Unit Sphere

Let 3 > 0 and k greater than 3, the space A”(S"™!) is the set of all g € L>(S"~})
with norm

dr _
Il = lgliisen +sup{ | Zze]| - a=nio<r<i} <o

Lo (5-1)
It is shown in [Co2] that (HD)* = A® with § = (n — 1)(1/q — 1). Particularly,
ifgq=(m—1)(n—1— «) then (H?)* = A®. For a test function f € S(R"), let
fer(y") = f(x —ty’). Then it is not difficult to see that there is a constant C > 0,
that might depend on x but not on t, such that || f;,||a» < C. For simplicity and
illustration, we check this fact for « > 0 and n = 2.

Clearly, we only need to check for j = 1,2,

(6.6) sup{ H j—;{ﬁcyt(rezm'(’)H Oo(1 —nkre I]} <C,

where I = [0, %] and [, = [%, 1).
On I, we write f,, by its Fourier expansion

o
],;C’t(reZWiO): Z r\m|am(x’t)627rim0’

m=—0o0

where

1
am(x,t) = / flx — te™)e ™7 dr,
0

Thus for all &2 r € I, and all x,t we have

d* 27if k k(4
i _ —a = i
drkfxvt(re )‘(1 r) <C E |m| (5) <C
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Ift > 5|x[ and r € [3, 1), since f is a test function,

dk 2716 k—a dk 2716 k—a
o ha (e | (1= e = ’ﬁf(x—tre )‘(l—r)

S tk\f(k)(x o treZm’O)‘

Ift < 5|x|and r € [3,1), then

dk .
bt | (1=t < el <
EIA

uniformly for §,r € I, and ¢t > 0.
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