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of quivers

Colin Ingalls and Hugh Thomas

Abstract

We situate the noncrossing partitions associated with a finite Coxeter group within
the context of the representation theory of quivers. We describe Reading’s bijection
between noncrossing partitions and clusters in this context, and show that it extends
to the extended Dynkin case. Our setup also yields a new proof that the noncrossing
partitions associated with a finite Coxeter group form a lattice. We also prove some new
results within the theory of quiver representations. We show that the finitely generated,
exact abelian, and extension-closed subcategories of the representations of a quiver
Q without oriented cycles are in natural bijection with the cluster tilting objects in
the associated cluster category. We also show that these subcategories are exactly the
finitely generated categories that can be obtained as the semistable objects with respect
to some stability condition.

1. Introduction

A partially ordered set called the noncrossing partitions of {1, . . . , n} was introduced by
Kreweras [Kre72] in 1972. It was later recognized that these noncrossing partitions should
be considered to be connected to the Coxeter group of type An−1 (that is, the symmetric
group Sn). In 1997, a version of noncrossing partitions associated with type Bn was introduced
by Reiner [Rei97]. The definition of noncrossing partitions for an arbitrary Coxeter group was
apparently a part of folklore before it was written down shortly thereafter [Bes03, BW02].

Subsequently, cluster algebras were developed by Fomin and Zelevinsky [FZ02]. A cluster
algebra has a set of distinguished generators grouped into overlapping sets called clusters. It was
observed [FZ03] that the number of clusters for the cluster algebra associated with a certain
orientation of a Dynkin diagram was the same as the number of noncrossing partitions, the
generalized Catalan number. The reason for this was not at all obvious, although somewhat
intricate bijections have since been found [ABMW06, Rea07a].

The representation theory of hereditary algebras has proved an extremely fruitful perspective
on cluster algebras from [BMRRT06, MRZ03] to the more recent [CK08, CK06]. In this context,
clusters appear as the cluster tilting objects in the cluster category. We adopt this perspective
on clusters throughout this paper.

Our goal in this paper is to apply the representation theory of hereditary algebras to account
for and generalize two properties of the noncrossing partitions in finite type:
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(1) the already-mentioned fact that noncrossing partitions are in natural bijection with clusters;

(2) the noncrossing partitions associated with a Dynkin quiver Q, denoted by NCQ, form a
lattice.

These properties themselves are not our observations. We have already mentioned sources for
statement (1). Statement (2) was first established on a type-by-type basis with a computer check
for the exceptional types; a proof which does not rely on the classification of Dynkin diagrams
was given by Brady and Watt [BW08]. Our hope was that by setting these properties within a
new context, we would gain a better understanding of them, and also of what transpires beyond
the Dynkin case.

Let k be an algebraically closed field. Let Q be an arbitrary finite quiver without any oriented
cycles. Let repQ be the category of finite-dimensional representations of Q. We refer to exact
abelian and extension-closed subcategories of repQ as wide. The central object of our researches
is WQ, the set of finitely generated wide subcategories of repQ. There are a number of sets of
algebraic objects which are all in bijection with each other, summarized by the following theorem.

Theorem 1.1. Let Q be a finite acyclic quiver. Let C = repQ. There are bijections between the
following sets.

(1) Clusters in the acyclic cluster algebra whose initial seed is given by Q.

(2) Isomorphism classes of basic cluster tilting objects in the cluster category Db(C)/(τ−1[1]).

(3) Isomorphism classes of basic exceptional objects in C which are tilting on their support.

(4) Finitely generated torsion classes in C.
(5) Finitely generated wide subcategories in C.
(6) Finitely generated semistable subcategories in C.

If Q is Dynkin or extended Dynkin:

(7) the noncrossing partitions associated with Q.

If Q is Dynkin:

(8) the elements of the corresponding Cambrian lattice.

Some of these results are already known. A surjective map from set (1) to set (2) was
constructed in [BMRT07] and a bijection from set (2) to set (1) in [CK06], cf. also the appendix
to [BMRT07]. Those from set (2) to set (3) to set (4) are well known but we provide proofs,
since we could not find a convenient reference. The bijection from set (4) to set (5) is new. The
subcategories in set (6) are included among those contained in set (5) by a result of [Kin94]; the
reverse inclusion is new. Bijections from set (8) to set (1) and from set (8) to set (7) were given
in the Dynkin case [Rea07a]. Putting these bijections together yields a bijection from set (1) to
set (7). A conjectural description of this bijection was given in [RS09]; we prove this conjecture.
Another bijection between sets (7) and (8) is also known, although also only in the Dynkin
case [ABMW06]. The extension of the bijection between sets (1) and (7) to the extended Dynkin
case is new.

The set WQ is naturally ordered by inclusion. The inclusion-maximal chains of WQ can be
identified with the exceptional sequences for Q. When Q is of Dynkin type, WQ forms a lattice.
The map from WQ to NCQ respects the poset structures on WQ and NCQ, which yields a new
proof of the lattice property of NCQ for Q of Dynkin type.
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We also gain some new information about the Cambrian lattices: we confirm the conjecture
of [Tho06] that they are trim, i.e. left modular [BS97] and extremal [Mar92].

2. Wide subcategories of hereditary algebras

2.1 Definitions

In this section we use some standard facts from homological algebra, most of which can be found
in [ASS06, §§A.4 and A.5]. In addition to what can be found there we recall two lemmas. These
facts can be proved with straightforward diagram chases. The first lemma is a lesser known
variant of the snake lemma.

Lemma 2.1. If we have maps A
ψ→B

φ→ C in an abelian category, then there is a natural exact
sequence

0→ ker ψ→ ker φψ→ ker φ→ cok ψ→ cok φψ→ cok φ→ 0.

We also use the fact that pushouts preserve cokernels, and pullbacks preserve kernels.

Lemma 2.2. Given morphisms g :A→ E and f :A→B, consider the pushout

A

f

��

g // E

f∗
��

B g∗
// E

∐
A B

then cok f ' cok f∗ and cok g ' cok g∗ and the dual statement for pullbacks.

Let k be an algebraically closed field. We will be working with full subcategories of a fixed
k-linear abelian category C. In practice C = repQ, the category of finite-dimensional modules
over kQ where Q is a finite quiver with no oriented cycles. In this section we sometimes prove
things in a more general setting. We always assume that C is small and abelian. We also assume
that C has the following three properties.

– Artinian. Every descending chain of subobjects of an object eventually stabilizes.

– Krull–Schmidt. Indecomposable objects have local endomorphism rings and every object
decomposes into a finite direct sum of indecomposables.

– Hereditary. The functor Ext1(X,−) is right exact for each object X.

The subcategories we consider will always be full and closed under direct sums and direct
summands. So they are determined by their sets of isomorphism classes of indecomposable
objects. We abuse notation and occasionally refer to the category as this set. Another way
of identifying such a subcategory is by using a single module. We let add T denote the full
subcategory, closed under direct sums, whose indecomposables are all direct summands of T i

for all i. Given a subcategory A of C, which has only finitely many isomorphism classes
of indecomposables, we let bscA be the direct sum over a system of representatives of the
isomorphism classes of indecomposables of A. So add bscA=A. We use the operation bsc on a
module as shorthand for bsc T = bsc add T . Given a full subcategory A of C we let GenA be the
full subcategory whose objects are all quotients of objects of A. We also use the same notation
Gen T for an object T in C as shorthand for Gen add T .
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Some of the definitions we need for the relevant subcategories include the following.

– Torsion class: a full subcategory that is closed under extensions and quotients.
– Torsion free class: a full subcategory that is closed under extensions and subobjects.
– Exact abelian subcategory : a full abelian subcategory where the inclusion functor is exact,

hence closed under kernels and cokernels of the ambient category.
– Wide subcategory : an exact abelian subcategory closed under extensions.

2.2 Support tilting modules and torsion classes
In this section we outline the natural bijection between basic support tilting modules and finitely
generated torsion classes. We work in the category repQ of finite-dimensional representations of
a finite acyclic quiver Q. Note that this ambient category is Artinian, hereditary and satisfies the
Krull–Schmidt property. This material is well known, but we include the results for completeness.
Most of the proofs in this section are given by appropriate references.

Definition 2.3. We say that C is a partial tilting module if :

(1) Ext1(C, C) = 0;
(2) pd C 6 1.

Note that since we are in a hereditary category the second condition will always hold. A
tilting module C is a partial tilting module such that there is a short exact sequence

0→ kQ→ C ′→ C ′′→ 0

where C ′, C ′′ are in add C.
We are particularly concerned with partial tilting modules that are tilting on their supports.

For a vertex x in the quiver Q, let Sx be the associated simple module of kQ. We say that the
support of a module C is the set of simple modules that occur in the Jordan–Holder series for C,
up to isomorphism. This also equals the set of simple modules which occur as subquotients of
finite sums of copies of C. We need a few lemmas to elucidate the support of a partial tilting
module.

Lemma 2.4. Let C be a partial tilting module and let M be a representation of Q. Then
suppM ⊆ supp C if and only if M is a subquotient of Ci for some i.

Proof. Suppose that suppM ⊆ supp C. Since the Jordan–Holder series for M is made up of
simples which are subquotients of C, the statement will follow once we show that the set of
subquotients of Ci for some i is closed under extension. Suppose that x, y are submodules of X, Y
which are quotients of Ci for some i. We can map an extension e ∈ Ext1(x, y)→ Ext1(x, Y ), and
then since we are in a hereditary category we can lift via the surjective map Ext1(X, Y )→
Ext1(x, Y ) to obtain an extension E of Y by X. Since C is partial tilting Gen C is a torsion class
closed under extensions [ASS06, Lemma VI.2.3], so the extension E is in Gen C. The converse
is immediate. 2

A partial tilting module will be called support tilting if it also satisfies one of the following
equivalent conditions.

Proposition 2.5. The following conditions are equivalent for a partial tilting module C:

(1) C is tilting as a kQ/ann C module;

(2) if M is a subquotient of Ci and Ext1(C, M) = 0, then M is in Gen C;
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(3) if suppM ⊆ supp C and Ext1(C, M) = 0, then M is in Gen C;

(4) the number of distinct indecomposable direct summands of C is the number of distinct
simples in its support.

Proof. The equivalence of (1) and (2) is in [ASS06, Proof of Theorem VI.2.5]. The equivalence of
conditions (1) and (4) follows from [ASS06, Theorem VI.4.4.]. The equivalence of conditions (2)
and (3) follows from Lemma 2.4. 2

The following lemma is not used elsewhere, but clarifies the notion of support tilting.

Lemma 2.6. Suppose that C is a support tilting module. Then the algebra kQ/ann C is the
path algebra of the minimal subquiver on which C is supported.

Proof. If a vertex v is not in supp C, then clearly the corresponding idempotent is in ann C
since evC = 0. Since ann C is a two-sided ideal, any path x that passes through a vertex not
in the support of C is in ann C. So this shows that kQ/ ann C is supported on the minimal
subquiver Q′ on which C is supported. So we can restrict attention to Q′. Now C is support
tilting, and in particular tilting on Q′. Therefore, C is faithful by [ASS06, Theorem VI.2.5] and
so its annihilator is zero on Q′. 2

We say that an object P in a subcategory T is T -split projective if all surjective morphisms
I � P in T are split. We say that P is T -Ext projective if Ext1(P, I) = 0 for all I in T . We drop
the T in the notation when it is clear from context. The proof of the next lemma follows easily
from these definitions.

Lemma 2.7. If the subcategory T is closed under extensions and U is split projective in T ,
then U is Ext projective.

We say that a subcategory T is generated by P ⊆ T if T ⊆Gen P. We say T is finitely
generated if there exists a finite set of indecomposable objects in T that generate T . We use this
notion for torsion classes and wide subcategories.

We say that U is a minimal generator if for every direct sum decomposition U ' U ′ ⊕ U ′′ we
have that U ′ is not generated by U ′′. We next show that a finitely generated torsion class has a
unique minimal generator.

Lemma 2.8. A finitely generated torsion class T has a minimal generator, unique up to
isomorphism, which is the direct sum of all of its indecomposable split projectives.

Proof. Since T is finitely generated, it follows from the Artinian property that T has a minimal
generator. Suppose that T is finitely generated by the sum of distinct indecomposables U =

⊕
Ui

and suppose that Q in T is an indecomposable split projective. Since U generates, we can find
a surjection U i�Q. This surjection must split so the Krull–Schmidt property allows us to
conclude that Q is a summand of U .

For the converse, suppose that T is a torsion class with a minimal generator U . Let U0

be an indecomposable summand of U , and consider a surjection ρ : E � U0 in T . We may
apply [ASS06, Proof of Lemma IV.6.1] to show that this map must split. Therefore, U is split
projective. 2

Lemma 2.9. Let Q be a finite acyclic quiver. Let T be a finitely generated torsion class in repQ
and let C be the direct sum of its indecomposable Ext-projectives. Then C is support tilting.
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Proof. Let U be the direct sum of the indecomposable split projectives of T . We know by
Lemma 2.8 that U is a minimal generator of T . The proof of Lemma VI.6.4 in [ASS06] shows
that there is an exact sequence

0→ kQ/ann U → U i→ U ′→ 0

where U ′ is Ext-projective in T , and that U ⊕ U ′ is a tilting module on kQ/ann U . Then [ASS06,
Theorem VI.2.5(d)] (as noted in [ASS06, Proof of Lemma VI.6.4]) shows that the Ext-projectives
of T are all summands of U ⊕ U ′. So bsc U ⊕ U ′ ' bsc C and C is support tilting. 2

Given a subcategory A and an object Q of C, a right A approximation of Q is a map
f :B→Q where B is in A and any other morphism from an object in A to Q factors through f .
This is equivalent to the map f∗ : Hom(X, B)→Hom(X, Q) being surjective for all X in A.
Basic properties of approximations can be found in [AS80].

The next theorem shows that we can recover a basic support tilting object from the torsion
class that it generates by taking the sum of the indecomposable Ext-projectives.

Theorem 2.10. Let C be a support tilting object. Then Gen C is a torsion class and the
indecomposable Ext-projectives of Gen C are all the indecomposable summands of C. So bsc C
is the sum of the indecomposable Ext-projectives of Gen C.

Proof. Let Q be an Ext-projective of Gen C. In particular Q is in Gen C. Let f :B→Q be an
add C right approximation to Q. Since Q is in Gen C we know that f is surjective. Apply the
functor Hom(C,−) to the short exact sequence

0→ ker f →B→Q→ 0

to obtain the exact sequence

Hom(C, B)→Hom(C, Q)→ Ext1(C, ker f)→ Ext1(C, B).

We know Ext1(C, B) = 0 since C is partial tilting and B is in add C. We also know that the map
Hom(C, B)→Hom(C, Q) is surjective so Ext1(C, ker f) = 0. Also ker f is a subquotient of C so
we can conclude that ker f ∈Gen C since C is support tilting. Now since Q is an Ext-projective
in Gen C, the map f must be split and so Q is in add C. So any indecomposable Ext-projective
is a direct summand of C. We know that C is Ext-projective in Gen C since Ext1(C, C) = 0 and
we are in a hereditary category so C can only have Ext-projective summands. This also shows
that Gen C is a torsion class by [ASS06, Corollary VI.6.2]. 2

Theorem 2.11. Let C = repQ, where Q is a finite acyclic quiver. Then there is a natural
bijection between finitely generated torsion classes and basic support tilting objects given by
taking the sum of all indecomposable Ext-projectives and its inverse Gen.

Proof. This follows immediately from the above Theorem 2.10 and Lemma 2.8. 2

2.3 Wide subcategories and torsion classes
We now define a bijection between finitely generated torsion classes and finitely generated wide
subcategories. Let T be a torsion class. The wide subcategory corresponding to it is defined by
taking those objects of T such that any morphism in T whose target is that object, must have
its kernel in T . More explicitly, let a(T ) be the full subcategory whose objects are in the set

{B ∈ T | for all (g : Y →B) ∈ T , ker g ∈ T }.
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Proposition 2.12. Let T be a torsion class. Then a(T ) is a wide subcategory.

Proof. We first show that a(T ) is closed under kernels. Let f :A→B be a morphism in a(T ). We
know that ker f is in T by the definition of a(T ). Let i : ker f ↪→A be the natural injection. Take
a test morphism g : Y → ker f in T . The composition ig : Y → ker f ↪→A is a morphism in T
with target A in a(T ). So we know that ker(ig) is in T , but we also know that ker g = ker(ig)
since i is injective. So we can conclude that ker f is in a(T ).

Next we show that a(T ) is closed under extensions. Suppose that A, B are in a(T ) and let
0→A

i→ E
π→B→ 0 be an extension. Take a test map g : Y → E in T . Using Lemma 2.1 for the

composition πg we obtain an induced exact sequence

0→ ker g→ ker(πg)
ψ→A.

Since B is in a(T ) and Y is in T we can conclude that ker(πg) is in T . Since A is in a(T ) we
can use the map ψ of the above sequence to conclude that ker g is in T .

Lastly we need to show that a(T ) is closed under cokernels. We take a morphism f :A→B
in a(T ). Write C for cok f and let g : Y → C be a test morphism with Y in T . Let π :B→ C
be the natural surjection. Note that we know that ker π = im f is in T since im f is a quotient
of A. So we form the pullback Y

∏
C B, getting an exact sequence

0→ ker π∗→ Y
∏
C

B
π∗→ Y → 0.

Since ker π∗ ' ker π and T is closed under extensions, we see that the pullback Y
∏
C B is in T .

Now since B is in a(T ), the map

g∗ : Y
∏
C

B→B

has kernel in T . So since ker g ' ker g∗, the test map g has kernel in T . 2

The map from wide subcategories to torsion classes is described next. We first need to show
that wide subcategories generate torsion classes.

Proposition 2.13. IfA is a wide subcategory of our ambient hereditary category C, then GenA
is a torsion class.

Proof. We only need to show that GenA is closed under extensions. Let a, b be in GenA with
surjections π :A→ a and ρ :B→ b where A, B are in A. Let

0→ a→ e→ b→ 0

be an extension. Since we are in a hereditary category the map π∗ : Ext1(b, A)→ Ext1(b, a) is
surjective. So we can choose a lift of the class of the extension above to obtain an extension

0→A→ E→ b→ 0

such that the pushout π∗E = E
∐
A a is isomorphic to e. Now we can simply pull back the class

of E to an extension ρ∗E =B
∏
b E of B by A. Since A is closed under extensions we see that ρ∗E

is in A. The natural map π∗ρ∗ : ρ∗E→ e is surjective since cok ρ∗ = cok ρ= 0 = cok π = cok π∗. 2

The next proposition shows that the operations a and Gen are surjective and injective,
respectively, and the composition a Gen gives the identity. This proposition is more general than
we need; we show that once we restrict to finitely generated subcategories we can obtain a
bijection.
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Proposition 2.14. If A is a wide subcategory, then A= a(GenA).

Proof. Suppose that an object B is in A. We wish to show that it is in a(GenA). So we take a
test map g : y→B where y is in GenA. So there is a surjection π : Y → y with Y in A. Then
Lemma 2.1 shows that there is an exact sequence

0→ ker π→ ker gπ→ ker g→ 0.

Since gπ : Y →B is a map in A we see that ker gπ is in A. So we see that ker g is in GenA and
so B is in a(GenA).

Now suppose that b is in a(GenA). Since b is in GenA, we can find a surjection π :B→ b
with B in A. Since b is in a(GenA) we know that ker π is in GenA and so we can find another
surjection ρ :K→ ker π where K is in A. Let i : ker π→B be the natural inclusion. Now we can
conclude that b' cok iρ and iρ :K→B is a map in the wide subcategory A, hence b is in A. 2

We need another characterization of the operation a in the next proof so we show we can
also define a using only kernels of surjective maps from split projectives of T .

Proposition 2.15. Let T be a finitely generated torsion class in our ambient category C
and define as(T ) = {B ∈ T | for all surjections g : (Z→B) ∈ T with Z split projective, we have
ker g ∈ T }. Then a(T ) = as(T ).

Proof. It is clear that a(T )⊆ as(T ) so take B in as(T ) and a test map g : Y →B with Y in T .
We consider the extension

0→ ker g→ Y → im g→ 0
and let i : im g→B be the natural injection. Since we are in a hereditary category, we know that
the induced map i∗ : Ext1(B, ker g)→ Ext1(im g, ker g) is surjective so we can find Y ′ such that
there is a commutative diagram

0 // ker g // Y //

i∗

��

im g //

i

��

0

0 // ker g // Y ′ // B // 0

with Y ' im g
∏
B Y

′. Now B is in T so cok g ' cok i is in T . So we have an exact sequence

0→ ker i∗→ Y → Y ′→ cok i∗→ 0.

Now ker i∗ = ker i= 0 and cok i∗ = cok i is in T and Y is in T so we may conclude that Y ′ is
in T since T is closed under extensions. Now we have a surjection g′ : Y ′→B in T with kernel
isomorphic to ker g. Let h : Z→ Y ′ be a surjection, with Z a split projective. Then ker g′h is
in T , by assumption, and by Lemma 2.1, ker g′ ' ker g is a quotient of ker g′h, so it is also in T .
Thus, B is in a(T ). 2

We now are able to prove that we have a bijection from finitely generated torsion classes to
finitely generated wide subcategories.

Proposition 2.16. If T is a finitely generated torsion class, then a(T ) is finitely generated and
Gen a(T ) = T . Furthermore, the projectives of a(T ) are the split projectives of T .

Proof. We first show that any T -split projective U is also in a(T ). Since any surjection Q→ U
in T splits, and T is closed under direct summands, we know that U is in a(T ). Also, since U is
T -split projective it is also a projective object in a(T ). Conversely, any object P in a(T ) admits
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a surjection from some U i where U is a split projective generator of T , cf. Lemma 2.8. If P
is projective in a(T ), then this surjection must split, so the projectives of a(T ) and the split
projectives of T coincide.

Now Lemma 2.8 shows that T is generated by its split projectives, so we see that a(T )⊆ T
is also finitely generated. 2

Combining the above propositions immediately gives one of our main results.

Corollary 2.17. There is a bijection between finitely generated torsion classes in C and finitely
generated wide subcategories. The bijection is given by a and its inverse Gen.

Lemma 2.18. Let C be a subcategory of a hereditary category. If P in C is Ext-projective, then
any subobject Q ↪→ P in C is also Ext-projective.

Proof. If a is in C, then Ext1(P, a) = 0 and we have a surjection Ext1(P, a)� Ext1(Q, a). 2

Lemma 2.19. Let T be a finitely generated torsion class and let Q be a split projective in T .
Then any subobject of Q that is in T is split projective.

Proof. Let i : P →Q be an injection in T . Note that cok i is in T . Since T is generated by its
split projectives we can find a surjection f :R→ P where R is split projective. Since we are
in a hereditary category we can lift the extension R in Ext1(P, ker f) to an extension E in
Ext1(Q, ker f). So we have an exact sequence

0→R→ E→ cok i→ 0

which shows that E is in T . Therefore, the surjection E→Q must split and the class of E in
Ext1(Q, ker f) is zero. Therefore the class of R in Ext1(P, ker f) is also zero and so this extension
splits. So P is a direct summand of the split projective R. 2

Corollary 2.20. If A is a finitely generated wide subcategory of repQ, then it is hereditary.

Proof. We have A= a(GenA). The above result combined with Proposition 2.16 shows that this
category is hereditary. 2

We are also in a position to note that a(T )' repQ′ for some finite acyclic quiver Q′ as in
the next corollaries.

Corollary 2.21. If A is a finitely generated wide subcategory of repQ, then A'mod End(U)
where U is the direct sum of the projectives of A.

Proof. We have A= a(GenA). Now Proposition 2.16 shows that the abelian category A has
a projective generator which is the sum of the indecomposable split projectives in GenA. So
standard Morita theory proves the above equivalence [MR87, § 3.5.5]. 2

Corollary 2.22. If A is a finitely generated wide subcategory of repQ, then there is a finite
acyclic quiver Q′ such that a(T )' rep(Q′).

The proof follows on combining the above statements with the theorem that a finite-
dimensional basic hereditary algebra over an algebraically closed ground field is a path algebra
of an acyclic quiver [ASS06, Theorem VII.1.7].

We now proceed to give two alternative characterizations of the category a(T ).
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Proposition 2.23. The category a(T ) consists of those objects of T which can be written as
a quotient of a T -split projective by another T -split projective.

Proof. Suppose that X ∈ a(T ). Since T is generated by split projectives, X can be written as
a quotient of a split projective. Now, by the definition of a(T ), the kernel of this map must be
in T . Since it is a subobject of a split projective, it is also a split projective.

Let X ∈ T , such that X ' P/Q for P, Q split projectives. Let g : S→X be a test morphism,
which, by Proposition 2.15, we can assume to be surjective, with S split projective.

From the Hom long exact sequence, we obtain Hom(S, P )→Hom(S, P/Q)→ Ext1(S, Q) = 0.
So g lifts to a map from S to P . We now have a short exact sequence:

0→ ker g→ S ⊕Q→ P → 0.

Since P is split projective, this splits, and ker g is a summand of S ⊕Q, so is in T . So
X ∈ a(T ). 2

We need the following alternative characterization of the category a(T ) in the sequel. It
describes a(T ) as the perpendicular of the non-split projectives in T .

Proposition 2.24. Let T be a finitely generated torsion class and let P be the direct sum of
a system of representatives of the isomorphism classes of indecomposable Ext-projectives which
are not split projective. Then

a(T ) = {X ∈ T |Hom(P, X) = 0}= {X ∈ T |Hom(P, X) = Ext1(P, X) = 0}.

Proof. Let Q be a split projective. We begin by showing that there are no non-zero morphisms
from P to Q. Suppose, in contrast, that f : P →Q is non-zero. Since im f is a quotient of P , it
is in T , so, since it is a subobject of Q, it is split projective. Thus, the short exact sequence

0→ ker f → P → im f → 0

splits, and P has a split projective direct summand, contradicting the definition of P .
Now suppose we have X in a(T ). By Proposition 2.23, X can be written as Q/R, for Q, R

split projectives. The Hom long exact sequence now gives us

0 = Hom(P, Q)→Hom(P, X)→ Ext1(P, R) = 0,

so Hom(P, X) = 0, as desired.
To prove the converse, we need to recall briefly the notion of minimal approximations.

A map f :R→X is called right minimal if any map g :R→R such that fg = f , must be
an isomorphism. A map that is right minimal and a right approximation (as defined before
Theorem 2.10) is called a minimal right approximation.

Suppose that X ∈ T and Hom(P, X) = 0. Let T be the sum of the Ext-projectives of T .
Consider the minimal right add T approximation to X; call it k :R→X. Note that R will not
include any non-split projective summands, since these admit no morphisms to X. Let K be
the kernel of this map. By the properties of minimal approximation, the map Hom(T, R)→
Hom(T, X) is surjective, so Ext1(T, K) = 0. Since the support of K is contained in the support
of T , this implies that K is in T by Proposition 2.5 and Theorem 2.11. Since K is a subobject
in T of a split projective, K is also split projective. Now X 'R/K shows that X is in a(T ), by
Proposition 2.23. 2

1542

https://doi.org/10.1112/S0010437X09004023 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004023


Noncrossing partitions and representations of quivers

A torsion free class in a category C is the dual notion to a torsion class: it is a full
subcategory closed under direct summands and sums, extensions, and subobjects. In the context
of representations of a hereditary algebra A, in which, as we have seen, finitely generated wide
subcategories are in bijection with finitely generated torsion classes, it is true dually that finitely
cogenerated wide subcategories are in bijection with finitely cogenerated torsion free classes.
(Note also that by Corollary 2.22 and its dual, finitely cogenerated wide subcategories coincide
with finitely generated wide subcategories.) We do not need to make use of this matter, so we
do not pursue it here.

However, we do need certain facts about torsion and torsion-free classes. These facts are well
known [ASS06, §VI.1].

Lemma 2.25.

– If T is a torsion class in repQ, then the full subcategory F consisting of all objects admitting
no non-zero morphism from an object of T , is a torsion-free class.

– Dually, if F is a torsion-free class, then the full subcategory T consisting of the objects
admitting no non-zero morphism to any object of F forms a torsion class.

– These operations which construct a torsion-free class from a torsion class and vice versa are
mutually inverse. Such a pair (T , F) of reciprocally determining torsion and torsion-free
classes is called a torsion pair.

– Given a torsion pair (T , F) and an object X ∈modA, there is a canonical short exact
sequence

0→ t(X)→X →X/t(X)→ 0
with t(X) ∈ T and X/t(X) ∈ F .

2.4 Support tilting modules and cluster tilting objects
For Q a quiver with no oriented cycles, the most succinct definition of the cluster category is
that it is CCQ =Db(Q)/τ−1[1], that is to say, the bounded derived category of representations
of Q modulo a certain equivalence.

Fixing a fundamental domain for the action of τ−1[1], we can identify a set of representatives
of the isomorphism classes of the indecomposable objects of CCQ as consisting of a copy of the
indecomposable representations of Q together with n objects Pi[1], the shifts of the projective
representations.

A cluster tilting object in CCQ is an object T such that Ext1
CCQ(T, T ) = 0, and any

indecomposable U satisfying Ext1
CCQ(T, U) = 0 = Ext1

CCQ(U, T ) = 0 must be a direct summand

of U . Here ExtjCCQ(X, Y ) is defined as in [Kel05], to be
⊕

ExtjDb(Q)
(X, (τ−1[1])i(Y )).

It has been shown [CK06] (cf. also the appendix to [BMRT07]) that there is a bijection from
the cluster tilting objects for CCQ to the clusters of the acyclic cluster algebra with initial seed
given by Q. The entire structure of the cluster algebra and, in particular, the exchange relations
between adjacent clusters, can also be read off from the cluster category [BMR08], although we
have no occasion to make use of this here.

To describe the cluster category CCQ in a more elementary way, if X and Y are representations
of Q, we have that Ext1

CCQ(X, Y ) = 0 iff Ext1
CCQ(Y, X) = 0 iff Ext1

Q(X, Y ) = 0 = Ext1
Q(Y, X).

In addition, Ext1
CCQ(X, Pi[1]) = 0 iff Ext1

CCQ(Pi[1], X) = 0 iff HomQ(Pi, X) = 0 and, finally,
Ext1

CCQ(Pi[1], Pj [1]) = 0 always. Thus, the condition that an object of CCQ is cluster tilting can
be expressed in terms of conditions that can be checked within repQ.
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If T is an object in CCQ, define T to be the maximal direct summand of T which is an object
in repQ. From the above discussion, it is already clear that if T is a cluster tilting object, then T
is a partial tilting object. In fact, more is true.

Proposition 2.26. If T is a cluster tilting object in CCQ, then T is support tilting. Conversely,
any support tilting object V can be extended to a cluster tilting object in CCQ by adding shifted
projectives in exactly one way.

Proof. Let T be a cluster tilting object, which we may suppose to be basic, and thus to have n
direct summands. Suppose that p of its indecomposable summands are shifted projectives. So T
has n− p distinct indecomposable direct summands. Observe that the fact that the p shifted
projective summands have no extensions with T in CCQ implies that T is supported away from
the corresponding p vertices of Q. Thus, T is supported on a quiver with at most n− p vertices.
However, T is a partial tilting object with n− p different direct summands, so it must actually
be support tilting.

Conversely, suppose that V is a support tilting object. Suppose that it has n− p different
direct summands. Then its support must consist of n− p vertices. Thus, in CCQ, the object
consisting of the direct sum of V and the shifted projectives corresponding to vertices not in
the support of V gives a partial cluster tilting object with n different direct summands, which
is therefore a cluster tilting object. Clearly, this is the only way to extend V to a cluster tilting
object in CCQ by adding shifted projectives (although there will be other ways to extend V to a
cluster tilting object in CCQ, namely, by adding other indecomposable representations of Q). 2

2.5 Mutation
An object of CCQ is called almost tilting if it is partial tilting and has n− 1 different direct
summands. A complement to an almost tilting object S is an indecomposable object M such
that S ⊕M is tilting.

Lemma 2.27 (Buan et al. [BMRRT06]).An almost tilting object S in CCQ has exactly two
complements (up to isomorphism).

The procedure which takes a tilting object and removes one of its summands and replaces
it by the other complement for the remaining almost tilting object is called mutation. It is the
analogue in the cluster category of the mutation operation in cluster algebras.

Given an object T in CCQ, we write Gen T for the subcategory of repQ generated by the
summands of T which lie in repQ. When we say that an indecomposable of T is split projective
in Gen T , we imply in particular that it is in repQ.

The main result of this section is the following proposition.

Proposition 2.28. If S is an almost tilting object in CCQ and M and M∗ are its two
complements in CCQ, then either M is split projective in Gen(M ⊕ S) or M∗ is split projective
in Gen(M∗ ⊕ S) and exactly one of these holds.

Proof. If S contains any shifted projectives, we can remove them and remove the corresponding
vertices from Q. So we may assume that S is almost tilting in repQ. The main tool used in the
proof will be the following fact from [HU05].

Lemma 2.29 (Happel and Unger [HU05]). Let S be an almost tilting object in repQ. Then
either S is not sincere, in which case there is only one complement to S in repQ, or S is sincere,
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in which case the two complements to S are related by a short exact sequence

0→M1→B→M2→ 0 (2.30)

with B in add S.

Suppose first that S is not sincere, and that M is its complement in repQ. Since S ⊕M is
tilting, and therefore sincere, M admits no surjection from add S. So M is split projective in
Gen(M ⊕ S). On the other hand, the other complement M∗ to S in CCQ is not contained in repQ,
so it is certainly not split projective in Gen(M∗ ⊕ S).

Now suppose that S is sincere, and that its complements are M1 and M2, which are related as
in (2.30). Clearly M2 is not split projective in Gen(M2 ⊕ S), since it admits a surjection from B.
On the other hand, suppose that there was a surjection B′→M1 with B′ ∈ add S. The non-zero
extension of M2 by M1 would lift to an extension of M2 by B′, but that is impossible since M2

is a complement to S. 2

An order on basic tilting objects was introduced by Riedtmann and Schofield [RS91]. It was
later studied by Happel and Unger in [HU05], in the context of modules over a not necessarily
hereditary algebra. Their order is defined in terms of a certain subcategory associated with a
basic tilting object:

E(T ) = {M | ExtiA(T, M) = 0 for i > 0}.
This order on basic tilting objects is defined by S < T iff E(S)⊂ E(T ). We recall the following
lemma.

Lemma 2.31 [ASS06, Theorem VI.2.5]. If T is a tilting object in repQ, then E(T ) = Gen T .

For us, it is natural to consider a partial order on a slightly larger ground set, the set of tilting
objects in CCQ, and to take as our definition that S 6 T iff Gen S ⊂Gen T . This is equivalent to
considering the set of all finitely generated torsion classes ordered by inclusion. We show later
(in § 4.2) that if Q is a Dynkin quiver, this order is naturally isomorphic to the Cambrian lattice
defined by Reading [Rea06].

Lemma 2.32. Let T be a tilting object in CCQ, let X be an indecomposable summand of T ,
and let V be the tilting object obtained by mutation at X. If X is split Ext-projective in Gen T ,
then T > V ; otherwise, T < V .

Proof. Let S be the almost tilting subobject of T which has X as its complement, and let Y be
the other complement of S. If X is split Ext-projective in Gen T , then, by Proposition 2.28, Y
is not split Ext-projective in Gen V . Thus, Gen V is generated by S, and so Gen V ⊂Gen T .

On the other hand, if X is not split Ext-projective, then Y is, and the same argument shows
that Gen V ⊃Gen S = Gen T . 2

In fact, more is true. It is shown in [HU05] that if T and V are tilting objects in repQ related
by a single mutation, with, say T > V , then this is a cover relation in the order, that is to say,
there is no other tilting object R ∈ repQ with T > R > V . The proof in [HU05] extends to the
more general setting (tilting objects in CCQ), but the proof is not simple and as we do not refer
to this result again, we do not give a detailed proof here.
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2.6 Semistable categories
In this section we show that any finitely generated wide subcategory of repQ is a
semistable category for some stability condition. (A result in the converse direction also holds,
cf. Theorem 2.33.)

Recall that K0(kQ) is a lattice (i.e. finitely generated free abelian group) with basis naturally
indexed by the simple modules. Since the simple modules are in turn indexed by the vertices we
use the set of vertices {ei} as a basis of K0(kQ). We write dimM for the class of M in K0(kQ).
We know that dimM =

∑
i dimkMiei. The Euler form on K0(kQ) is defined to be the linear

extension of the pairing:

〈dimM, dimN〉= dimk Hom(M, N)− dimk Ext1(M, N).

For α=
∑
αiei and β =

∑
βiei in K0(kQ) we have

〈α, β〉=
∑
i

αiβi −
∑
i→j

αiβj .

The Euler form is generally not symmetric, but we obtain a pairing on K0(kQ) by symmetrizing:

(α, β) = 〈α, β〉+ 〈β, α〉.

A stability condition [Kin94] is a linear function θ :K0(kQ)→ Z. A representation V of Q
is θ-semistable if θ(dim(V )) = 0 and if W ⊆ V is a subrepresentation, then θ(dim(W )) 6 0. We
use the abbreviation θ(dim(V )) = θ(V ). Let θss be the subcategory of representations that are
semistable with respect to θ.

The following theorem is in [Kin94].

Theorem 2.33. Let θ be a stability condition. Then θss is wide.

We need the following easy lemma so we record it here.

Lemma 2.34. Let θ be a stability condition. Then θss can also be described as the
representations V such that θ(V ) = 0 and for all quotients W of V , we have that θ(W ) > 0.

Let T be a basic support tilting object with direct summands T1, . . . , Tr. Since T is support
tilting, it is supported on a subquiver Q′ of Q with r vertices. Let us number the vertices on
which T is supported by n− r + 1 to n, and number the other vertices from one to n− r.

Let di be the function on K0(kQ) defined by

di(dim(M)) = 〈Ti, M〉= dimk Hom(Ti, M)− dimk Ext1(Ti, M),

for 1 6 i 6 r. Let ej be the function on K0(repQ) defined by ej(dim(M)) = dimkMj , that is, ej
is just the jth component with respect to the usual basis.

Theorem 2.35. For T =
⊕r

i=1 Ti a basic support tilting object, the abelian category a(T ) = θss
for θ satisfying:

θ =
r∑
i=1

aidi +
n−r∑
j=1

bjej ,

where ai = 0 if Ti is split projective in Gen T , ai > 0 if Ti is non-split projective, and bj < 0.

Proof. Suppose that θ is of the form given. Let us write T for Gen T and A for a(T ). First,
we prove some statements about the value of θ on various objects in T , then we put the pieces
together.
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If X ∈ A, then X does not admit any homomorphisms from non-split projectives by
Proposition 2.24. However, since X is also in T , Ext1(Ti, X) = 0 for all i. Thus, θ(X) = 0.

If Y is in T \A, then, by Proposition 2.24 again, X admits some homomorphism from a
nonsplit projective. As before, Ext1(Ti, X) = 0 for all i. It follows that θ(Y )> 0.

If Z is torsion free, on the other hand, we claim that θ(Z)< 0. Since Z is torsion free,
Hom(Ti, Z) = 0 for all i. If supp(Z) is not contained in supp(T ), then some bjej(Z)< 0, and we
are done. So suppose that supp(Z)⊂ supp(T ). We restrict our attention to the quiver Q′ where T
is tilting. Now all we need to do is show that Ext1(Ti, Z) 6= 0 for some non-split projective Ti.

The torsion-free class corresponding to T is cogenerated by τ(T ), so Z admits a
homomorphism to τTi for some i. In fact, we can say somewhat more. There is a dual notion
to split projectives for torsion-free classes, namely split injectives, and a torsion-free class is
cogenerated by its split injectives. So Z admits a morphism to some split injective τTi. We must
show that Ti is a non-split projective.

Now observe that (in CCQ′) τT is a tilting object. Let S be the direct sum of all of the Tj other
than Ti. So τS is almost tilting. By the dual version of Proposition 2.28, if V is the complement
to τS other than τTi, then either V is a shifted projective or V is non-split injective in Cogen τS.
Applying τ , we find that the complement to S other than Ti is τ−1V . It follows that the short
exact sequence of Lemma 2.29 must be

0→ τ−1V →B→ Ti→ 0,

where B is in add S. Since Ti admits a non-split surjection from an element of add S, it must
be that Ti is non-split projective. The morphism from Z to τTi shows that Ext1(Ti, Z) 6= 0, so
θ(Z)< 0.

We now put together the pieces. If X ∈ A, then θ(X) = 0, while any quotient Y of X will be
in T , so will have θ(Y ) > 0. This implies that X ∈ θss. Now suppose that we have some V 6∈ A.
If V ∈ T , then θ(V )> 0, so V 6∈ θss. If V 6∈ T , then V has some torsion-free quotient Z, and
θ(Z)< 0, so V 6∈ θss. Thus, θss =A, as desired. 2

3. Noncrossing partitions

3.1 Exceptional sequences and factorizations of the Coxeter element
For this section, we need to introduce the Coxeter group associated with Q, and the notion
of exceptional sequences. Let V =K0(kQ)⊗ R and recall that (α, β) is the symmetrized Euler
form.

If v ∈ V in non-zero, we can define a reflection

sv(w) = w − 2(v, w)
(v, v)

v.

Let W be the group of transformations generated by the reflections si = sei . The pair (W, {si})
forms a Coxeter system [Hum90, § 5.1].

The elements of V of the form w(ei) for some w ∈W are called (real) roots. The positive
roots are those roots which are a non-negative integral combination of the {ei}. If v is a positive
root, the reflection sv defined above is contained in W .

For later use, we recall some facts about reflection functors. Let Q be a quiver, and let v be a
sink in Q. Let Q̃ be obtained by reversing all of the arrows incident with v. Then there is a functor
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R+
v : repQ→ rep Q̃ such that, if we write Pv for the simple projective module supported at v,

then R+
v (Pv) = 0, and R+

v gives an equivalence of categories from the full subcategory S of repQ
formed by the objects which do not admit Pv as a direct summand, to the full subcategory S̃ of
rep Q̃ formed by the objects which do not admit Iv as a direct summand. The effect of R+

v on
dimension vectors is closely related to the simple reflection corresponding to v: specifically, if M
does not contain any copies of Pv as indecomposable summands, then dimRv(M) = sv(dimM).
Dually, there is a reflection functor R−v from rep Q̃ to repQ. The functors R+

v and R−v induce
mutually inverse equivalences between the full subcategories S and S̃. The functor R+

v is left
exact and R−v is right exact.

The interaction between reflection functors and torsion pairs can be described as follows.

Lemma 3.1. Let Q be a quiver with a sink at v. Let (T , F) be a torsion pair where the simple
projective Pv is in F . We apply the reflection functor R+

v and write F̃ and T̃ for the images
of F and T in rep Q̃. Then F̃ is a torsion-free class and the indecomposables in its corresponding
torsion class are the simple injective Ĩv and the indecomposables of T̃ .

Proof. Suppose that x is in F̃ and we have a injection f : y→ x. If y has Ĩv as a direct summand,
then so does x, but Ĩv is not in F̃ , so this is impossible. If we apply the reflection functor R−v
we obtain a morphism R−v (f) :R−v (y)→R−v (x). Let z be its kernel, so we have the following
sequence exact on the left:

0→ z→R−v (y)→R−v (x).

Applying R+, which is left exact, we obtain

0→R+
v (z)→R+

v R
−
v (y)→R+

v R
−
v (x).

Noting that since x and y do not have Ĩv as a direct summand, R+
v R
−
v (f) is an injection, we

see that R+
v (z) = 0, so z is a sum of copies of Pv, and thus z ∈ F .

Now consider the short exact sequence

0→ z→R−v (y)→ im(R−v (f))→ 0.

Since im(R−v (f)) is a subobject of R−v (x) ∈ F , it is also in F . Since F is extension closed, it
follows that R−(y) is in F , and thus y is in F̃ . It is clear that F̃ is closed under extensions, so
it is a torsion-free class.

Now let x be an indecomposable in its associated torsion class. So Hom(x, y) = 0 for all y
in F̃ . Then Hom(R−v x, R

−
v y) = 0 for all y in F̃ and Hom(R−v x, Pv) = 0. Since Pv and the

indecomposables of R−v F̃ make up all indecomposables of F we see that R−v x is in T . So either x
is in T̃ or x' Ĩv. 2

A Coxeter element for W is, by definition, the product of the simple reflections in some order.
We fix a Coxeter element cox(Q) to be the product of the si written from left to right in an
order consistent with the arrows in the quiver Q. (If two vertices are not adjacent, then the
corresponding reflections commute, so this yields a well-defined element of W .)

An object M ∈ repQ is called exceptional if Ext1(M,M) = 0. If M is an exceptional
indecomposable of repQ, then dimM is a positive root. Thus, there is an associated reflection,
sdimM , which we also denote by sM .

An exceptional sequence in repQ is a sequence X1, . . . , Xr such that each Xi is exceptional,
and for i < j, Hom(Xj , Xi) = 0 and Ext1(Xj , Xi) = 0. The maximum possible length of an
exceptional sequence is n since the Xi are necessarily independent in K0(kQ)' Zn. An
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exceptional sequence of length n is called complete. The simple representations of Q taken in
any linear order compatible with the arrows of Q yield an exceptional sequence.

We recall some facts from [Cra92].

Lemma 3.2 (Crawley-Boevey [Cra92, Lemma 6]).If (X, Y ) is an exceptional sequence in repQ,
there are unique well-defined representations RYX, LXY such that (Y, RYX), (LXY, X) are
exceptional sequences in the smallest subcategory containing X and Y and closed under
extensions, kernels of epimorphisms, and cokernels of monomorphisms.

The objects RYX and LXY are discussed in several sources; see, for example, [Rud90]. They
are called mutations; note that mutation has a different meaning in this context than in the
context of clusters.

Lemma 3.3 (Crawley-Boevey [Cra92, p. 124]).We have

dimRYX =±sY (dimX),
dim LXY =±sX(dim Y ).

Lemma 3.4 (Crawley-Boevey [Cra92, Lemma 8]).Let (X1, . . . , Xn) be a complete exceptional
sequence. Then

(X1, . . . , Xi−1, Xi+1, Y, Xi+2, . . . , Xn)
is an exceptional sequence iff Y 'RXi+1Xi. Similarly, (X1, . . . , Xi−1, Z, Xi, . . . , Xn) is an
exceptional sequence iff Z ' LXiXi+1.

Let Bn be the braid group on n strings, with generators σ1, . . . , σn−1 satisfying the braid
relations σiσj = σjσi if |i− j| > 2, and σiσi+1σi = σi+1σiσi+1. It is straightforward to verify the
following result.

Lemma 3.5 (Crawley-Boevey [Cra92, Lemma 9]).The braid group on n strings Bn acts on the
set of all complete exceptional sequences by

σi(X1, . . . , Xn) = (X1, . . . Xi−1, Xi+1, RXi+1Xi, Xi+2, . . . , Xn).

We can now state the main theorem of [Cra92].

Theorem 3.6 (Crawley-Boevey [Cra92, Theorem]).The action of Bn on complete exceptional
sequences is transitive.

The next theorem follows from the above results.

Theorem 3.7. If (E1, . . . , En) is a complete exceptional sequence in repQ, then sE1 . . . sEn =
cox(Q).

Proof. By the definition of cox(Q), the statement is true for the exceptional sequence consisting
of simple modules. Now we observe that the product sE1 . . . sEn is invariant under the action of
the braid group. Since the braid group action on exceptional sequences is transitive, the theorem
is proved. 2

3.2 Defining noncrossing partitions
In this section, we introduce the poset of noncrossing partitions. Let W be a Coxeter group.
Let T be the set of all of the reflections of W , that is, the set of all conjugates of the simple
reflections of W .
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For w ∈W , define the absolute length of w, written `T (w), to be the length of the shortest
word for w as a product of arbitrary reflections. Note that this is not the usual notion of length,
which would be the length of the shortest word for w as a product of simple reflections. We
denote that length function, which will appear later, by `S(w).

Define a partial order on W by taking the transitive closure of the relations u < v if v = ut
for some t ∈ T and `T (v) = `T (u) + 1. We use the notation 6 for the resulting partial order. This
order is called absolute order.

One can rephrase this definition as saying that u 6 v if there is a minimal-length expression
for v as a product of reflections in which an expression for u appears as a prefix.

The noncrossing partitions for W are the interval in this absolute order between the identity
element and a Coxeter element. (In finite type, the poset is independent of the choice of Coxeter
element, but this is not necessarily true in general.) We write NCQ for the noncrossing partitions
in the Coxeter group corresponding to Q with respect to the Coxeter element cox(Q).

Inside NCQ, for Q of finite type, there is yet another way of describing the order: for
u, v ∈NCQ, we have that u 6 v iff the reverse inclusion of fixed spaces holds: V v ⊆ V u (see
[Bes03, BW02]).

Lemma 3.8. We have `T (cox(Q)) = n.

Proof. By definition, cox(Q) can be written as a product of n reflections. We just have to check
that no smaller number will suffice. To do this, we use an equivalent definition of `T due to
Dyer [Dye01]: fix a word for w as a product of simple reflections. Then `T (w) is the minimum
number of simple reflections you need to delete from the word to be left with a factorization of e.

It is clear that, if we remove any less than all of the reflections from cox(Q) = s1 . . . sn, we
do not obtain the identity. So `T (cox(Q)) = n. 2

Lemma 3.9. For A a finitely generated wide subcategory of repQ, cox(A) ∈NCQ.

Proof. The simple objects (S1, . . . , Sr) in A form an exceptional sequence in A, so also in
repQ. Extend it to a complete exceptional sequence in repQ. This exceptional sequence yields
a factorization for cox(Q) as a product of n reflections which has cox(A) as a prefix, so
cox(A) ∈NCQ. 2

Lemma 3.10. If (E1, . . . , Er) is any exceptional sequence for A, then sE1 . . . sEr = cox(A).

Proof. This follows from Theorem 3.7 applied in A. 2

Lemma 3.11. The map cox respects the poset structures on WQ and NCQ, in the sense that if
A⊂ B are finitely generated wide subcategories, then cox(A)< cox(B).

Proof. The exceptional sequence of simples for A can be extended to an exceptional sequence
for B. Thus, cox(A) is a prefix of what is, by Lemma 3.10, a minimal-length expression for
cox(B). So cox(A)< cox(B). 2

We cannot prove that this map is either injective or surjective in general type. However, in
finite or affine type, it is a poset isomorphism, as we now proceed to show.

After this paper was distributed in electronic form, the fact that cox is a poset isomorphism
was shown for an arbitrary quiver without oriented cycles, based on a version of Lemma 3.15
below (see [IS09] for details).

1550

https://doi.org/10.1112/S0010437X09004023 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004023


Noncrossing partitions and representations of quivers

3.3 The map from wide subcategories to noncrossing partitions in finite and
affine type

For the duration of this section, we assume that Q is of finite or affine type.

Lemma 3.12. Let cox(A) be the Coxeter element for a finite type wide subcategory of repQ of
rank r. If cox(A) is written as a product of r reflections from T , then the reflections must all
correspond to indecomposables of A.

Proof. Let β1, . . . , βr be the dimension vectors of the simple objects of A. Being a finite type
Coxeter element, cox(A) has no fixed points in the span 〈β1, . . . , βr〉. Thus, its fixed subspace
exactly consists of FA =

⋂
i β
⊥
i , and is of codimension r. A product of r reflections has fixed

space of codimension at most r, and if it has codimension exactly r, then the fixed space must
be the intersection of the reflecting hyperplanes. Thus, if cox(A) = sM1 . . . sMr , then dimMj

must lie in F⊥A = 〈β1, . . . , βr〉. The only positive roots in the span 〈β1, . . . , βr〉 are the positive
roots corresponding to indecomposable objects of A, proving the lemma. 2

Given a subcategory A of C we write the perpendicular category as
⊥A= {M ∈ C |Hom(M, V ) = Ext1(M, V ) = 0 for all V ∈ A}.

If A is a wide subcategory, so is ⊥A. This follows from [Sch91, Theorem 2.3], and is easy to check
directly.

Theorem 3.13. If Q is finite or affine, then cox is an injection.

Proof. Let A and B be two finitely generated wide subcategories of repQ such that cox(A) =
cox(B). We may extend an exceptional sequence for A to one for repQ, and what we add will be
an exceptional sequence for ⊥A. So cox(A) cox(⊥A) = cox(Q). Hence, it follows that cox(⊥A) =
cox(⊥B). Now A is of finite or affine type, and it is affine iff there is an isotropic dimension vector
in the span of its dimension vectors. Since V has at most a one-dimensional isotropic subspace,
at most one of A or ⊥A is of affine type. Thus, without loss of generality, we can assume that A
is of finite type. By assumption, cox B = coxA. Note also that r = `T (cox(A)) = `T (cox(B)) is
the rank of B, so the expression for cox(B) as the product of the reflections corresponding to
the simples of B is an expression for cox B = coxA as a product of r reflections. By the previous
lemma, the simple objects of B must be in A. Since the ranks of A and B are equal, B =A. 2

The argument that cox is surjective is based on the following lemma.

Lemma 3.14. If Q is of finite or affine type and Mi are indecomposable objects whose dimension
vectors are positive roots such that cox(Q) = sM1 . . . sMn , then at least one of the Mi is post-
projective or pre-injective.

Note that any wild-type quiver Q with at least three vertices has tilting objects which are
regular (i.e. have no post-projective or pre-injective summand) [Rin88]. Since a tilting object
yields an exceptional sequence, and therefore a factorization of cox(Q), this lemma cannot hold
for any such quivers.

Proof. There is nothing to prove in finite type, since in that case every indecomposable is post-
projective (and pre-injective). In affine type, consider the affine reflection group description
of W as a semi-direct product, W =Wfin n Λ where Λ is a lattice of translations. The Coxeter
element has a non-zero translation component, since otherwise it would be of finite order, and
we know this is not so because if M is an indecomposable non-projective object in repQ, then
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dim(τM) = cox(Q) dimM (see [ASS06, Theorem VII.5.8]). Since all of the regular objects are
in finite τ -orbits, their reflecting hyperplanes are in finite cox(Q)-orbits. Thus, they must be
parallel to the translation component of cox(Q). Now cox(Q) cannot be written as a product
of reflections in hyperplanes parallel to the translation component of cox(Q), because such a
product would not have the desired translation component. Thus, any factorization of cox(Q)
must include some factor which is pre-injective or post-projective. 2

Lemma 3.15. If Q is of finite or affine type and cox(Q) = sM1 . . . sMn , then all of the Mi are
exceptional.

Proof. There is nothing to prove in the finite type case. Fix a specific Mi which we wish to show is
exceptional. If Mi is post-projective or pre-injective, we are done. So assume otherwise. Then by
the previous lemma there is some Mj with j 6= i which is post-projective or pre-injective. By braid
operations, we may assume that it is eitherM1 orMn. Assume the latter. Assume further thatMn

is post-projective. Now cox(Q)sM cox(Q)−1 = sτM . Conjugating by cox(Q) clearly preserves the
product, and τ preserves exceptionality. Thus, we may assume that Mn is projective. Applying
reflection functors, we may assume that Mn is simple projective. (In this step, the orientation
of Q and thus the choice of cox(Q) will change.) Now let A= ⊥Mn. Note that A is isomorphic
to the representations of Q with the vertex corresponding to Mn removed, so A is finite type.
Thus, cox(A) = cox(Q)sMn is a Coxeter element of finite type, so any factorization of it into
n− 1 reflections must make use of reflections with dimension vectors in A. Thus, Mi ∈ A, so it
is exceptional.

If Mn was pre-injective instead of post-projective, we would have conjugated by cox−1(Q) to
make Mn injective. The effect of conjugating by cox−1(Q) one more time is to turn sMn into a
reflection corresponding to an indecomposable projective. Then we proceed as above. 2

Theorem 3.16. In finite or affine type, the map cox is a surjection.

Proof. The argument is by induction on n. Let w ∈NCQ. If w is rank n, the statement is
immediate. By the previous lemma, the statement is also true if w is rank n− 1: we know
that cox(Q)w−1 is a reflection corresponding to an exceptional indecomposable object E, so
w = cox(⊥E). If rank w < n− 1, there is some v of rank n− 1 over w. By the above argument,
v = cox(⊥E). Apply induction to ⊥E. 2

4. Finite type

Throughout this section, we assume that Q is an orientation of a simply laced Dynkin diagram.
A fundamental result is Gabriel’s theorem, which is proved in [ASS06, §VII.5] as well as other
sources.

Theorem 4.1. The underlying graph of Q is a Dynkin diagram iff there is a finite number of
isomorphism classes of indecomposable representations of Q. In this case dim is a bijection from
indecomposable representations of Q to the positive roots in the root system corresponding to Q
expressed with respect to the basis of simple roots.

In § 4.4, we show how our results extend to non-simply laced Dynkin diagrams.
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4.1 Lattice property of NCQ
Our first theorem in finite type is an immediate corollary of results we have already proved. This
theorem was first established by combinatorial arguments in the classical cases, together with a
computer check for the exceptionals. It was given a type-free proof by Brady and Watt [BW08].

Theorem 4.2. In finite type NCQ forms a lattice.

Proof. If A, B ∈WQ, then A ∩ B ∈WQ, since the intersection of two abelian and extension-
closed subcategories is again abelian and extension-closed, while the finite generation condition
is trivially satisfied because we are in finite type. This shows that WQ, ordered by inclusion, has
a meet operation. Since it also has a maximum element, and it is a finite poset, this suffices to
show that it is a lattice. Now cox is a poset isomorphism from WQ ordered by inclusion to NCQ,
so NCQ is also a lattice. 2

Note that if Q is not of finite type, NCQ need not form a lattice. (There are non-lattices
already in Ãn for some choices of (acyclic) orientation [Dig06].) This seems natural from the
point of view of WQ, since the intersection of two finitely generated subcategories of repQ need
not be finitely generated.

4.2 Reading’s bijection from noncrossing partitions to clusters
Our second main finite type result concerns bijections between noncrossing partitions and
clusters. One such bijection in finite type was constructed by Reading [Rea07a], and another
subsequently by Athanasiadis et al. [ABMW06]. We show that the bijection we have already
constructed between clusters and noncrossing partitions specializes in finite type to that
constructed by Reading.

We first need to introduce Reading’s notion of a c-sortable element of W , where c is a Coxeter
element for W . There are several equivalent definitions; we give the inductive characterization,
as that proves to be the most useful for our purposes.

A simple reflection s is called initial in c if there is a reduced word for c which begins with s.
(Note, therefore, that there may be more than one simple reflection which is initial in c, but
there is certainly at least one.) If s is initial in c, then scs is another Coxeter element for W ,
and sc is a Coxeter element for a reflection subgroup of W , namely, the subgroup generated by
the simple reflections other than s.

By [Rea07a, Lemmas 2.4 and 2.5], and the comment after them, the c-sortable elements can
be characterized by the following properties:

– the identity e is c-sortable for any c;
– if s is initial in c, then
∗ if `S(sw)> `S(w), then w is c-sortable iff w is in the reflection subgroup of W generated

by the simple reflections other than s, and w is sc-sortable;
∗ if `S(sw)< `S(w), then w is c-sortable iff sw is scs-sortable.

Let Φ be the root system associated with Q, with Φ+ the positive roots. For w ∈W , we
write I(w) for the set of positive roots α such that w−1(α) is a negative root. I(w) is called the
inversion set of w.

Gabriel’s theorem tells us that dim is a bijection from indecomposable objects of repQ
to Φ+. If A is an additive subcategory of repQ that is closed under direct summands, we write
Ind(A) for the corresponding set of positive roots. If α ∈ Φ+, we write Mα for the corresponding
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indecomposable objects. If Mα is projective (respectively, injective) we sometimes write Pα
(respectively, Iα) to emphasize this fact.

Theorem 4.3. For Q of finite type, there is a bijection between torsion classes and cox(Q)-
sortable elements, T → wT , where wT is defined by the property that Ind(T ) = I(wT ).

Proof. Let T be a torsion class. We first prove that Ind(T ) is the inversion set of some cox(Q)-
sortable element. The proof is by induction on the number of vertices of Q and |Ind(T )|.

Let α be the positive root corresponding to a simple injective for Q. Let vα designate the
corresponding source of Q. Now sα is initial in cox(Q). If Iα 6∈ T , then T is supported away
from vα. Let Q′ be the subquiver of Q with vα removed, and let W ′ be the corresponding
reflection group. Then cox(Q′) = sα cox(Q) and, by induction, Ind(T ) is the inversion set of a
cox(Q′)-sortable element w. Now `S(sαw)> `S(w), and w is sα cox(Q)-sortable, so w is cox(Q)-
sortable, as desired.

Now suppose that Iα ∈ T . In this case, we apply the reflection functor R−vα . Let T̃ be the
image of T . It has one fewer indecomposable so, by induction, it corresponds to the inversion
set of a sα cox(Q)sα-sortable element, say w̃. Now sαw̃ is cox(Q)-sortable and has the desired
inversion set.

Next we show that if w is cox(Q)-sortable, then I(w) is Ind(T ) for some torsion class T . Again,
we work by induction. If `S(sαw)> `S(w), then w is sα cox(Q)-sortable. Thus, by induction, there
is a torsion class T ′ on Q′ with Ind(T ′) = I(w); now T ′ is also a torsion class on Q, so we are
done.

Suppose, on the other hand, that `S(sαw)< `S(w). By the induction hypothesis, there is a
torsion class T̃ on Q̃, with Ind(T̃ ) = I(sαw). Let T be the full subcategory additively generated
by R+

vα(T̃ ) and Iα. Now Ind(T ) = I(w). By Lemma 3.1, T is a torsion class. 2

The c-sortable elements of W , ordered by inclusion of inversion sets, form a lattice, which is
isomorphic to the Cambrian lattice CQ (see [Rea07b]). Any readers unfamiliar with Cambrian
lattices may take this as the definition. (The original definition of the Cambrian lattice [Rea06]
involves some lattice-theoretic notions which we do not require here, so we pass over it.) Thanks
to the previous theorem, CQ is also isomorphic to the poset of torsion classes ordered by inclusion.

A cover reflection of an element w ∈W is a reflection t ∈ T such that tw = ws where s ∈ S
and `S(ws)< `S(w).

Proposition 4.4. If s is initial in cox(Q), and T is a torsion class such that `S(swT )< `S(wT ),
then s is a cover reflection for wT iff Mαs is in a(T ).

Proof. A reflection t ∈ T corresponding to a positive root αt is a cover reflection for w ∈W iff
I(w)\αt is also the set of inversions for some element of W . A stronger version of the following
lemma (without the simply laced assumption) is [Pil06, Proposition 1]; see also [Bou68, VI§ 1
Exercise 16].

Lemma 4.5. The sets of roots which arise as inversion sets of elements of W a simply laced
finite reflection group, are precisely those whose intersection with any three positive roots of the
form {α, α+ β, β} is a subset which is neither {α, β} nor {α+ β}.

We say that a set of positive roots is good if it forms the inversion set of an element of W ,
and bad otherwise. Similarly, we speak of good and bad intersections with a given set of positive
roots {α, α+ β, β}.
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Thus, if s is not a cover reflection for wT , then there are some positive roots R= {β, β +
αs, αs} such that the intersection of I(wT ) with R is good, but becomes bad if we remove αs.
Thus, I(wT ) ∩R= {β + αs, αs}. So Mβ+αs ∈ T . Since s is initial in c, we know that Mαs

is a simple injective. Thus, there is a map from Mβ+αs to Mαs , whose kernel will be some
representation of dimension β. In fact, though, a generic representation of dimension β + αs will
be isomorphic to Mβ+αs (see [GR92, Theorem 7.1]), and if we take a generic map from it to Mαs ,
the kernel will be a generic representation of dimension β, thus isomorphic to Mβ. Thus, the
kernel of the map from Mβ+αs to Mαs is Mβ. Since β 6∈ Ind(T ), we see that Mβ 6∈ T . Thus, by
the definition of a(T ), we have that Mαs 6∈ a(T ).

Conversely, suppose Mαs 6∈ a(T ). By Proposition 2.15 there is a short exact sequence
0→K→N →Mαs → 0 with K 6∈ T , N ∈ T . Choose such a K so that its total dimension is
as small as possible.

Let K ′ be an indecomposable summand of the torsion-free quotient of K (as in Lemma 2.25),
with respect to the torsion pair (T , F) determined by T . Then the pushout N ′ is a quotient
of N , with 0→K ′→N ′→Mαs → 0.

So by our minimality assumption on K, it must be that K is torsion free and indecomposable.
Suppose that N is not indecomposable. Then let N ′′ be a direct summand of N which maps in
a non-zero fashion to Mαs . Let K ′′ be the kernel of the map from N ′′ to Mαs . Since K ′′ is a
subobject of K, and F is closed under subobjects, by minimality, K ′′ =K, so we may assume
that both K and N are indecomposables, with dimensions, say, β and β + αs. So β 6∈ Ind(T ),
while β + αs ∈ Ind(T ), as desired. 2

Reading’s map from c-sortable elements to noncrossing partitions can be characterized by
the following proposition.

Proposition 4.6 (Reading [Rea07a]). There is a unique map from the c-sortable elements to
NCc characterized by the properties that ncc(e) = e, and, if s is initial in c:

– if `S(sw)> `S(w), then ncc(w) = ncsc(w);

– if `S(sw)< `S(w) and s is a cover reflection of w, then ncc(w) = ncscs(sw) · s;
– if `S(sw)< `S(w) and s is not a cover reflection of w, then ncc(w) = s · ncscs w · s.

There is also a non-inductive definition of the map, but it is somewhat complicated, and it
is not needed here, so we do not give it. The above is essentially [Rea07a, Lemma 6.5].

Theorem 4.7. The map nc coincides with our map from torsion classes to noncrossing
partitions.

Proof. Our map from torsion classes to noncrossing partitions is cox ◦a. The proof amounts to
showing that cox ◦a satisfies the characterization of Proposition 4.6. Let sα be initial in cox(Q)
(and, equivalently, let Mα be a simple injective). Let w be a cox(Q)-sortable element, and let
T be the corresponding torsion class. If `S(sαw)> `S(w), then, as we have seen, T is supported
on Q′. The desired condition is now trivially true.

Now suppose `S(sαw)< `S(w). Define Q̃ to be the reflection of Q at vα. Let T̃ be the
image of T under the reflection functor R−vα . By Lemma 3.1, T̃ is a torsion class for rep Q̃.
Ind(T̃ ) = sα(Ind(T )\α).

If sα is not a cover reflection for w, then Mα 6∈ a(T ), so R−vα(a(T )) is an abelian category
which generates T̃ , and so a(T̃ ) =R−vα(a(T )), and thus cox(a(T̃ )) = sα cox(a(T ))sα.
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On the other hand, if sα is a cover reflection for w, then Mα is a simple injective for a(T ), and
so R−vα can be restricted to a reflection functor for a(T ) = rep S for some quiver S. Note that a(T̃ )
is contained in R−vα(a(T ))⊂ rep S̃ so we can restrict our attention to the representations of S
and S̃. The restriction of T to rep S, though, is all of rep S. Denote the restriction of T̃ to rep S̃
by T̃

S̃
. Now ind T̃

S̃
consists of all of ind rep S̃ except M̃α. This leaves us in a very well-understood

situation. In rep S̃, M̃α is projective, and if we take Pvα to be the projective corresponding to vα
in rep S, then, in rep S̃, we have that R−vα(Pvα) = τ−1M̃α, so, in particular, there is a short
exact sequence in rep S̃, 0→ M̃α→ P̃ →R−vα(Pvα)→ 0, where P̃ is a sum of indecomposable
projectives for S̃ other than M̃α. This shows that R−vα(Pvα) is not split projective. The other
Ext-projectives of T̃

S̃
are projectives of rep S̃, so are certainly split projectives. Thus, a(T̃

S̃
) is the

part of rep S̃ supported away from M̃α, and the same is therefore true of a(T̃ ). Thus, cox(a(T̃ ))
can be calculated by taking the product of the reflections corresponding to the injectives of rep S̃
other than sα. The desired result follows. 2

Reading also defines a map clc from c-sortable elements to ‘c-clusters’. We present a version of
his map which takes c-sortable elements to support tilting objects, since that fits our machinery
better.

Proposition 4.8 (Reading [Rea07a]).There is a unique map from c-sortable elements to
support tilting objects in repQ which can be characterized by the following properties:

– if s is initial in c and `S(sw)> `S(w), then clc(w) = clsc(w);

– if s is initial in c and `S(sw)< `S(w), then clc(w) =R
+
vs clscs(sw);

– clc(e) = 0.

In the above proposition R
+
vs is a map on objects which is defined by R+

vs(T ) =R+
vs(T ) if vs

is in the support of T , but if vs is not in the support of T , then R
+
vs(T ) =R+

vs(T )⊕ Pαs .

Theorem 4.9. The map clc corresponds to our map from torsion classes to support tilting
objects.

Proof. Our map from torsion classes to support tilting objects consists of taking the Ext-
projectives. Let α be the positive root corresponding to s initial in c, and let v be the
corresponding vertex. The image under R−v of an Ext-projective for T will be Ext-projective
in T̃ . Conversely, if M is Ext-projective for T̃ , then Ext1(M, N) = 0 for M, N ∈ T̃ . It follows that
Ext1(R+

v (M), R+
v (N)) = 0, so, in particular, Ext1(R+

v (M), N ′) = 0 for N ′ any indecomposable
of T except Mα. However, Mα is simple injective, so Ext1(R+

v (M), Mα) = 0 as well. The only
slight subtlety that can occur is that there might be an Ext-projective of T that is reflected to
zero. (It is not possible for an Ext-projective of T̃ to reflect to zero, because T̃ is by definition
the image of T under reflection.) This happens precisely if Mα is Ext-projective in T .

Here Mα is Ext-projective in T iff there are no homomorphisms from T into τ(Mα), iff there
are no morphisms from T̃ into R−v (τ(Mα)). Now R−v (τ(Mα)) is the injective for rep Q̃ which
corresponds to the vertex v. There are no morphisms from T̃ into R−v (τ(Ms)) iff T̃ is supported
away from the vertex v. 2

Conjecture 11.3 of [RS09] describes the composition NC ◦ cl−1. An indecomposable X in a
support tilting object T is upper if, when we take V to be the cluster obtained by mutating at X,
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we have that Gen T ⊃Gen V . (The definition given in [RS09] is not exactly this, but it is easily
seen to be equivalent.) We can now state and prove the conjecture.

Theorem 4.10 (Reading and Speyer [RS09, Conjecture 11.3]).For a support tilting object T ,
the fixed space of cox(a(Gen(T ))) is the intersection of the subspaces perpendicular to the roots α
corresponding to upper indecomposables of T .

(Note that, in the finite type setting, it is known that the fixed subspace of a noncrossing
partition determines the noncrossing partition, so this suffices to describe the map fully.)

Proof. By Lemma 2.32, the upper indecomposables of T are exactly the split Ext-projectives
of Gen T . The fixed space of cox(a(Gen(T ))) will include the intersection of the subspaces
perpendicular to the dimension vectors of the split Ext-projectives, and since the fixed subspace
has the same dimension as the intersection of the perpendicular subspaces, we are done. 2

4.3 Trimness
All of the lattices which we discuss in this section are assumed to be finite. An element x of a
lattice L is said to be left modular if, for any y < z in L,

(y ∨ x) ∧ z = y ∨ (x ∧ z).

A lattice is called left modular if it has a maximal chain of left modular elements. For more on
left modular lattices, see [BS97], where the concept originated, or [MT06].

A join-irreducible of a lattice is an element which cannot be written as the join of two strictly
smaller elements, and which is not the minimum element of the lattice. A meet-irreducible is
defined dually. A lattice is called extremal if it has the same number of join-irreducibles and
meet-irreducibles as the length of the longest chain. (This is the minimum possible number of
each.) See [Mar92] for more on extremal lattices.

A lattice is called trim if it is both left modular and extremal. Trim lattices have many of
the properties of distributive lattices, but need not be graded. This concept was introduced and
studied in [Tho06], where it was shown that the Cambrian lattices in types An and Bn are trim
and conjectured that all Cambrian lattices are trim. We now prove this.

Let Q be a simply laced Dynkin diagram. As we have remarked, the Cambrian lattice CQ can
be viewed as the poset of torsion classes of repQ ordered by inclusion, which is the perspective
which we adopt.

The Auslander–Reiten quiver for repQ is a quiver whose vertices are the isomorphism classes
of indecomposable representations of Q, and where the number of arrows between the vertices
associated with indecomposables L and M equals the dimension of the space of irreducible
morphisms from L to M . When Q is Dynkin, this quiver has no oriented cycles. Thus, one can
take a total order on the indecomposables of Q which is compatible with this order. We do so,
and record our choice by a map n : Φ+→{1, . . . , |Φ+|} so that n(α) records the position of Mα

in this total order.
Let Si be the full additive subcategory, closed under direct summands, of repQ whose

indecomposables are the indecomposables {Mα | n(α) > i}. Each Si is a torsion class.

Lemma 4.11. For T1, T2 ∈ CQ, T1 ∧ T2 = T1 ∩ T2.

Proof. Here T1 ∩ T2 is closed under quotients, extensions, and summands, so it is a torsion class,
and thus clearly the maximal torsion class contained in both T1 and T2. 2
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For α ∈ Φ+, let Tα = Gen(Mα). Recall that Ext1(Mα, Mα) = 0, so Mα is a partial tilting
object. Thus, by [ASS06, Lemma VI.2.3], Tα is a torsion class. We call such torsion classes
principal.

Lemma 4.12. For α ∈ Φ+, the torsion class Tα is a join-irreducible in CQ.

Proof. Let T ′α = Tα ∩ Sn(α)+1. This is a torsion class by Lemma 4.11, and its indecomposables
are those of Tα other than Mα itself. Thus, if T1 ∨ T2 = Tα, then at least one of T1, T2 must not
be contained in T ′α, so must contain Mα, and thus all of Tα. 2

Lemma 4.13. The only join-irreducible elements of CQ are the principal torsion classes.

Proof. A non-principal torsion class can be written as the join of the principal torsion classes
generated by its split Ext-projectives. 2

Proposition 4.14. The Cambrian lattice CQ is extremal.

Proof. By the previous lemma, there are |Φ+| join-irreducibles of CQ. Dualizing, the same is
true of the meet-irreducibles. A maximal chain of torsion classes T0 ⊂ T1 ⊂ · · · ⊂ Tm must have
|Ti+1| > |Ti|+ 1, so the maximal length of such a chain is |Φ+|, proving the proposition. 2

A torsion class is called splitting if any indecomposable is either torsion or torsion free. The Si
are splitting.

Lemma 4.15. If S is a splitting torsion class, and T is an arbitrary torsion class, then
T ∨ S = T ∪ S.

Proof. Let F be the torsion-free class corresponding to T , as in Lemma 2.25, and let E be the
torsion-free class corresponding to S. By the dual of Lemma 4.11, E ∩ F is a torsion-free class.
Clearly, the torsion class corresponding to E ∩ F contains S ∪ T . We claim that equality holds.
Let M be an indecomposable not contained in S ∪ T . Since M 6∈ T , there is an indecomposable
F ∈ F which has a non-zero morphism to M . However, since M 6∈ S, M ∈ E . Since (S, E) forms a
torsion pair, there are no morphisms from S to E . Thus, F must not be in S, and so F ∈ E , since
(S, E) is splitting. We have shown that F ∈ E ∩ F , and we know there is a non-zero morphism
from F to M . So M is not in the torsion class corresponding to E ∩ F . 2

Lemma 4.16. Any splitting torsion class is left modular.

Proof. Let S be a splitting torsion class. Let T ⊃ V be two torsion classes. Now

T ∧ (S ∨ V) = T ∩ (S ∪ V) = (T ∩ S) ∪ V,

by Lemmas 4.11 and 4.15, and the fact that T ⊃ V. In particular, this implies that (T ∩ S) ∪ V
is a torsion class. On the other hand, T ∧ S = T ∩ S. So (T ∧ S) ∨ V = (T ∩ S) ∨ V, the minimal
torsion class containing T ∩ S and V, which is clearly (T ∩ S) ∪ V, as desired. 2

Theorem 4.17. The Cambrian lattice CQ is trim.

Proof. Lemma 4.16 shows that the Si are left modular, and clearly they form a maximal chain.
We have already shown that CQ is extremal. Thus, it is trim. 2
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Table 1. Example: A3.

Non–split projective

Support tilting objects Torsion classesCluster tilting objects Noncrossing 
Partitions

Wide subcategory
Rest of torsion class

Split projective

(12)(34)

(24)(13)

(12)

(34)

(14)

(13)

(24)

(23)

e

(23)(12)

(23)(34)

(13)(34)

(23)(12)(34)

(24)(12)

4.4 Folding argument
In our consideration of finite type, we have restricted ourselves to simply laced cases. This
restriction is not necessary: our conclusions hold without that assumption.

The avenue of proof for non-simply laced cases is to apply a folding argument in which we
consider a simply laced root system which folds onto the non-simply laced root system.

Let Q be a simply laced quiver with a non-trivial automorphism group. Define the foldable
cluster tilting objects for Q to be those cluster tilting objects whose isomorphism class is fixed
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under the action of the automorphism group ofQ on the category of representations, and similarly
for foldable support tilting objects. Define foldable torsion classes of Q to be the torsion classes
of Q stabilized under the action of the automorphism group, and similarly for foldable wide
subcategories. Define foldable c-sortable elements to be those fixed under the action of the
automorphism group, and similarly for foldable noncrossing partitions. In each case, the foldable
objects for Q correspond naturally to the usual object for the folded root system. All of our
bijections preserve foldableness, so all of our results hold. To conclude that all Cambrian lattices
are trim, we require the fact that the sublattice of a trim lattice fixed under a group of lattice
automorphisms is again trim [Tho06].

5. Example: A3

In this section we record a few of the correspondences in this paper for the example of A3 with
quiver Q.

/.-,()*+1 /.-,()*+2 //oo /.-,()*+3

The Auslander–Reiten quiver of indecomposable representations of Q is as follows, where the
dimension vectors are written in the basis given by the simple roots α1, α2, α3.

[100]

##FFFFFFFF
[011]

##FFFFFFFF

[111]

##FFFFFFFF

;;xxxxxxxx
[010]

[001]

;;xxxxxxxx
[110]

;;xxxxxxxx

In Table 1, each of the 14 noncrossing partitions is listed in the same row as the other objects
to which it corresponds: the cluster tilting object, the support tilting object, the torsion class,
and the wide subcategory. The subcategories of repQ are indicated by specifying a subset of
the indecomposables of repQ, arranged as in the Auslander–Reiten quiver. The support tilting
objects and cluster tilting objects are indicated by specifying their summands. For the cluster
tilting objects, we have drawn a fundamental domain of the indecomposable objects in the cluster
category, where the black edges mark the copy of the Auslander–Reiten quiver for repQ inside
the cluster category, and the dashed edges are maps in the cluster category. The cluster tilting
objects can also be viewed as clusters when the indecomposable objects in the copy of repQ
are identified with positive roots as in the Auslander–Reiten quiver above, and the three ‘extra’
indecomposables are identified with the negative simple roots −α3,−α2,−α1 reading from top
to bottom.
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