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Introduction

The occurrence of quadratic L-functions in the Fourier coefficients of Eisenstein ser-
ies of half-integral weight was first discovered in 1937 by Maass [M]. His result is an
analog for Eisenstein series of a phenomenon later discovered by Waldspurger [Wa],
who showed that the Fourier coefficients of holomorphic cusp forms of half-integral
weight are (essentially) square roots of quadratic twists of L-functions attached to
cusp forms on GL(2). The Maass phenomenon was further investigated by Siegel
[S], by Goldfeld and Hoffstein [GH], and by Goldfeld, Hoffstein, and Patterson
[GHP].

In particular, the paper of Siegel foreshadowed more recent work that studies
(double) Dirichlet series formed with the quadratic twists of certain L-functions
(cf. the survey article of Bump, Friedberg and Hoffstein [BFH]). From this point
of view, the paper of Goldfeld and Hoffstein gave applications of the Maass phe-
nomenon to analytic number theory by providing new estimates for the mean
values of Dirichlet L-functions summed over quadratic twists. Specifically, they
estimated

> Lz Re(s)=1/2,

|n|<x
n squarefree
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and obtained results including:

S L(lz,) = ax + O,

[n|<x
n squarefree

3 L(1/2.7,) = exxlogx + e3x + O(xEH),
n S(ll?l|a<r§free

where ¢1, ¢; and ¢3 are certain (computable) constants.

The possibility of a generalization to higher order twists was demonstrated by
Bump and Hoffstein [BH1], who (following the related work of Proskurin [P]) estab-
lished that on the 3-fold metaplectic cover of GL(3), the Whittaker—Fourier coeffi-
cients of a certain Eisenstein series contain cubic L-functions. The Eisenstein series
they considered are those induced from the generalized theta series on the 3-fold
cover of GL(2). Lieman [L], and also Farmer, Hoffstein, and Lieman [FHL], have
given applications of this phenomenon to analytic number theory similar to those
obtained in the quadratic setting.

Once this result for the cubic case is known, it becomes natural to conjecture that
a similar phenomenon occurs for every n > 2. That is, one expects that nth order
Hecke L-functions will be contained in the Whittaker—Fourier coefficients of an
Eisenstein series on the n-fold cover of GL(n) induced from the generalized theta ser-
ies on the n-fold cover of GL(n — 1). We will refer to this as the L-function conjecture.
This conjecture will undoubtedly have many applications in analytic number theory
and is the subject of our paper.

Kazhdan and Patterson [KP] showed that the ‘exceptional’ representations corre-
sponding to the generalized theta series on the n-fold metaplectic covers of GL(n)
and of GL(n — 1) (taking ¢ = —1 in their notation in the latter case) are special in
that they have unique Whittaker models. This remarkable fact helps explain why
we consider Eisenstein series on the n-fold cover of GL(n) constructed with the theta
function on the n-fold cover of GL(n — 1). There seems to exist a peculiar ‘resonance’
between the rank of the group and the degree of its cover.

One aspect of this resonance is the uniqueness of Whittaker models for the
induced representations corresponding to these Eisenstein series. These are not
exactly Whittaker models in the usual sense but are models for the subgroup
obtained by extending the maximal unipotent in the n-fold cover of GL(#) by the full
preimage in the metaplectic group of the center of GL(#n), which is abelian but not
central. The uniqueness of these models was proved by Gelbart, Howe and Pia-
tetski-Shapiro [GHP-S] when n = 2 and by Bump and Lieman [BL] in general. See
also Theorem 3.1 below.

This uniqueness, which is a purely local result, underlies the L-function conjecture,
for it implies that the Whittaker integrals of the Eisenstein series are Euler products,
just as the uniqueness of Whittaker models for (nonmetaplectic) GL(n) implies
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that the global Whittaker model is Eulerian. See Proposition 9.2 of Jacquet and
Langlands [JL] or Theorem 3.5.4 of Bump [B] for this standard argument.

Evaluation of these Euler products is therefore an essentially local matter. Results
of Kazhdan and Patterson reduce the proof of the L-function conjecture to a com-
binatorial problem involving identities among nth order Gauss sums. Nevertheless,
the combinatorial difficulties involved are quite substantial.

In this paper, we prove local results leading to a proof of the L-function conjecture
over any global field that contains the nth roots of unity. We also prove in this paper
a generalization of the L-function conjecture that includes twists of these L-series by
arbitrary Hecke characters.

Another proof of the L-function conjecture can also be found in the important
and difficult paper of T. Suzuki [Su], whose work we now discuss.

Bump and Hoffstein [BH2] also made a more general conjecture concerning Four-
ier coefficients of Eisenstein series on the metaplectic group. If f'is an automorphic
form on the n-fold cover of GL(r), and if k < n, then GL(n 4 r — k) has a parabolic
subgroup whose Levi factor is GL(r) x GL(n — k), and one may form an FEisenstein
series induced from fand the theta function on the n-fold cover of GL(n — k). Bump
and Hoffstein conjectured that a Whittaker—Fourier coefficient of this Eisenstein
series is equal to a Rankin—Selberg integral involving f and a theta function on
the n-fold cover of GL(k). In the special case where r = k = 1, the corresponding
L-function is simply an nth order Hecke L-function; the L-function conjecture
described above is therefore a special case of the general conjectures of Bump and
Hoffstein.

The difficulty in establishing the Bump—Hoffstein conjectures in full generality is
more than combinatorial, since the methods of Kazhdan and Patterson [KP] yield
only partial information about the Whittaker—Fourier coefficients on the n-fold
cover of GL(k) if kK # n,n — 1. The most that can be said is that the information
one is able to obtain is compatible with the conjectures.

Suzuki [Su] managed to overcome these obstacles and prove the general conjec-
tures of Bump and Hoffstein over a function field in which —1 is an nth power.
To do this, he had the insight to use the Rankin—Selberg method in a novel way
in order to overcome the apparent incompleteness of the information available on
the Whittaker models. For technical reasons, most of his results are stated only in
the function field case. An exception, which he states in the case of an arbitrary glo-
bal field, is his result of Section 7.5 (not in Section 6.4 as stated in his introduction)
which is essentially the L-function conjecture.

Because Suzuki relies on the Kazhdan—Patterson cocycle, which is incorrect if —1
is not an nth power (see [BLS]), the reader approaching his paper should assume that
the ground field contains the 2nth roots of unity.

In view of the importance of the conjecture, we feel that an independent treatment
of the theorem is not superfluous. Our proof relies on a correct cocycle and we do
not need to assume that —1 is an nth power. Interestingly, in the case where —1 is
not an nth power in the underlying field, we observe a surprising dichotomy: the
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L-functions that arise in the Whittaker—Fourier coefficients of the Eisenstein series
are either twisted by a certain quadratic Hecke character or they are untwisted,
depending only on the residue class of n» mod 8. This result is new.

We now turn to a more precise description of our results. Fix once and for all an
integer n > 2, and let k be a global field in which the group p,, of nth roots of unity in
k> has cardmahty n. Let A be the ring of adeles of k. For every r > 1 and ¢ € 7Z./n7,
the n-fold c-twisted metaplectic group GLﬁ‘)(A) is a nontrivial central extension of
GL,(A) by p, that is constructed by means of the nth order (global) Hilbert symbol
G, )a: A x A — p, (cf. [We2]). For any Hecke character y: A*/k* — C*, one
constructs a theta representation 0, of the group G/( A) = L( l)( A) as in [KP].
Let P be the standard (maximal) parabollc subgroup in GL, of type (n—1,1),
and let P(A) be the preimage of P(A) in G(A) := GL”(A). By means of the embed-
ding:

GA) = GA), (2. ((g detg_l)’é>’

the representation 6, can be extended to a representation of ﬁn(A), the metaplectic
preimage of the subgroup P,(A) consisting of elements of P(A) whose determinants
are nth powers in A™. Since 0, is automorphic, there exists a nonzero G(k)-invariant
linear functional A on the space of 0,. Taking f; to lie in the induced series

Ind%V (0, ® 9%), where Jp: P(A) — C* is the modular character of P(A), we form

the metaplectlc Eisenstein series

E(g.f) = Z Afi(yg), for all g € G(A).
PP, (\G(k)

Here G(k) := GL, (k) is embedded in G(A) under the canonical splitting [KP]. Let
V. AJk — C* be a fixed nontrivial additive character. For any a € k*, the ‘ath
Whittaker—Fourier coefficient” W, ,(g) of E(f;, g) is defined by

W, a(g) = / E(fy. ng) () dn
N(k)\N(A)

Here N is the standard unipotent subgroup of GL,, and y,: N(A)/N(k) — C* is
the character given by:

V() = Ylanm p(n23) - - - Y(u_zn—1),  forall n e N(A).

THEOREM. If n is odd, or n=2 or 4(mod8), then the ath Whittaker—Fourier
coefficient of the metaplectic Eisenstein series E(fs, g) can be expressed as a Euler
product.

e Li(ns. 7, (. a),)
Ws,a(g) - g I/VZ,a(gL 1_[ L (n2s 7n) :
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If n =0 or 6(mod8), then
Weal@) =[] Wi a2 Hw

veS S L (I’Z2S ’(”)

The notation may be explained as follows. The set S is any finite collection of pla-
ces of the global field k& that contains every Archimedian place and all non—Archi-
median places v for which v(2n) # 0. If v ¢ S, the local nth order Hilbert symbol
(-, ) kS x kY — p, is unramified, as is the quadratic Hilbert symbol
(s oy s kY x k) — {1}, If g = (g,), we also include in § those places such that
the local component g, does not lie in the canonical lift K7 of the standard maximal
compact subgroup K, of GL,(k,). We may assume that f; has the form of a metaplec-
tic tensor product ®f;.v» Where each f;, lies in a local induced representation

Ind%%) 0,,® 5;0), and we include in S those places for which f; , is not the normal-
ized "Kf-ﬁxed vector ¢, (cf. Section 3). For each place v € S, WY{ , is a Whittaker

function for the local induced representation. Finally, the local L- functions occur-
ring in the product over v ¢ S are defined in the usual way (cf. Theorem 3.2 for a pre-
cise definition).

To prove this theorem, one unfolds the integral to write W ,(g) as

Af(ng) Y o(m) dn,

VEPUNGER/NK) iy

where N, = NNy~ ! Py. There are n double cosets in P\G/N with representatives

N — In—r
' (1,‘ )

Only r = 1 contributes since otherwise y conjugates a simple root into the unipo-
tent radical of P and the term vanishes. When r = 1 the resulting global integral fac-
torizes into local integrals (3.1) computed in Theorem 3.2. More precisely, one splits
the integration into || NGO\, (a) and /, N, (ann(a) Lhe first integral produces the Whit-
taker functional on the theta representation of GL(n — 1), and the second gives the
integral (3.1) at every place.

Our theorem asserts that the Whittaker—Fourier coefficients of metaplectic Eisen-
stein series are essentially quotients of standard (completed) Hecke L-functions:

L(I’ZS, /C(v :l:a)\) — 1_[ LU(I’IS, Xv('v :I:a)b)
L(n2s, 1) Ly(n’s, )

Though we have not attempted to do so here, a more thorough analysis would
entail a proof of the nonvanishing of the local Whittaker functions WY, for an
appropriately chosen f; = ®f;,. When n > 3, this can certainly be accomphshed
using standard techniques, since the n-fold metaplectic cover splits over GL,(C) in
this case. For non-Archimedian v, the nonvanishing of Wy , can certainly be shown
if f;, has sufficiently small support.
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As alluded to earlier, the proof of our theorem rests primarily on the calculation of
local Euler factors for the metaplectic Eisenstein series at ‘good’ places; the bulk of
our work is devoted to this calculation. The paper is organized as follows. In
Section 1, we recall the construction of local metaplectic groups and describe the
metaplectic cocycles from [BLS] in a form suitable for calculations. In Section 2,
we review the construction of the (local) exceptional representations on the n-fold
—I-twisted cover of GL(n — 1); these were first considered in [KP]. The main result
in this section (Theorem 2.1) gives an explicit evaluation of the normalized Whit-
taker function W, on certain diagonal elements s(wfm) in the local metaplectic
group. We remark that these are essentially the only elements for which W, can
be easily evaluated, and it is a fortunate circumstance that we do not need to know
the other values of W). In Section 3, we review the construction of the induced series
corresponding to 6, which live on the n-fold 0-twisted cover of GL(n); these are the
local representations corresponding to our metaplectic Eisenstein series. The main
result in this section (Theorem 3.2) gives an explicit evaluation of the normalized
Whittaker function W, at the identity; the theorem stated above follows from this
result in the manner previously described.

1. Preliminary Notation

Let n be a fixed positive integer, and let ¥ be a non-Archimedean local field such that
the group u,, of nth roots of unity in F* has cardinality ». Once and for all, we will fix
an embedding p,<>C* and identify y, with the group of nth roots of unity in C*.

Let O denote the ring of integers in [, g the unique maximal ideal in O, and ¢ the
cardinality of the residue field O/g. Let | - | denote the absolute value symbol on I,
and let v: I — Z U {oo} be the corresponding normalized discrete valuation. Then
|x|p = ¢~ for all x € IF. We fix a prime element & € I with v(w) = 1.

Let (-, )p: X x B — u, be the nth order Hilbert symbol on ¥ (cf. [We2] XIII-5);
it is a map that satisfies

(X', ) = (X, )6 (X, ), (6 e = (6, P (6, V),
P =0 =p =1
for all x, x', y,y € F*. Also
{x € F*|(x, y)p = 1 for all y € I} = ",
where
" .= {x € i|x = y" for some y € >}

In the sequel, we will often assume that the Hilbert symbol is unramified, i.e., that
(x,y)p = 1 for all x, y € O*. This is equivalent to the condition that |n|y = 1.

For every positive integer r and every ¢ € 7Z/n7Z., let E}\EY)(F) denote the n-fold c-
twisted metaplectic cover of GL,(IF); it is a central extension of GL,(I") by p,:

1 = u, — GLOF) 25 GL,(F) — 1.
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With r and c fixed for the moment, put G := GL,(I") and G:= §i§">(1[«“). Then we
may regard G as the set G x u, equipped with a multiplication law given by

(2.9, &) =(gg.&a(g.g)), forallg, g €@, & & eup,

Here 0: G x G — u, is a certain 2-cocycle in Z*(G; u,) whose properties are descri-
bed below. The natural projection p: G — G is defined by (g, &) — g, and we identify
U, with the subgroup ker(p) of G via the map & — (I, £), where I denotes the identity
matrix in G. Since o(g, I) = (1, g) = 1 for all g € G (see below), it follows that y,, is
contained in the center of G. Let's: G — G be the p-section given by g — (g, 1), then

s(g)s(g) = s(gg)o(g, &), s(g)¢ = &s(g),

forallg,g € G, ¢éep,.

We will now summarize the properties of ¢ = ¢! that are needed for our calcula-
tions. First of all, the c-twisted cocycle ¢ is obtained from the untwisted (i.e., 0-twis-
ted) cocycle o, := ¢\” by the relation:

g, g) = 0.(g, g)(detg, detg)., forall g,¢ €G. (1.1

The particular cocycle o, € Z*(G; u,) that is used in this paper was constructed in
[BLS] from the (bilinear) Steinberg symbol (-, -)171; for proofs of the basic properties
of ¢,, we refer the reader to [BLS].

If r = 1, then G = GL{(F) = (', and o is trivial, i.e., 61(g, g) = 1 forallg, g € G
(cf. [BLS] §3 Corollary 8). Note that ¢\” = (-, )% for all ¢ € 7,/n7..

If r = 2, then G = GL,(I"), and o is the Kubota cocycle in Z*(G; ,,) that is defined
by:

x(gg)  x(gg)
x(g) "x(g')detg

oo(g, g) = ( ) , forallg g €@,
.

where for every g = (‘c‘ z> €G:
_Je, ife#0,
x(g) = { d, ifc=0.

Almost all of the cocycle calculations of this paper can be performed using only
the properties of o, and o, stated above, together with the fact that the system of
cocycles {o,|r = 1} is block-compatible in the following sense.

THEOREM 1.1. For every standard Levi subgroup of GL,(I), the following block
Sformula holds:

g1 g,l k
g : =[]onene) [] (detg: detg)y,
gk g}\, i=1 1<i<j<k

where r =ry + - -+ ry with every r; 2 1, and g;, g; € GL,(I') for 1 <i< k.
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This is [BLS], §3 Theorem 11. In particular, if 7' is the subgroup of diagonal matri-
ces in G := GL,(IF), then the restriction of ¢, to T x T is given by

o (t, 1) = l_[ (tis ), for all ¢ = diag(t;), ¢ = diag(t}) € T. (1.2)

1<i<j<r

For the remainder of this section, we will assume that » > 2. We now introduce
some notation to be used throughout the sequel. Consider the (r — 1) embeddings
{1;]1 <i<r—1} of GL,(F) along the diagonal in G:

Iy
1;; GLy(I") — G, g g , for all g € GLy(IF),
I1-

where [; denotes the (k x k) identity matrix. For each 7, let G; denote the image of 1,,
and observe that the subgroups {G;|1 < i < r — 1} generate the group G. As genera-
tors for the subgroup 1;(SLy(I)) of G;, we take:

hi(x) := l,-<x = ) for all x e [,

n,~(x)::z,»<1 ch)’ for all x e I,

Wi = 1; —1
="\ .

These elements, together with

tix, ) 1= l,-<x y), for all x, y € FX,

(')
S =1 1 ,

clearly generate the group G;. By Theorem 1.1 above, it f01~lows  that there are (r — 1)
canonical embeddings {7;|]1 <i<r— 1} of GLgO)(F) into G := GLf,O)(F) given by:

% GLY(F) — G, (g, &) — (1(9), &), for all g € GLy(IF), ¢ € p,,.

Let G; denote the image of 7;, and note that G;is generated by p,, together with the

elements:
hi(x) := s(hi(x)), for all x € 7%,
ni(x) := s(n;(x)), for all x € I,
1/7,’ = S(W,‘),
1i(x,y) ;== s(ti(x,y)), forall x,y e [F*,
St = s(s0)-

In order to describe the cocycle ¢, in a form suitable for calculations, we next
recall the characterization of ¢, given in [BLS].

Let N be the standard maximal unipotent subgroup of G, i.e., the set of all upper
triangular matrices with 1’s along the diagonal. The group N is generated by the
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collection {n;(x)|x € ¥, 1 <i<r—1}. The metaplectic group G splits canonically
over N via the section s, hence N* := s(N) is isomorphic to N. This follows immedi-
ately from the fact that o, is trivial on N x N. Moreover,

olg.n)=o,ng) =1 o,nggn)=0.gg)  olgng)=oalgng),
(1.3)
foralln,n e N, g,¢g' € G.

Next, let W be the Weyl group of permutation matrices in G, i.e., the collection of
matrices with a single 1 in every row and column, and 0’s elsewhere. The group W is
generated by the simple reflections {s;|1 < i< r— 1}. For any w € W, the length of w
is the smallest integer £ = £(w) such that w can be expressed as a product of £ simple
reflections: w =s;, ...s;,. For any such reduced expression, we form the element
nw) :=wj, ...w;, (by [Ma] Lemme 6.2, the map w > n(w) is well-defined). Then
our cocycle o, satisfies:

o (t,n(w)) =1, forallte T, we W,

1.4
a(n(w), n(w)) =1, for all w,w' € W with £(ww’) = £(w) + &(n). (1.4)

Now let ® be the set of roots of G relative to 7T, which can be identified with the
collection of ordered pairs {(i, )|l <i,j<r, i#j}:
*:=1t/t;, forall t=diag(t;))e T,a=(,j) €.
A root o = (i, ) is positive [resp. negative] if i < j[resp. i > j]. The group Wactson T
by conjugation:

1

i=wtw, forallteT, we W,

hence W also acts on ®:
(.= ("), forallteT, we W, oed.
The cocycle g, satisfies:

o, (qw). ) =[] (=t 1), forallwe W, r=diag(t)) e T. (1.5)

oa=(i,j)>0
wo<0

Finally, for all x € ¥ and 1 < i< r— 1, we have that:

X, X)s if 0,
o (Wi, ni(x)w;) = { EiIX)[—l)F I i i 0 (1.6)

as is easily verified using Theorem 1.1 and the definition of the Kubota cocycle. The
following characterization of g, is proved in [BLS], Section 3 Theorem 7.

THEOREM 1.2. The cocycle o, is the unique element of Z*(G; u,) that satisfies all of
the properties in (1.2) through (1.6) above.

For the remainder of this section, we assume that (-, -); is unramified. In this situa-
tion, the metaplectic group G splits canonically over the maximal compact subgroup
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K := GL,(O) of G (cf. [KP], Proposition 0.1.2). Let k : K — G denote the splitting.
By [KP], Proposition 0.1.3, the map k satisfies:

K|7nx = Sl K|y = slw, Kl ynk = Slnnks

and these relations determine k uniquely. Let K* := k(K), and for every m > 0, let
K = k(K,,), where K,, :={k € K| k=1I(mod &")}. Then the collection {K}, | m >
0} is a basis of open compact neighborhoods of the identity element I:= s(I) of G.

This completes our review of the metaplectic groups {aljf,")(F)} and their associ-
ated cocycles {¢'“}.

To conclude this section, we recall the definition and some elementary properties
of Gauss sums. Let (-, ),y : [’ x ' — {#£1} be the quadratic Hilbert symbol on I.
We will assume that (-, -)  is also unramified, i.e., that (x, y), = 1 forall x, y € 0.
This is equivalent to the assertion that ¢ is odd. Let i : ' — C* be a nontrivial addi-
tive character whose conductor is O, and for every i € Z/nZ, let gf/f) denote the
unnormalized nth order Gauss sum:

W =q [ (@0 px/mdr (1.7)
xeO*

Here dx is the unique additive Haar measure on I such that Vol(O; dx) = 1. It is
well known that

o)) i =q(@. @) and g}l =g if i 0(mod n).

Now let @,/, denote the normalized quadratic Gauss sum:

B =i [ @0 (19)
xeO*
Then |§,| = 1. Since g}/* = ¢'/2§,, if n is even, and (@, @) = 1 if n is odd, it fol-
lows that
ﬁ ) = { ¢V (w, w)fﬁ("*z)/8 qy. if nis even, (1.9)
LY g2 if s odd. '

This relation will be used in Section 2.

2. The Whittaker Function for the Theta Representation

We continue to use the notation of Section 1. Throughout this section, we will
assume that n > 2, |n|p = 1, and ¢ is odd. Let

I, := {x € F*|o(x) = 0 (mod n)} = & O*.
Since |n|p =1, (-, -)p is unramified, and it follows that
{xe | (x,y)p =1, forall y e F,} = F,. (2.1

In other words, IV, is maximal isotropic with respect to pairing determined by the
Hilbert symbol.
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Now let G := GL,_(F), let G := GLU_)(I"), and let o := ¢\~ (cf. §1). Let T be the
subgroup of diagonal matrices in G. Forany ¢t € Tand 1 < i < n — 1, we denote by ¢
the ith entry of ¢ along the diagonal. Then, by (1.1) and (1.2),

s()s(?) =s(t1) H(t,-, t)p - (det ¢, det N5l forall ¢,/ € T. (2.2)
i<j
Consequently,
s()s()s(t)'s() " = [ [ i - (det 1, det £);". (2.3)
We define

T,:={teT|t/tje " for all i},
T.:={teT|t/tje F, forallij}.

By (2.3), it follows that T, := p~'(T},) is the center of T, and T, := p~(T}) is a max-
imal Abelian subgroup of T. Note that if Z is the center of G (i.e., the scalar matri-
ces), then Z:= p~'(2) is the center of G.

Recall that if H C G, H := p~'(H), and X is any set on which u, acts, then a func-
tion f': H — X is said to be genuine if f(Eh) = Ef(h) for all € e p,, h € H.

For the remainder of this section, let Y : ' — C* be a fixed nontrivial additive
character whose conductor is O, and let y : F* — C* be an unramified quasicharac-
ter. Using i and y, we will next construct a certain exceptional representation of the
metaplectic group G (cf. [KP], § 1.2). To do this, we first define a genuine quasichar-
acter wy : T, — C* as follows. Let:

T,:={teT|t ek, foralli and 1,y = 1}.

By (2.1) and (2.2), it follows that ¢ is trivial on 7] x T, hence s(T}) = T. Since
T.=Z7- s(T,) with Zﬂs(T )= (I}, the group T, is the direct product of Z and
s(T,). On s(T,), we define wy by

wo(s(7)) == y(det 1) d5(0)"*", forall r € T7. (2.4)

Here d5 denotes the modular character of the Borel subgroup B:=TN in G. To
define wy on Z, we first observe that by (2.2),

s(e-Ds(p-I) = s(xy-D(x, )", for all x,y € T,

As in Section 1, let (-, -), ¢ : ™ x I — {&1} denote the quadratic Hilbert symbol
on [F. Note that (-, -), ¢ is unramified since ¢ is odd. Let

o 1, 1if nis even,
2710, ifnis odd.

Then
s(x-Ds(y-I) = s(xy-I)(x, )51 for all x, y € F*. (2.5)
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Following the ideas of Weil (cf. [Wel]), we define y,, : I — {£1, £i} to be the map

given by

Py (@ x) = (@, 0 (@, o)ss V2 af, forallk e Z, x e 0, (2.6)
Then it is easily verified that

Py (g () = 7y (x) (x, p)y e, forall x, y € I (2.7)
Now let:

wo(€s(x-1)) := éx(x)”_lyl/,(x)sz, for all ¢ € pu,, x € B, (2.8)

By (2.5) and (2.7), it follows that wy : Z— CX s a genuine quasicharacter. Clearly,
there exists a unique genuine quasicharacter wy : T, — C* that satisfies both (2.4)
and (2.8), and after a brief calculation, we obtain the explicit formula:

n—2

wp(Es(D)) = & g(det 1) 85" "y (ta=1)* (1t a1t | [0t (2.9)
i=1

which is valid for all ¢ € y,,, t € T,. Here

|1 ir4gn,
4710, otherwise.

To establish (2.9), we have used the fact that if n is odd, (x, x)p = 1 for all x € F*.
Note that wy is unramified, i.e., wy is trivial on s(7T'N K). Moreover, wy is exceptional
in the sense of [KP], Section 1.2:

wo(h(x") = |xlp, forallxeF*, 1<i<n—2.

Now for any genuine quasicharacter o : T, — C*, weextend o to a quasicharac-
ter of B, := T, N* that is trivial on N*, and let V(w) denote the space of the (normal-
ized) induced representation Ind%(w) (cf. [KP], §1.2):

V(w) == {f € C¥(G) | fibg) = (5} *w)(b)A(g) for all b € B,, g € G}.

Here 05 is regarded as a quasicharacter of B:= TN* that is trivial on g, and
(03 w)(b) := d5(b)"*w(b) for all b € B,. The group G acts on V(w) by right transla-
tion.

Let (0, Vy) be the exceptional representation defined as follows. Let w( denote the
long element of the Weyl group W, let wy := s(wy), and let , : T, — C* be the gen-
uine quasicharacter given by:

(1) := wp(Wy'tvg), for all 1 € T,.

Since wy is dominant (cf. [KP], §I.1), we can define the standard intertwining operator
L, : V(wg) = V(w)) by the absolutely convergent integrals:

L, f(g) = / S5y 'ng)dn, for all f€ V(wy), g € G.

neN*
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Here dn is the unique Haar measure for N* such that Vol(N* N K*; dn) = 1. By [KP],
Theorem 1.2.9, the image V) of I, is the unique irreducible subrepresentation of
V(wy), and V7 is isomorphic to the unique irreducible subquotient of V(wy). Let 0
denote the action of G on Vj by right translation: 0(g)f(¢’) := f(g’g) for all
5.2 €G, feV,

The main goal of this section is to calculate special values of the normalized Whit-
taker function Wy for use in Section 3. To define W)y, first observe that since wy is
unramified, Vy contains a unique normalized K*-fixed vector. That is, there exists a
unique vector ¢, € Vy such that 0(k)¢, = ¢, for all k € K*, and (;’)0(7) =1 (cf.
[KP], Lemma I.1.3). Next, given the character y on I, let y also denote the unique
character on N* that satisfies:

Y(ni(x)) = Y(x), forallxelF, 1 <i<n-—2.

A -Whittaker functional for 0 is a linear functional 1:Vy— C such that
AOm)) = y(m)A(f) for alln € N*, fe Vy. By [KP], Corollary 1.3.6, the space of such
functionals is one-dimensional, hence there exists a unique y-Whittaker functional
A such that 4¢(¢py) = 1. The normalized Whittaker function is then defined by

Wo(g) := 20(0()py),  forallg e .
Note that Wo(f) =1l,and forall £ e py,, z € Z, ne N*, ge (~;, k e K*:

Wo(&znghk) = Cwp(2)P (n) Wi (g).

Consequently, Wy is determined by its values on elements of the form s(z'), where
o = diag(w"), forallf=(,....f,_,) e 2"

The main result of this section is the following theorem.

THEOREM 2.1. Forall 0 <k <n—1, let f(k) = (f(lk), e, f;’?l) e 7" where

0. I, i<k
T, ifis k.

Then Wy (s(wf“\))) is equal to
k N1
X(w)k q—/c(n—k—2)/2(w_’ ZD_)QCT(/»’Jrl)/Z(w’ w_)i%kn(n72)/8(w w)m ( gfiz)) ’
i=1

where g- ) is the complex conjugate of the Gauss sum g deﬁned by (1.7).
Proof Let Wh( V(wp)) denote the space of - Whlttaker functionals for V(wy).
Forevery ¢ € T, let ), € Wh(V(wy)) be defined by the absolutely convergent integrals

2(f) = / fton)(nydn,  for all fe V(wy).
N*
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Note that

2ol f) = O 2we))hy,  foralll eT,, teT.
Since {4, | t € ﬁ\ﬁ is a basis for Wh(V(wy)) (cf. [KP] Lemma 1.3.2), and the com-
position 4g I, lies in Wh(V(wy)), we have

/10 Iwo = Z C(Z)l,,

teT\T

where¢: 7 — Cis a uniquely determined function that satisfies

o(f1) = (0 wo)(¢) 'e(r),  forall/ eT,, teT. (2.10)
According to [KP], Theorem 1.4.2,

Wy (s(wf(k))> - 5B(wf‘“)c(a751s(wf‘“)—1%). @2.11)
By a straightforward (though tedious) calculation, we have that

Ty's@) iy = st Ds@™ (e, @)D, 2.12)
Using (2.6), (2.8), (2.10), (2.11) and (2.12), we obtain the following relation:

W (S(wf(k) ))

= 1(@)"" gD, ), )k 457 e (s ). (2.13)

Thus, to prove the theorem, it will suffice to compute c(s(wf(”_k_l))). O

For the moment, we will turn to the study of c(s(arf)) for arbitrary f € 7.
LEMMA 2.2. For all f € 7" such that f; = f;(mod n) for all i, j:
. Sy -1
¢(st@) = 0 %w0)(s(@h) .
Proof. By the relation (2.10),
. N1~
c(s(wf)) - (5}9/2w9)(s(wT)) (D).
On the other hand, if we take k = 0 in (2.13), then:
1= Wy(D) = 1(@)"" §? e(s(z-D) = e(D).

These statements imply the lemma. O

To describe the next result, we study the local coefficients {t,(w, f,{')} that are
defined as follows. For any genuine unramified quasicharacter w : T. — C%, let
V(w) be the induced representation constructed earlier, and let Wh(V(w)) be the
space of -Whittaker functionals for V(w). As before, we can define 1,
Wh(V(w)) by
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2(f) = / fitwonW(n)dn,  forallte T, fe V(w).
N*

Here the integrals are understood to be ‘regularized’ if w is not dominant in the sense
of [KP], Section I.1. For any w € W, let Yw : T, — C* be the genuine unramified
quasicharacter given by "w(f) := o(w'tw), for all t € T., where w:=s(w). If
I, : V(w) — V(" w) is the standard (regularized) intertwining operator, then the local
coefficients are defined by the relation:

is(w.f)lw = Z Tw((U, T, f/))vs(wf’)'

Ve(Z/mnz)y"

Note that, for all wy, w, € W, such that £(w;wy) = £(w}) + £(w»),
‘L-Wl wz(w7 fa f/) = Z TW] (sz7 fa f”)rw’z (CO, f”a T/)'

f'e(z/mzy"!
Hence, in studying the local coefficients, we can reduce to the case where w is a sim-
ple reflection s; with 1 <i<n—2.
Now consider the action of W on 7"~! that is defined as follows. Let fé denote the
special element (0, 1,2,...,n—2)in 7Z""'. For any w € W, fe 71[’", we define wf]
to be the unique element of 7"~' such that &7l = weo' " w-1lm' .

PROPOSITION 2.3. Let o : Ty — C* be a genuine unramified quasicharacter. Then
for all § € 7"~" and every simple reflection s;:

T (0,1, 1) = (1 — w(%(w”)))71(1 — q‘l)w(/; (ay—”[(ff—fm)/n])),

f A i~ 1
TSI(G)7 f’ SZ[T]) = qf’“ fi 2gg' fint )(w_’ a)’);’]’“ .

Moreover, to(w,T,7) =0 if f £ f or s[f] in (Z/nZ)""".

Proof. This is essentially the content of [KP], Lemma 1.3.3. To verify this result,
we have corrected some minor typographical errors that occurred in the original
proof (cf. [KP] pp. 80-85). Moreover, our calculations were performed using the
cocycle o:= af:l) described in Section 1, which differs slightly from the cocycle used

by Kazhdan and Patterson. We omit the details of the calculation. O
COROLLARY 2.4. For all § € 7" and every simple reflection s;, we have
VY — fi T 1+ =0 /m] G —Ti=1) (it D=1 silf
c(s(w*)) — gl Tt 1H =T/ ]% o (@, @) | c<s(w m))‘

Proof. Applying Proposition 2.3 to the exceptional quasicharacter wy, we obtain
75, (wy, T, ) = _qflf[(f[*fm)/”]’

7 (g, siffl, ) = g" gl

Gt D= 1) (2.14)
” 0 s

_1)(w, o)
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since iy (/;,-(x")) = |x|-ﬁ1, for all x € I,
(silfDi=T41 —1 and  (sffD;=T + 1.
Again, since wy is exceptional, we have for every {' € Z"~! (cf. [KP] Section 1.3):
> e(s@h)eConf ) =0.
fe(Z/n2)"!

If we set {' := f, then by (2.14) and the last statement of Proposition 2.3:
qff*fiﬂ ggz#-l*fi*l)(w_’ w)_(gﬂrl)(fi-;-l*1)c<s(w3i[ﬂ)) _ q*l*[(f{*fﬁl)/"]c(s(w-f)) =0
The corollary follows immediately. O

We are now in a position to complete the proof of Theorem 2.1. The cases k = 0
and k = n — 1 are easy since s(wf(”fH) € Z, hence we may assume that n > 3 and
1 <k <n—2. To simplify the notation, let ¢(f) := ¢(s(w")) for all f € Z"~". Our
goal is to compute ¢(f" ),

For every m € 7, and every nonnegative integer i, let (m); denote a string of i copies
of m, and consider the set of elements in 7"~ defined by

f(lv]) = ((1)11—/(—1'—2’ (_l - 1)]’]+ 1’ (_i)k—j’ (k + 1)i)’
forall0 <i<n—k—2,0<j<k. Observe that

f(ov 0) = ((1)nfk71’ (O)k) = f(nikil)'
Also, the f(i,/)’s are related by the action of simple reflections

Su—k—ij—1 [T(@, )] = TG 7+ 1), forall0<i<n—k—-2, 0<j<k-—1
Applying Corollary 2.4 to this identity, it follows that

e(f(i. /) = 470D (@, ) Ve(i )+ 1),

Consequently,
o(i(i, 0) = 1‘[ ¢ @, ) - e(f i, ).

Now if 0 <i<n—k—3, we have
T, k) i= ((Dypioas (=i = Dy (K + 1yy) = G+ 1, 0),
thus we obtain

n—k—2

—k—
(i"* ) =TT [1e72a 7@ o™ elii—k—2.0). (219

i=0 j=0

>~
—

~.
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To evaluate the right side of Equation (2.15), we first observe that
fn—k —2,k) = ((=n+k+ Dy, (k+1,py),
so we can apply Lemma 2.2. We find that

c(f(n —k— 2, k)) — X(af)k_l1+lq_k(n_k_l)(l1+l)/2(w, w)zzf;‘(k—kl)ﬂ @l/—x:g(/c—&-l). (216)

Also

n—k—2 k—1
1—[ ql+j+2 k(n—k— D+1)/2 (2.17)
i=0 j=0

Hence, it remains only to evaluate

n—k—2
Fily = T] H qu T, Y
i=0 =0
n—k—1

k
]‘[qu’ New, @)V, (2.18)
=l j=1

For k =1, we have

F(l)_( - 1)) qu)

-1
_ q(n—l)/Z(ZD_’ w)%n(nfz)/g @;2 (gfin) ’

the second equality following from (1.9). Now for all 1 < k < n — 3, the relation
F(k + 1)/F(k)

k—1 ik k+1 i+1)(k+1
l—[ g( D (g, )k H(pr et )) (@, @)D
] i

follows easily from (2.18). Applying (2.8) and (2.9) again, this equation can be
simplified to

1
Flk + D/F() = g~ e, e e, an)zh 22 (o)

By induction, it follows that

Fk) = g2 (5, w)%kn(wz)/s( g,k k—1)/2 geok H(gl/) ) . (2.19)

Substituting (2.16), (2.17) and (2.19) into equation (2.15), we find that c(f("_k_l))
equals
kentl (k)2 kn(n—2)/8 SRR
<—n+ n—k)/ e kn(n— ~—g —i
1(@) GO 6,7 T1(a5™)

i=1
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Here we have used the fact that g, - @»ﬁ =1, thus ﬁl/jl . @J/ = dx/% = (w, @), p-
Theorem 2.1 follows at once by substituting this expression into (2.13). O

3. The Whittaker Function for the Induced Series

In this section, we will slightly modify the notation of Section 2 by appending the
superscript prime ~(/) to the various symbols introduced Lhere. Thus, we now write
G':=GL,1(F), G':=GL{_)(F), o' :=0,"), &' : G'> G, Y : N" - C*, and so
on. We continue to assume that n > 2, |n|p = 1, and ¢ is odd.

Now let G := GL,(I), let G := GLO(F), and let ¢ := o, (cf. Section 1). Let T be
the subgroup of diagonal matrices in G. Then by (1.2):

s()s(t) =s(tt) [ [ f)p.  forall e,/ eT,
i<j

and therefore:

s()s()s(~'s() " = [ [ )" (det s, det 1)y,

1

Let Z be the center of G and Z := p~'(2). Although Z is not the center of G, this
relation implies that Z is Abelian.

Using the representation (6, V) introduced in Section 2, we will next construct a
certain series of induced representations of the metaplectic group G. Consider the
embedding of G’ into G given by

. ! g !
1: G'—aG, gn—)( detgl)’ for allg € G".
By Theorem 1.1, it follows that the map 1 gives rise to an embedding of G into G:
T.G—G, (8.9 ~((g).8), forallge G, ¢ep,

In other words,

(s'(@)¢) =s(1(g))¢,  forallge G, & e p,
Now let P be the standard parabolic subgroup of type (n —1,1) in G, M its Levi
component, and U its unipotent radical. Then M = G’ x ™, and U is isomorphic
to (n—1) copies of the additive group F. Let P:=p~'(P), M :=p (M), and
U* :=s(U). We define:

P, = {p € P|detp € *"}, Fn =p (P

Observe that P, is the semidirect product of the groups ("), 7(F*"), and U*, where:

T — G, x|—>s<1 x)’ for all x € F*.

Here I’ denotes the identity matrix in G’. Since the groups T(é/) and (") commute,
it follows that the representation (0, V) can be extended to a genuine representation

Op: P, — Aut(Vy) by the formula
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0p (1 (x)u)f = 0(g)f, forallge G/, xe ", ue U*, feV,.

Now let dp be the modular character of P. We will regard dp as a character of P that

is trivial on u,. For every s € C, let (ny, V) be the (normalized) induced representa-
i

tion Ind% (85 0p). Here

Vyi={f€ CG; Vo) | fipg) = 6p(p) T 0p(p)fig) for all p € P,, g € G},

where C°°(C~?; V) is the space of locally-constant functions f: G — V. The group G
acts on V by right translation: n,(g)f(g’) := f(¢'e), for all g, ¢’ € G, feVv.

For the remainder of this section, we fix an element a € O*. We will next construct
a certain Whittaker function W, ,: G — C associated to the representation 7, and
the goal of this section is to calculate the special value le,a(i). To define W;,, we
first observe that the space V contains a unique normalized K*-fixed vector. That
is, there exists a unique vector ¢, € V such that ny(k)¢p, = ¢, for all k € K*, and
¢,(I) = ¢, where ¢, is the normalized K'*-fixed vector in the space of 6 (cf. Section
2). More precisely,

b(2) = { Sp(p) 5 0p(p)y, if g = pk for some p € P,, k € K*,
§ , otherwise,

forall g € G. Next, let : ' — C* be the nontrivial additive character chosen in Sec-
tion 2, and let ' be the corresponding character of N'*. Let , be the unique char-
acter of N* that satisfies for all x € I:

- _Jlax), ifi=1,
W, (7i(x) = { Y(x), if2<i<n-—1.

Finally, let A;,: Vy — C be the linear functional defined by

Dsalf) = / /l()f(s<1 f/xn_l»l;(axl)dx, for all f € V. 3.1)

X1...

= 1

Here dx := dx; ...dx,_;, where each dx; is the unique Haar measure for I such that
Vol(O; dx;) = 1. Note that if Re(s) is sufficiently large, the integrals defining A, , con-
verge absolutely; otherwise, the integrals are understood to represent their regular-
ized values. The functional A,, is clearly a ,-Whittaker functional for ;.
Although the space of all such functionals has dimension 72, the following theorem
uniquely characterizes A; .

THEOREM 3.1. Up to multiplication by a scalar, A, is the only linear functional
A Vg — C that satisfies the properties:

/I(nx(n)f) =y, (M), forall n € N*, fe Vi, (3.2)
and
Ma(sCe- D)) = 20"y (OPA). for all x € T, fe V. (3.3)
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Proof. The uniqueness assertion was proved by Bump and Lieman [BL]. The fact
that 4, satisfies (3.2) and (3.3) is an immediate consequence of definition (3.1). To

see that Ay, # 0, let w = ( 1/), and let w := s(w). Choosing m > 0, let ¢, be the
element of V defined by

¢ (g) = 5P(p)s+%0p(p)(f)0, if g = pivk for some p € Py, k € K.
s\8 .
0, otherwise,

for all g € G. Then it is easily seen that A 4(¢)) = ¢~ £ 0. O]

The Whittaker function W, : G — C can now be defined as follows:
Wia@) i= 2sa(n(@)d,),  forallgeG.
Note that for all ¢ € u,, x € ¥, ne N*, g € G, k € K*:
Wia(EsGe-Dingk) = Ex(x)"™"9, ()Y (M) W o).
The main result of this section is the following theorem:

THEOREM 3.2. Let W, be the Whittaker function defined above. If n is odd, or
n=2or4(modS8), then

L(ns, 7 G, a)p)
L(n2s, 1)
If n is odd, or n=0o0r6(mod?8), then

L(ns, 2 C, —a)p)
L(n?s, y")

Wv,a(T) =

Ws,a(7) =

Here (-, xa)p denotes the (unramified) quasicharacter given by x +— (x, xa)y for all
x € %, and for any unramified quasicharacter y, : B> — C*, L(s, x.) is the standard
local L-function given by L(s, x.) := (1 - ;(O(w)q’f)71

Proof. By definition,

W=t = [ (s(, [, ))Hanar

Fn—l

Since:

o Xp—1

r oo . -
S<1 . ) = sn—lnnq(xn,l). . .slnl(xl) = 1_[ Sini(xi),

i=n—1

we have that

i=n—1

2
W,o(D) = / 7ue¢.y< l_[ Simi(x;) 'Flﬁl(xl))w(axl)dx- (3.4
!
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Now for all x € I¥, we introduce the notation

. {1, ifxeO,
X =

x, ifxg0,
and:
_]o, if x € O,
X7l ifxgo.

Then it is easily shown that
S(x) = W@ Dk(x),  forallxeF, 1<i<n—1, (3.5)

where l;-(x) is an element of K*. Applying this relation with i = 1, and using the fact
that ¢, is K*-fixed, the integral in (3.4) becomes

2 ~ -
/ i()%( 1_[ é~‘ﬂ7i(Xi)'711(551)h1(561_1)>l//(axl)dx- (3.6)

-l i=n—1

Next, we observe that

2 ; . . 2
~~ ~ . 1 —X1X2...— X1Xy—1 X1 ~~
[T st - mG) = S< r [T sice,
i=n—1 i=n—1
and
2 5 N 2
~~ .1 c ANy e n=2 ~~ .
[T St - Gy = GG, 05 T Sidxa/x).
i=n—1 i=n—1

Here we use the notation }7, J(x) = s(h,-_‘,-(x)), where £; j(x) is the diagonal matrix with
x in the ith position, x~! in the jth position, and 1’s elsewhere along the diagonal.
After substituting the preceding identities into (3.6), we obtain

1 _ . R . _ . - 2
/ i()ff)s(S( e 7 e lXI)hl,n(fCl_l) I1 E;‘ﬁi(xi/xl))x

-1 i=n—1

x (X1, %) Yaxy) dx
~ 2 B B
= / io%(hl,n(fcrl) I1 'fir%(xi/xl))<x1,xl)f;lep(axl)w(xm)dx

-1 i=n—1

~ 2 - -
= / ms(hl,n(xll) I1 m(xi))unﬁ2(x1,xl)frrzw(axl)wxlx‘lxz)dx.

-1 i=n-1

https://doi.org/10.1023/A:1021763918640 Published online by Cambridge University Press


https://doi.org/10.1023/A:1021763918640

174 WILLIAM BANKS ET AL.

Here we have made the change of variables {x; — x;x;|2 < i< n— 1}. Similarly,
using relation (3.5) with i = 2, it follows that W, ,(I) equals

- - 3
/ ws(hl,n(x;l)hz,n(x;‘)o [ af%(x»)x

-1 i=n—1
C n—21 e n=3s. e =2, - \n=37 T T
x X121l (G, X087 (G, %) Wlax)P(x1E )P (X2Xx3) dx.

Continuing inductively in this manner, we find that Ws,a(f) is equal to

n—1 n—1 n—1
/ Ao, (]‘[ h,-,no'c,“)) [Tt G 0 ae) [ TG 1) dix.
i=1 i=1 j=2

[ 1

(3.7)

To evaluate the integral (3.7), note that we can restrict the domain of integration
to (I — {0})"~" without affecting the result. We regard this new domain as a disjoint
union

=y~ = | R,
fezr!
Where, for all f = (f,,....,f, ) e Z"",
R :=={(x1, ..., xu_1) € " No(x;) = f, for all i}.

For fixed f € 77!, the contribution of region R(f) to the integral (3.7) can be eval-
uvated as follows. For 1 <i<n—1, let

5o 10 il =0,
T, iff <.

)

Then for all (xy,...,x,-1) € R(f), we have x; = x}’, X, = 5,~xi_1, and x;X; = 0;, and

our goal is therefore to compute:

n—1 n—1 . ) i) n—1 _
f na (Hh,»,,xx,—(’f)) [T et P, xp2 " Dax)) [ [ (0-17) dx.
i=1 i=1 j=2

R(H)
(3.8)

After the change of variables {x; — @'x;|1 <i<n— 1}, we obtain
n—1

a7, o)==
=1

n—1 n—1
x / m(]‘[m,n(w—éfffx,-5"))w(aw“x1)1"[w(w@”fx,-)dx.
i=1 j=2

,\‘1,,4.,.36,,,1€OX

https://doi.org/10.1023/A:1021763918640 Published online by Cambridge University Press


https://doi.org/10.1023/A:1021763918640

WHITTAKER-FOURIER COEFFICIENTS OF METAPLECTIC EISENSTEIN SERIES 175

By a straightforward cocycle calculation,

nle . R }171~ . n—1n—1 . 5
[ [hin@21x72) =T @ D) [ i T [@* X,
i=1 i=1 j=1 i=j

where 6f € 7"~! is defined by (6f), := ;f; = min(f,, 0) for all i. Since E,n(xféf) lies in
K* for all x; € O, it follows from the definition of ¢, that (3.8) is equal to

n—1

W, (S/(w_—éf)) l_[ q—é,-f,v(—ns-k—%—i)—f,-(w, w)iff;("—i—l) %

i=1

n—1n—1 n—1
S B | ) (R TEe) § 2L
j=2

X[....,X,,,1€O\ j:1 i:j
(3.9)
Now we define
G(i; j) = f (w7, X) Y(w/x)dx, foralli,je 7
xeO*
It is easy to verify that
1—¢7", ifi=0(modn)andj >0,
Gip=1{ ey, ifj=-1, (3.10)
0, otherwise.
By Fubini’s theorem, the integral in (3.9) is the product of
n—1 - . _ i n—1 . n—1
/ [ @7, e aw™ x1) dxy = [ [@T, a0 G(61 D 6ifi: 1),
oot =1 i=1 p
(3.11)
and:
n—1 5, _ . n—1
/ H(wﬁfﬁ, X)) (@) dx; = G(éjz(sif,-; dj-11)) (3.12)
i=j i=j

x;€0"

forall2 <j<n—1.

Now according to [KP] Theorem 1.4.2, W, (s/("sf)) =0, unless 61f; < d,f, < -+ <
Ou_1fy,_;- This implies that (3.9) vanishes unless f; < --- <f, <0 and
frg1s-wes Tue1 = 0 for some k with 0 < k <n— 1. On the other hand, it follows from
(3.10) that right side of (3.11) vanishes unless f; > — 1. Hence, we may assume that {
has the form ((—1);, fxpys--., T,m1) with f0q,...,f,; = 0. In this case, §;=1 if
1 <i<k, and §; =0 otherwise. Consequently Wy(s'(@ ")) = W, (s’(zzrf(k))), where
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f(k) is the special element ((1);, (0),_,_;) € 7! considered in Section 2. When f has
the special form above, the first product in (3.9) simplifies to

n—1
q—k(2)1.y—i1+k)/2(w_’ w)§FI€71)/2 l_[ q_h.
i=k+1

Using (3.10), we also find that (3.11) equals

n—1 R *17 if k= 0,
u(w‘)’“,a bl j] 5125fn Tl { _l(w a)k ( —k) lkal

and for all 2 <j<n—1, (3.12) is equal to

,1(_]1»1)’ lf2<<k,
( Zéf/s 5] 1T/>_{q qil . J .

', ifk+l1<j<n—1.

Combining all of these results, it follows that (3.9) is equal to

—k(2r k(k—1)/2 —i _
W@(S (ZD’ ))(] k(2ns— n+k+2)/2(w_ Cl) (w, ZU)( )/ Hq i) 1_[ q T’(l —(]
i=k+1

Now to compute the integral (3.7), we apply the preceding result, summing the
contributions from all regions R(f) such that f has the form ((—1), fro1, .-+, Ta1)s
Frats-oos o1 =0, with 0 < k <n— 1. If we collect together the contributions for
each fixed Value of k and use the fact that

n—1

>. Ilata-ghH=1

Frtsernfuog =0 i=k+1

it follows that

n—1

WeaD) = Y Wols' (@ )g 22 0 ) (e, e~ ‘”Zl_lgﬁfn
k=0 o

Finally, we substitute the explicit value of W) (s’(wf(k))) given by Theorem 2.1, and
we obtain

n—1

WoaD = Y 1) (e, @), a2 288 gk

_ | - y(@)'q™""
1 — y(o) (@, a)p(w, —1)%?(n2+2n+8)/8 g

er (P +2n+8)/8
_ L(ns, 1 (-, @) (-, =DV
L(n2s, y) '

This completes the proof. OJ
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