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In this note we study commutative Baer rings, uniting the abstract algebraic
approach with the approach of [3] using minimal prime ideals. Some new charac-
terisations of this class of rings are obtained, relations between the minimal
prime ideals of a commutative Baer ring B and its algebra EB of idempotents are
considered, and some results concerning the direct decomposition of commutative
Baer rings are given. We then study Baer ideals, and finally state without proof
a new construction of the Baer extension of a commutative semiprime ring.

It is a pleasure to acknowledge valuable discussions with Michael Evans on
many aspects of this topic, and with Don Taylor on the material in section 6.

Throughout our notation and terminology will be the same as in [3], apart
from some slight changes. Proofs of most of the basic results concerning minimal
prime ideals are given in [3] and we will use these without comment.

In this section A denotes a commutative ring with identity, and we will give
some necessary and sufficient conditions for A to be a commutative Baer ring.
I(A) denotes the lattice of all ideals of A.

THEOREM 2.1. For a commutative semiprime ring A satisfying the fol-
lowing condition: C(*):for every aeA there exists a' eA such that (a)** = (a')*
the following are pairwise equivalent:

(i) (a)* + (a)** = A for every aeA.
(ii) (ab)* = (a)* + (b)* for every a and be A.
(iii) {(a)** :aeA} is a Boolean sublattice of 1{A).
(iv) For every a and b eA such that ab = 0 there exists e = e2 such that

ae = a and b(l — e) = b.
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PROOF, (i) =*- (ii). If (a)* and (b)* are direct summands of A then there are
idempotents e and/such that (a)* = (e), (6)* = (/). From this we have

(ab)* = (ab)*** = ((a)** n (6)**)* = ((1 - e) n (1 - / ) ) * = (e + / - ef)

= (e) + (/) = (a)* + (b)*.

(ii) => (iii) Using condition C(*) we see that

(a)** + (&)•• = (a')* + (b')* = (a'b')* = ((a'b')')**;

also (a)** n (6)** = (ab)** is always valid.

(iii) => (iv) and (iv) => (i) are easy to prove and we omit the details.

Our next result shows that under a suitable extra hypothesis, a converse to
a result of Kist can be obtained.

THEOREM 2.2. Let A be a commutative semiprime ring satisfying the fol-
lowing condition GC(*):for every aeA there exists {a1;---,am} c. A such that
(a)** = p|f=1 (at)*. Then A is a commutative Baer ring iff for every pair of
distinct minimal prime ideals M and N of A we have M + N = A.

PROOF. The direct part of the theorem is Theorem 9.5 of [3]. For the converse
suppose that A satisfies GC{*) but there exists aeA with (a)* + (a)** # A. Then
we can find a (proper) prime ideal P of A with (a)* + (a)** c f c i , By our
assumption P contains a unique minimal prime ideal and so the localisation at
P, the ring AP, contains a unique minimal prime, i.e. is an integral domain. If
xf+x/1 is the canonical map from A into AP then a/I =£ 0/1 since P 2 (a)*.
Also if a,/l =0/1 for every i we would have atsi = 0 for some s^P (1 <; j _ m)
whence s = st • s2 sm $ P satisfies

se f ) (fl|.)* = (a)**£P,
> = i

an impossibility. So a,-/I # 0 / 1 for some,/. But now we obtain the final contra-
diction, for a /I • Oy/1 = 0/1 which is impossible in the integral domain Aj. Hence
(a)* + (a)** = A for every aeA, and the result is proved

REMARK. The extra hypothesis GC(*) is necessary. For if A" is a compact
f-space which is not basically disconnected, the ring C(X) is not Baer, but
distinct minimal primes are comaximal. For details see [2].

We now exhibit some connections between the minimal primes of a com-
mutative Baer ring B and the Boolean lattice EB of idempotents of B. The following
lemmas are easily established.
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LEMMA 3.1. In any commutative Baer ring B, if ab = 0 then {a + b)*
= a*b* and (a + b)** = a** + b**.

LEMMA 3.2. In any commutative ring A, if aeA can be written as
a = Z7=i a fix where ef = e, (1 ^ i 5= m) then there are coefficients bt and ortho-
gonal idempotents / , (1 ̂  i ^ m) with ft gj et (1 gj i g m) and a = X7=i

THEOREM 3.3. Let A be a commutative ring with identity. If M is a prime
ideal of A then M n EA is a prime ideal ofEA. Conversely, ifP is a prime ideal
ofEA, and A is a commutative Baer ring, then the ideal (P) of A generated by P
is a minimal prime ideal of A.

PROOF. The first statement is straightforward. We will show that (P) is a
minimal primeof/lifPisa prime of EA. Suppose abe (P), i.e. ab = E,"L, xfi{

for xteA, and eteP with 1 ^ i ^ m. Then by 3.2 we also have ab = E7=i ytft
where yt e A with 1 :g i ^ m and the {/,} is a set of orthogonal idempotents, also
in P. By a generalized form of 3.1 we have

a**b** = (ab)** = £ <>,•/;)** = I J?*/,e-P

whence a** e P or b** eP. This immediately implies that a e (P) or b e (P), and
so (P) is prime. Finally (P) is minimal prime since a= 'L"=laieie(P) for
{e;} £ P implies that

and so 3 ^ (P), and ag = 0. The proof is complete.
This result enables us to obtain another characterisation of commutative

Baer rings.

THEOREM 3.4. Let A be a commutative semiprime ring satisfying GC(*)
of 2.2. Then A is a commutative Baer ring iff for any minimal prime ideal M
of A we have M = (M n Ej).

PROOF. It is straightforward to prove using 3.3 that if A is a commutative
Baer ring then M=(Mr\ E^ for M minimal prime. For the converse, suppose M
and N are distinct minimal primes of A. By hypothesis we must have M r\EA

and NnEA distinct prime, and hence maximal, ideals of EA. Thus M c\EA

and N nEA together generate EA and so M + JV = A. The theorem now follows
from 2.2.

It is easy to show that (arbitrary) direct products of integral domains are
commutative Baer rings. We now consider possible converse results.

https://doi.org/10.1017/S1446788700010715 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700010715


260 T. P. Speed [4]

LEMMA 4.1. Let B a commutative Baer ring and e an atom of the Boolean
algebra EB of idempotents. Then (e)B is an integral domain.

PROOF. Suppose ab = 0 for a and b in (e)B. Then a**b** = 0 and, since e
is an atom, a** = 0 or e and b** = 0 or e. Clearly either a** or b** must be 0
whence either a or b is zero.

THEOREM 4.2. Let B be a commutative Baer ring. Then B is Noetherian
iff B is a finite direct product of Noetherian integral domains. If B is finite
then it is a finite product of finite fields.

PROOF. Suppose B is a Noetherian commutative Baer ring. Then B possesses
only finitely many minimal prime ideals and so we deduce by 3.4 that EB is finite,
hence atomic. If the atoms of EB are ely---,em, then it is easy to check that the
map a -* <ae,>,l L for a e B defines as isomorphism of B onto the product
XT=i ( O B °f domains, each of which is clearly Noetherian. The converse and
the final remark are both clear.

Next we ask when a commutative Baer ring B is a product of possibly in-
finitely many integral domains. To do this we use the partial order ^ on any
commutative semiprime ring A which extends that on EA, given by a ^ b if
ab = a1. For details and some results which we shall use, see [1]. A subset
S £ A is said to be orthogonal if st = 0 for s, teS with s ^ t. The ring A is
said to be orthogonally complete if every orthogonal subset has a join relative
to the partial order ^ .

THEOREM 4.3. Let the ring A be isomorphic to a direct product of integral
domains. Then A is a commutative Baer ring satisfying:

(i) EA is an atomic Boolean ring;
(ii) A is orthogonally complete.

Conversely, let A be a commutative Baer ring satisfying (i) and (ii) above.
Then A is isomorphic to a direct product of integral domains.

PROOF. Let </>: A ->• X ; £ / A- be an isomorphism of A onto a product of
domains, such that a<p = <a;>,-6 j . Then by results in [1] we see that A is a com-
mutative Baer ring, and the idempotents of A are the inverse images of element
<e,->ie/ where et = 0, with i e / , and et = 1; with iel \Ilt for Jx any subset of / .
Thus EA is seen to be isomorphic to the Boolean ring of subsets of / , which is
atomic. The fact that A is orthogonally complete is proved exactly as in [1]
p. 506 and so we omit the details.

Now for the converse. Index the atoms of EA by the set / and for the atom
e; write Dt = (et)A, a domain by 4.1. We define a map

il/:A->X (et) by aij/ = <ae,->ieJ.
iel
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It is easy to see that the elements aet are all zero if a = a** = 0, and so f is
seen to be a ring monomorphism. Suppose <«,-> e X,-e / (e,), then the set {a^iel}
is orthogonal in A and hence has a supremum a (relative to :g). Then by a
result in [1] we have

ae} = I V a, I e,- = V a&j = as
\ i I i

and so a^i = <a,>, 6 7 proving that i/' is onto, and completing our proof.

REMARK. In a first draft of this work an equivalent theorem was proved
which did not use the partial order; after seeing [1] the above neater formulation
was obtained.

Next, we consider Baer-ideals, the kernels of the morphisms of a commu-
tative Baer ring when the latter is considered as an abstract algebra.

THEOREM 5.1. Let B be a commutative Baer ring. Then the following are
pairwise equivalent, for an ideal J of B.

(i) J is a Baer-ideal, i.e., a — beJ implies a* — b*eJ.
(ii) If aej and a* = b* then bej.
(iii) aeJ iff a**eJ.
(iv) J = n {MeJ?B:M 2 J}.

Here M b is the set of all minimal prime ideals of B.

PROOF, (i) => (ii) Suppose J is a Baer-ideal, and aeJ and b* = a*. Then

a* - 1 = b* -\eJ and so b**eJ whence b = bb** ej, proving (ii).

(ii) => (iii) If aeJ then (a**)* = a* implies a**ej. Also a**eJ implies

a = a**a eJ.
(iii) => (iv) We note firstly that J is a radical ideal. For if a"ej then

(a")** = a**ej and so a = aa**ej. This means that J is the intersection of
all the prime ideals of B minimal with respect to containing J , and we now show
that each such ideal is actually a minimal prime ideal of B. Let P be a minimal
prime belonging to J; there exists for every a e P a n element xsP such that
axej. Clearly (ax)** £ J c p and so (ax)* $ P since B is a Baer ring. Thus
there is t e (ax)* \P i.e. t<£P such that axt = 0. But xtfP and hence P is charac-
terised as a minimal prime ideal of B, and J is the intersection of minimal primes
as asserted.

(iv) => (i) We omit the easy proof that any minimal prime ideal, and hence
any intersection of minimal primes, is a Baer idael.

COROLLARY 5.2. For any K <= B, K* is a Baer-ideal.
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PROOF. K* = O {Me JtB: M $ K} by a result in [3].

THEOREM 5.3 Let B be a commutative Baer ring. Then the lattice Ib(B)
of all Baer-ideals of B is isomorphic to the lattice I(EB) of all ideals of the
Boolean ring EB.

PROOF. The map J*^JC\EB of Ib(B) into I(EB) is mono by 5.1 (iii) above.
It is certainly onto all prime ideals of EB by 3.4 and so, using 5.1 (iv) it is onto
I(EB). Since the map is clearly order-preserving the theorem is proved.

COROLLARY 5.4. The lattice Ih(B) of all Baer-ideals ofB is a complete, rela-
tively pseudo-complemented (and hence distributive) lattice. Ih(B) is a Stone
lattice if EB is a complete Boolean algebra.

PROOF. These facts follow from known results concerning the lattice of
ideals of a Boolean algebra and 5.3.

To close this note we mention an alternative construction of the Baer ex-
tension of a commutative semiprime ring. The main virtue of our approach is
that it enables (i) a functorial characterisation of the map A -> B(A) and (ii) a
characterisation of the map A -* B(A) in terms of the dual semilattice of [3],
to be given. We do not give any details as the proofs are all very similar to ones
appearing in another context [4]. Let us call a ring morphism <j>: A-+A' R-com-
patible if (a)* = (b)* in A implies (a<£)* = (b<t>)* in A'. It is easy to see that if
A and A' are commutative Baer rings then 4> is ^-compatible if the kernel
ker <p of 0 is a Baer-ideal of A.

THEOREM 6.1. Let A be a commutative semiprime ring. Then there is a
commutative Baer ring B(A) and an R-compatible ring monomorphism
fi: A -> B(A) with the following property: for every R-compatible ring morphism
4>: A -> B of A into a commutative Baer ring B, there is a unique Baer morphism
<j>:B(A) ->• B such that fi o (j> = <f>. The pair (fi,B(A)) is unique.

COROLLARY 6.2. Let E be a commutative Baer ring. Then there is a Baer
monomorphism fi from B onto a Baer subring of a direct product of integral
domains.

For the next corollary we need some notation. If .M'A is the set of minimal
prime ideals of A, the dual semilattice is

where Jt'A(a) = { M e i r
i l : a ^ M } . W e write p.A for the Boolean lattice generated

by HA- Jf <!>'• A ->• A' is .R-compatible, we have an induced map
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(j>*-.HA^> ni given by ^A(a)<j>* = Jl A.(a§),

and this map extends to pA.

COROLLARY 6.3. The pair (P,B(A)) satisfies the following conditions:

(i) P:A^B(A) is an R-compatible ring monomorphism of A into a
commutative Baer ring;

(ii) The induced map /?*: pA -> HB(A) IS a Boolean isomorphism;
(iii) For every seB(A) there are elements ai,---,am of A and idempotents

e1,--,emofB(A)witheieJ = 0(i^j)and Sr=i et = 1 such that s= YJ?=l (a,jS)e.-.

Thus our Baer extension satisfies conditions given in Kist [3]. We now give our
final result.

THEOREM 6.4. Let (k,K(A)) be an extension of the commutative semiprime
ring A satisfying conditions (i), (ii), (Hi) of 6.3. Then there are Baer isomor-
phisms k: B(A) -• K(A)andJ3:K(A) -> B(A)such thatk° P = ' B U ) , j 5 o k ='KUy
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