A NOTE ON COMMUTATIVE BAER RINGS

T. P. SPEED

(Received 24 March 1970; revised 1 May 1970)

Communicated by B. Mond

In this note we study commutative Baer rings, uniting the abstract algebraic approach with the approach of [3] using minimal prime ideals. Some new characterisations of this class of rings are obtained, relations between the minimal prime ideals of a commutative Baer ring B and its algebra E_B of idempotents are considered, and some results concerning the direct decomposition of commutative Baer rings are given. We then study Baer ideals, and finally state without proof a new construction of the Baer extension of a commutative semiprime ring.

It is a pleasure to acknowledge valuable discussions with Michael Evans on many aspects of this topic, and with Don Taylor on the material in section 6.

1

Throughout our notation and terminology will be the same as in [3], apart from some slight changes. Proofs of most of the basic results concerning minimal prime ideals are given in [3] and we will use these without comment.

2

In this section A denotes a commutative ring with identity, and we will give some necessary and sufficient conditions for A to be a commutative Baer ring. I(A) denotes the lattice of all ideals of A.

THEOREM 2.1. For a commutative semiprime ring A satisfying the following condition: C(*): for every $a \in A$ there exists $a' \in A$ such that $(a)^{**} = (a')^*$ the following are pairwise equivalent:

- (i) $(a)^* + (a)^{**} = A \text{ for every } a \in A.$
- (ii) $(ab)^* = (a)^* + (b)^*$ for every a and $b \in A$.
- (iii) $\{(a)^{**}: a \in A\}$ is a Boolean sublattice of I(A).
- (iv) For every a and $b \in A$ such that ab = 0 there exists $e = e^2$ such that ae = a and b(1 e) = b.

PROOF. (i) \Rightarrow (ii). If (a)* and (b)* are direct summands of A then there are idempotents e and f such that (a)* = (e), (b)* = (f). From this we have

$$(ab)^* = (ab)^{***} = ((a)^{**} \cap (b)^{**})^* = ((1-e) \cap (1-f))^* = (e+f-ef)$$
$$= (e) + (f) = (a)^* + (b)^*.$$

(ii) \Rightarrow (iii) Using condition C(*) we see that

$$(a)^{**} + (b)^{**} = (a')^* + (b')^* = (a'b')^* = ((a'b')')^{**};$$

also $(a)^{**} \cap (b)^{**} = (ab)^{**}$ is always valid.

(iii) \Rightarrow (iv) and (iv) \Rightarrow (i) are easy to prove and we omit the details.

Our next result shows that under a suitable extra hypothesis, a converse to a result of Kist can be obtained.

THEOREM 2.2. Let A be a commutative semiprime ring satisfying the following condition GC(*): for every $a \in A$ there exists $\{a_1, \dots, a_m\} \subseteq A$ such that $(a)^{**} = \bigcap_{i=1}^m (a_i)^*$. Then A is a commutative Baer ring iff for every pair of distinct minimal prime ideals M and N of A we have M + N = A.

PROOF. The direct part of the theorem is Theorem 9.5 of [3]. For the converse suppose that A satisfies GC(*) but there exists $a \in A$ with $(a)^* + (a)^{**} \neq A$. Then we can find a (proper) prime ideal P of A with $(a)^* + (a)^{**} \subseteq P \subseteq A$. By our assumption P contains a unique minimal prime ideal and so the localisation at P, the ring A_P , contains a unique minimal prime, i.e. is an integral domain. If $x \mapsto x/1$ is the canonical map from A into A_P then $a/1 \neq 0/1$ since $P \supseteq (a)^*$. Also if $a_i/1 = 0/1$ for every i we would have $a_i s_i = 0$ for some $s_i \notin P$ $(1 \le i \le m)$ whence $s = s_1 \cdot s_2 \cdot \cdots \cdot s_m \notin P$ satisfies

$$s \in \bigcap_{i=1}^{m} (a_i)^* = (a)^{**} \subseteq P$$
,

an impossibility. So $a_j/1 \neq 0/1$ for some j. But now we obtain the final contradiction, for $a/1 \cdot a_j/1 = 0/1$ which is impossible in the integral domain A_I . Hence $(a)^* + (a)^{**} = A$ for every $a \in A$, and the result is proved

REMARK. The extra hypothesis GC(*) is necessary. For if X is a compact F-space which is not basically disconnected, the ring C(X) is not Baer, but distinct minimal primes are comaximal. For details see [2].

3

We now exhibit some connections between the minimal primes of a commutative Baer ring B and the Boolean lattice E_B of idempotents of B. The following lemmas are easily established.

LEMMA 3.1. In any commutative Baer ring B, if ab = 0 then $(a + b)^* = a^*b^*$ and $(a + b)^{**} = a^{**} + b^{**}$.

LEMMA 3.2. In any commutative ring A, if $a \in A$ can be written as $a = \sum_{i=1}^{m} a_i e_i$ where $e_i^2 = e_i$ $(1 \le i \le m)$ then there are coefficients b_i and orthogonal idempotents f_i $(1 \le i \le m)$ with $f_i \le e_i$ $(1 \le i \le m)$ and $a = \sum_{i=1}^{m} b_i f_i$.

THEOREM 3.3. Let A be a commutative ring with identity. If M is a prime ideal of A then $M \cap E_A$ is a prime ideal of E_A . Conversely, if P is a prime ideal of E_A , and A is a commutative Baer ring, then the ideal (P) of A generated by P is a minimal prime ideal of A.

PROOF. The first statement is straightforward. We will show that (P) is a minimal prime of A if P is a prime of E_A . Suppose $ab \in (P)$, i.e. $ab = \sum_{i=1}^m x_i e_i$ for $x_i \in A$, and $e_i \in P$ with $1 \le i \le m$. Then by 3.2 we also have $ab = \sum_{i=1}^m y_i f_i$ where $y_i \in A$ with $1 \le i \le m$ and the $\{f_i\}$ is a set of orthogonal idempotents, also in P. By a generalized form of 3.1 we have

$$a^{**}b^{**} = (ab)^{**} = \sum_{i=1}^{m} (y_i f_i)^{**} = \sum_{i=1}^{m} y_i^{**} f_i \in P$$

whence $a^{**} \in P$ or $b^{**} \in P$. This immediately implies that $a \in (P)$ or $b \in (P)$, and so (P) is prime. Finally (P) is minimal prime since $a = \sum_{i=1}^{m} a_i e_i \in (P)$ for $\{e_i\} \subseteq P$ implies that

$$g = (1 - e_1)(1 - e_2) \cdots (1 - e_m) \notin P$$

and so $g \notin (P)$, and ag = 0. The proof is complete.

This result enables us to obtain another characterisation of commutative Baer rings.

THEOREM 3.4. Let A be a commutative semiprime ring satisfying GC(*) of 2.2. Then A is a commutative Baer ring iff for any minimal prime ideal M of A we have $M = (M \cap E_A)$.

PROOF. It is straightforward to prove using 3.3 that if A is a commutative Baer ring then $M = (M \cap E_A)$ for M minimal prime. For the converse, suppose M and N are distinct minimal primes of A. By hypothesis we must have $M \cap E_A$ and $N \cap E_A$ distinct prime, and hence maximal, ideals of E_A . Thus $M \cap E_A$ and $N \cap E_A$ together generate E_A and so M + N = A. The theorem now follows from 2.2.

4

It is easy to show that (arbitrary) direct products of integral domains are commutative Baer rings. We now consider possible converse results.

LEMMA 4.1. Let B a commutative Baer ring and e an atom of the Boolean algebra E_B of idempotents. Then $(e)_B$ is an integral domain.

PROOF. Suppose ab = 0 for a and b in $(e)_B$. Then $a^{**}b^{**} = 0$ and, since e is an atom, $a^{**} = 0$ or e and $b^{**} = 0$ or e. Clearly either a^{**} or b^{**} must be 0 whence either a or b is zero.

THEOREM 4.2. Let B be a commutative Baer ring. Then B is Noetherian iff B is a finite direct product of Noetherian integral domains. If B is finite then it is a finite product of finite fields.

PROOF. Suppose B is a Noetherian commutative Baer ring. Then B possesses only finitely many minimal prime ideals and so we deduce by 3.4 that E_B is finite, hence atomic. If the atoms of E_B are e_1, \dots, e_m , then it is easy to check that the map $a \to \langle ae_i \rangle_{i=1}^n$ for $a \in B$ defines as isomorphism of B onto the product $\times_{i=1}^m$ $(e_i)_B$ of domains, each of which is clearly Noetherian. The converse and the final remark are both clear.

Next we ask when a commutative Baer ring B is a product of possibly infinitely many integral domains. To do this we use the partial order \leq on any commutative semiprime ring A which extends that on E_A , given by $a \leq b$ if $ab = a^2$. For details and some results which we shall use, see [1]. A subset $S \subseteq A$ is said to be orthogonal if st = 0 for s, $t \in S$ with $s \neq t$. The ring A is said to be orthogonally complete if every orthogonal subset has a join relative to the partial order \leq .

THEOREM 4.3. Let the ring A be isomorphic to a direct product of integral domains. Then A is a commutative Baer ring satisfying:

- (i) E_A is an atomic Boolean ring;
- (ii) A is orthogonally complete.

Conversely, let A be a commutative Baer ring satisfying (i) and (ii) above. Then A is isomorphic to a direct product of integral domains.

PROOF. Let $\phi: A \to \times_{i \in I} D_i$ be an isomorphism of A onto a product of domains, such that $a\phi = \langle a_i \rangle_{i \in I}$. Then by results in [1] we see that A is a commutative Baer ring, and the idempotents of A are the inverse images of element $\langle e_i \rangle_{i \in I}$ where $e_i = 0_i$ with $i \in I_1$ and $e_i = 1_i$ with $i \in I \setminus I_1$, for I_1 any subset of I. Thus E_A is seen to be isomorphic to the Boolean ring of subsets of I, which is atomic. The fact that A is orthogonally complete is proved exactly as in [1] p. 506 and so we omit the details.

Now for the converse. Index the atoms of E_A by the set I and for the atom e_i write $D_i = (e_i)_A$, a domain by 4.1. We define a map

$$\psi: A \to \underset{i \in I}{\times} (e_i)$$
 by $a\psi = \langle ae_i \rangle_{i \in I}$.

It is easy to see that the elements ae_i are all zero if $a=a^{**}=0$, and so ψ is seen to be a ring monomorphism. Suppose $\langle a_i \rangle \in \times_{i \in I} (e_i)$, then the set $\{a_i : i \in I\}$ is orthogonal in A and hence has a supremum a (relative to \leq). Then by a result in $\lceil 1 \rceil$ we have

$$ae_j = \left(\begin{array}{c} \vee a_i \\ i \end{array} \right) e_j = \begin{array}{c} \vee \\ i \end{array} a_i e_j = a_j$$

and so $a\psi = \langle a_i \rangle_{i \in I}$ proving that ψ is onto, and completing our proof.

REMARK. In a first draft of this work an equivalent theorem was proved which did not use the partial order; after seeing [1] the above neater formulation was obtained.

5

Next, we consider Baer-ideals, the kernels of the morphisms of a commutative Baer ring when the latter is considered as an abstract algebra.

Theorem 5.1. Let B be a commutative Baer ring. Then the following are pairwise equivalent, for an ideal J of B.

- (i) J is a Baer-ideal, i.e., $a-b \in J$ implies $a^*-b^* \in J$.
- (ii) If $a \in J$ and $a^* = b^*$ then $b \in J$.
- (iii) $a \in J$ iff $a^{**} \in J$.
- (iv) $J = \bigcap \{ M \in \mathcal{M}_B : M \supseteq J \}$.

Here \mathcal{M}_B is the set of all minimal prime ideals of B.

PROOF. (i) \Rightarrow (ii) Suppose J is a Baer-ideal, and $a \in J$ and $b^* = a^*$. Then $a^* - 1 = b^* - 1 \in J$ and so $b^{**} \in J$ whence $b = bb^{**} \in J$, proving (ii).

- (ii) \Rightarrow (iii) If $a \in J$ then $(a^{**})^* = a^*$ implies $a^{**} \in J$. Also $a^{**} \in J$ implies $a = a^{**}a \in J$.
- $(iii) \Rightarrow (iv)$ We note firstly that J is a radical ideal. For if $a^n \in J$ then $(a^n)^{**} = a^{**} \in J$ and so $a = aa^{**} \in J$. This means that J is the intersection of all the prime ideals of B minimal with respect to containing J, and we now show that each such ideal is actually a minimal prime ideal of B. Let P be a minimal prime belonging to J; there exists for every $a \in P$ an element $x \in P$ such that $ax \in J$. Clearly $(ax)^{**} \subseteq J \subseteq P$ and so $(ax)^* \not = P$ since B is a Baer ring. Thus there is $t \in (ax)^* \setminus P$ i.e. $t \notin P$ such that axt = 0. But $xt \notin P$ and hence P is characterised as a minimal prime ideal of B, and J is the intersection of minimal primes as asserted.
- $(iv) \Rightarrow (i)$ We omit the easy proof that any minimal prime ideal, and hence any intersection of minimal primes, is a Baer idael.

COROLLARY 5.2. For any $K \subset B$, K^* is a Baer-ideal.

PROOF. $K^* = \bigcap \{ M \in \mathcal{M}_B : M \not\supseteq K \}$ by a result in [3].

Theorem 5.3 Let B be a commutative Baer ring. Then the lattice $I_b(B)$ of all Baer-ideals of B is isomorphic to the lattice $I(E_B)$ of all ideals of the Boolean ring E_B .

PROOF. The map $J \mapsto J \cap E_B$ of $I_b(B)$ into $I(E_B)$ is mono by 5.1 (iii) above. It is certainly onto all prime ideals of E_B by 3.4 and so, using 5.1 (iv) it is onto $I(E_B)$. Since the map is clearly order-preserving the theorem is proved.

COROLLARY 5.4. The lattice $I_b(B)$ of all Baer-ideals of B is a complete, relatively pseudo-complemented (and hence distributive) lattice. $I_b(B)$ is a Stone lattice if E_B is a complete Boolean algebra.

PROOF. These facts follow from known results concerning the lattice of ideals of a Boolean algebra and 5.3.

6

To close this note we mention an alternative construction of the Baer extension of a commutative semiprime ring. The main virtue of our approach is that it enables (i) a functorial characterisation of the map $A \to B(A)$ and (ii) a characterisation of the map $A \to B(A)$ in terms of the dual semilattice of [3], to be given. We do not give any details as the proofs are all very similar to ones appearing in another context [4]. Let us call a ring morphism $\phi: A \to A'$ R-compatible if $(a)^* = (b)^*$ in A implies $(a\phi)^* = (b\phi)^*$ in A'. It is easy to see that if A and A' are commutative Baer rings then ϕ is R-compatible if the kernel $\ker \phi$ of ϕ is a Baer-ideal of A.

THEOREM 6.1. Let A be a commutative semiprime ring. Then there is a commutative Baer ring B(A) and an R-compatible ring monomorphism $\beta: A \to B(A)$ with the following property: for every R-compatible ring morphism $\phi: A \to B$ of A into a commutative Baer ring B, there is a unique Baer morphism $\phi: B(A) \to B$ such that $\beta \circ \phi = \phi$. The pair $(\beta, B(A))$ is unique.

COROLLARY 6.2. Let E be a commutative Baer ring. Then there is a Baer monomorphism β from B onto a Baer subring of a direct product of integral domains.

For the next corollary we need some notation. If \mathcal{M}_A is the set of minimal prime ideals of A, the dual semilattice is

$$\mu_A = \left\{ \mathcal{M}_A(a) \colon a \in A \right\}$$

where $\mathcal{M}_A(a) = \{ M \in \mathcal{M}_A : a \notin M \}$. We write $\overline{\mu}_A$ for the Boolean lattice generated by μ_A . If $\phi: A \to A'$ is R-compatible, we have an induced map

$$\phi^*$$
: $\mu_A \to \mu_A'$ given by $\mathcal{M}_A(a)\phi^* = \mathcal{M}_{A'}(a\phi)$,

and this map extends to $\bar{\mu}_A$.

COROLLARY 6.3. The pair $(\beta, B(A))$ satisfies the following conditions:

- (i) $\beta: A \to B(A)$ is an R-compatible ring monomorphism of A into a commutative Baer ring;
 - (ii) The induced map $\beta^*: \bar{\mu}_A \to \mu_{B(A)}$ is a Boolean isomorphism;
- (iii) For every $s \in B(A)$ there are elements a_1, \dots, a_m of A and idempotents e_1, \dots, e_m of B(A) with $e_i e_j = 0$ $(i \neq j)$ and $\sum_{i=1}^m e_i = 1$ such that $s = \sum_{i=1}^m (a_i \beta) e_i$.

Thus our Baer extension satisfies conditions given in Kist [3]. We now give our final result.

THEOREM 6.4. Let (k, K(A)) be an extension of the commutative semiprime ring A satisfying conditions (i), (ii), (iii) of 6.3. Then there are Baer isomorphisms $\bar{k}: B(A) \to K(A)$ and $\bar{\beta}: K(A) \to B(A)$ such that $\bar{k} \circ \bar{\beta} = {}^{1}_{B(A)}, \bar{\beta} \circ \bar{k} = {}^{1}_{K(A)}$.

References

- [1] A. Abian, 'Direct Product Decomposition of Commutative Semisimple Rings', Proc. Amer. Math. Soc. 24 (1970), 502-507.
- [2] L. Gillman and M, Jerison, Rings of Continuous Functions (Van Nostrand 1960.)
- [3] J. Kist, 'Minimal Prime Ideals in Commutative Semigroups', Proc. Lond. Math. Soc. Ser. 3, 13 (1963), 31-50.
- [4] T. P. Speed, 'A Note on Stone Lattices', Can. Math. Bull. 14 (1971) 81-86.

Department of Probability & Statistics The University Sheffield, S3 7RH England