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Abstract

The purpose of this paper is to develop the theory of equisingular deformations of plane
curve singularities in arbitrary characteristic. We study equisingular deformations of the
parametrization and of the equation and show that the base space of its semiuniversal
deformation is smooth in both cases. Our approach through deformations of the
parametrization is elementary and we show that equisingular deformations of
the parametrization form a linear subfunctor of all deformations of the parametrization.
This gives additional information, even in characteristic zero, the case which was treated
by J. Wahl. The methods and proofs extend easily to good characteristic, that is, when
the characteristic does not divide the multiplicity of any branch of the singularity. In bad
characteristic, however, new phenomena occur and we are naturally led to consider weakly
trivial (respectively, weakly equisingular) deformations, that is, deformations which
become trivial (respectively, equisingular) after a finite and dominant base change. The
semiuniversal base space for weakly equisingular deformations is, in general, not smooth
but becomes smooth after a finite and purely inseparable base extension. The proof of
this fact is more complicated and we introduce new constructions which may have further
applications in the theory of singularities in positive characteristic.
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Introduction

We develop in this paper the theory of equisingular deformations of plane algebroid curve singu-
larities over an algebraically closed field K of arbitrary characteristic. If the curve singularity is
given by the equation f = 0, where f ∈ P = K[[x, y]] is a reduced formal power series, we study
deformations of the local analytic ring R = P/〈f〉, as well as deformations of the map ϕ : P → R
where R is the integral closure of R in its total ring of fractions. The first are called deformations
of the equation and the latter deformations of the parametrization. Since P (respectively, R) are
regular local (respectively, semilocal) rings, deformations of the parametrization are very simple
objects and the semiuniversal object of the corresponding functor Def

R←P
of isomorphism classes

of deformations of ϕ : P → P can be explicitly described in terms of a K-basis of its tangent space
T 1

R←P
. The same holds for deformations with sections Def sec

R←P
.

Equisingular deformations of the parametrization ϕ (with section) are defined by requiring equi-
multiplicity (along some sections) for each infinitely near point of P on R, in a compatible manner.
Of course, we have to consider only the finite set of essential infinitely near points occurring in an
embedded good resolution of P/〈f〉. We prove that the functor Def es

R←P
of equisingular deforma-

tions of the parametrization is a linear subfunctor of Def sec
R←P

and, therefore, also has an explicit
description in terms of a K-basis of its tangent space T 1,es

R←P
(Theorem 3.1). In particular, the base

space of the semiuniversal deformation of the parametrization is smooth. Furthermore, the linearity
allows an easy proof of the openness of versality for equisingular deformations of the parametrization
(Corollary 3.8).

The relation between deformations of the parametrization and deformations of the equation is
based on the fact that the deformation of R can be uniquely recovered from the deformation of
ϕ : P → R. That is, the deformation functor Def

R←P
is natural isomorphic to the functor Def

R←R

of deformations of the normalization, that is, of the normalization map R → R. In the same
way we get an isomorphism Def sec

R←P
∼= Def sec

R←R
for the corresponding deformations with section

(Proposition 1.3) and below we do not distinguish between these two functors. By forgetting R we
have a natural transformation Def sec

R←P
→ Def sec

R
and we denote the image of Def es,sec

R←P
in Def sec

R
by Def es,sec

R
. We show that equisingular sections of deformations of R are unique (Proposition 2.12)

and, hence, by forgetting the section, Def es,sec
R

is isomorphic to Def es
R

. The latter is the functor of
(isomorphism classes of) equisingular deformations of the equation (or of R), which is a subfunctor
of Def

R
, the (usual) deformations of R. The transformation Def es

R←P
→ Def es

R
from equisingular

deformations of the parametrization to equisingular deformations of the equation is, in general, not
an isomorphism. However, we show that it is smooth (Theorem 4.2). This implies the first main
result, that the base space of the semiuniversal equisingular deformation of R is smooth of dimension
equal to the vector space dimension of its tangent space T 1,es

R , in any characteristic.
We have defined equisingular deformations of R as those which lift to deformations of the

parametrization P → R such that this lifting is equisingular along some sections. While the equisin-
gular sections of deformations of R are unique, the lifting to equisingular sections of deformations
of R are not, in general, unique in positive characteristic. Indeed, the behaviour of equisingular
deformations of the equation depend, in contrast to equisingular deformations of the parametriza-
tion, very much on the characteristic p of the field K. We say that the characteristic is good (with
respect to R) if p = 0 or if p > 0 and p does not divide the multiplicity of any branch of R. We prove
that, if p is good, then Def es

R←R
∼= Def es

R
, hence the lifting of equisingular sections of deformations

of R to those of deformations of R is unique up to isomorphism (Theorem 4.2). Moreover, in this
case we can show that the base space of the semiuniversal equisingular deformation of R can be
represented by a (smooth) algebraic subscheme of the (algebraic) base space of the semiuniversal
deformation of R.
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Equisingular deformations in arbitrary characteristic

The theory of equisingular deformations of plane curve singularities in characteristic zero has
been initiated by Wahl in his thesis (cf. [Wah74a]). Wahl’s approach is different from ours as he
considers only deformations of the equation and defines equisingularity by requiring equimulti-
plicity of the equation of the reduced total transform along sections through all essential infinitely
near points of P on R. Although equimultiplicity of the parametrization is usually stronger than
equimultiplicity of the equation, one can prove that Wahl’s functor ES and our functor Def es

R
are

isomorphic (cf. [GLS07]). Thus, we get, in characteristic zero, a new proof of Wahl’s result that the
equisingularity stratum (which coincides then with the µ-constant stratum, where µ is the Milnor
number) in the base space of the semiuniversal deformation of R is smooth. As mentioned above,
the same result holds if the characteristic is good.

Our approach through deformations of the parametrization appears to be quite simple and
provides, even in characteristic zero, additional information. This can be seen clearly in § 5 of this
paper, where we relate several infinitesimal deformations by means of exact sequences which allow us
to compute not only T 1,es

R effectively but also gives, on the tangent level, a geometric interpretation
of the related deformation functors.

The construction of Def es
R

as subfunctor of Def
R

is so explicit that it leads to an algorithm
for the computation of a semiuniversal equisingular deformation in good characteristic (that is, of
the µ-constant stratum in characteristic zero). This has been implemented in the computer algebra
system Singular (cf. [GL07] for a description of the algorithm).

In bad characteristic, however, new phenomena occur. There are deformations which are not
equisingular but become equisingular after some finite (and dominant) base change. We call such
deformations weakly equisingular and show that the functor of weakly equisingular deformations
of R has a semiuniversal object. Its base space is not, in general, smooth but it becomes smooth
after a finite and purely inseparable base extension. The proof of this fact is rather involved and
occupies §§ 7 and 8. We prove this by constructing a weak equisingularity stratum in the base space of
any deformation of R (with section) which has a certain universal property (Theorems 6.2 and 6.7).

To prove the existence and properties of the weak equisingularity stratum, we give explicit
conditions defining a subscheme in the base space of the given deformation such that the restriction
of the family to this subscheme can be simultaneously blown up and satisfies additional conditions
preserved under further blowing ups. All conditions together define then the weak equisingularity
stratum.

We would like to stress that keeping the multiplicity constant along a section in each blowing up
is equivalent to keeping the Newton diagram (with respect to generic adapted coordinates) constant.
Moreover, we have to consider an adapted Jacobian ideal taking care of the fact that leading terms
of f may vanish after differentiation of f . This leads to deformations which we call equipolygonal
deformations and which we study in detail.

If we start with a versal deformation of R with smooth base space, then the defining conditions
for the weak equisingularity stratum become smooth after a purely inseparable base change and we
construct the weak equisingularity stratum together with its smooth covering space at the same time.
This construction is functorial and, which is a key point, versality for equipolygonal deformations
is preserved under blowing ups.

Although the weak equisingularity stratum is not smooth, it is reduced and irreducible, becomes
smooth after a purely inseparable base extension and, has good functorial properties. In good
characteristic it is even smooth and coincides with the (strong) equisingularity stratum considered
above and, therefore, weak and strong equisingular deformations are the same in that case.

In bad characteristic, however, a largest ‘strong equisingularity stratum’ does not exist in gen-
eral. Indeed, we show that inside the base space of the semiuniversal deformation of R there may
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be (infinitely many) different smooth subschemes, all having the same tangent space, such the
restriction of the given semiuniversal deformation to them is equisingular (even semiuniversal equi-
singular). Each of these smooth substrata may be considered as a strong equisingularity stratum,
but the restriction of the semiuniversal deformation to the union of two such strata is not (strongly)
equisingular. Moreover, the Zariski closure of all of these strong equisingularity strata is the weak
equisingularity stratum which is then of bigger dimension.

In the last section we study the geometry of the different equisingularity strata. We identify, in-
side the smooth covering space of the weak equisingularity stratum, an intrinsically defined subspace
T 1,sec

R/R
, being the tangent space to deformations of the normalization R → R which leave R fixed.

This space can explicitly be computed, it is zero in good characteristic, and in bad characteristic its
vanishing gives a sufficient and necessary condition that a largest (strong) equisingularity stratum
exists, and then automatically coincides with the weak equisingularity stratum.

1. Deformations of the parametrization and of the normalization

In this section we fix the notation and state some basic facts about deformations of the normalization
and deformations of the parametrization for a reduced plane curve singularity. We shall put special
emphasis on deformations with section.

By K, we denote an algebraically closed field of characteristic p � 0. If A is a Noetherian
complete local K-algebra with maximal ideal mA, we always assume that A/mA = K. The category
of these algebras is denoted by AK . We denote the two-dimensional K-algebra with ε2 = 0 by K[ε].

We consider reduced algebroid plane curve singularities C over K, defined by a formal power
series f ∈ K[[x, y]]. Usually, we work with the complete local ring of C = Spec(R),

R = P/〈f〉, P = K[[x, y]].

If f = f1 · · · · · fr is an irreducible factorization of f in P , the rings

Ri = P/〈fi〉, i = 1, . . . , r,

are the complete local rings of the branches of C. The lowest degree ordx,y(f) of a monomial
appearing in the power series development of f �= 0 is called the multiplicity of f and denoted by
mt(f); we set mt(0) =∞. Of course, mt(f) = mt(f1) + · · ·+ mt(fr). We say that the characteristic
of K is good (for R) if it does not divide mt(fi), for all i = 1, . . . , r.

The normalization R of R is the integral closure of R in its total ring of fractions Quot(R); R
is the direct sum of the normalizations Ri of Ri, i = 1, . . . , r, hence a semilocal ring. Each Ri is a
discrete valuation ring, and we can choose uniformizing parameters ti such that Ri

∼= K[[ti]]. After
fixing the parameters ti, we identify Ri with K[[ti]] and get

R =
r⊕

i=1

Ri =
r⊕

i=1

K[[ti]].

The normalization map ν : R → R (induced by the inclusion R ↪→ Quot(R)) is then given by the
(primitive) parametrization of R (or of C),

ϕ = (ϕ1, . . . , ϕr) : P −→ R =
r⊕

i=1

K[[ti]],

where ϕi(x) = xi(ti), ϕi(y) = yi(ti) ∈ K[[ti]], i = 1, . . . , r. Since 〈f〉 = ker(ϕ), R may be recovered
from ϕ. We call

ordϕi := min{ordti xi, ordti yi}
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Equisingular deformations in arbitrary characteristic

the multiplicity (or order) of ϕi and the r-tuple ord(ϕ) = (ordϕ1, . . . , ordϕr) the multiplicity (or
order) of the parametrization ϕ. Note that ordϕi is the maximal integer mi such that ϕi(mP ) ⊂
〈ti〉mi . Moreover, we have (cf. [Cam80])

mt(f) = ordϕ1 + · · ·+ ordϕr.

Definition 1.1. A deformation with sections of the parametrization of R over A ∈ AK is a com-
mutative diagram with Cartesian squares

R

�

RA
����

σ={σi | i=1,...,r}

��

P

ϕ
��

�

PA
����

ϕA

��

σ
��

K
��

��

A����

��

with RA =
⊕r

i=1RA,i, where RA,i, i = 1, . . . , r, and PA are Noetherian complete local K-algebras
which are flat over A. Here σ is a section of A→ PA, and σi is a section of A→ RA,i, i = 1, . . . , r.
We denote such a deformation by ξ = (ϕA, σ, σ).

A morphism from ξ to another deformation (PB
ϕB−−→ RB , σB, σB) over B ∈ AK is then given

by morphisms of local K-algebras A → B, PA → PB and RA,i → RB,i such that the resulting
diagram commutes. The category of such deformations is denoted by Def sec

R←P
. If we consider only

deformations over a fixed base A, we obtain the (non-full) subcategory Def sec
R←P

(A) with morphisms
being the identity on A. The category Def sec

R←P
is a fibred gruppoid over AK , in particular, each

morphism in Def sec
R←P

(A) is an isomorphism.
Giving ξ = (ϕA, σ, σ) and a morphism ψ : A → B in AK , the induced deformation ψξ =

(ψϕA, ψσ̄, ψσ) is an object in Def sec
R←P

(B), defined by B → PA⊗̂AB → RA⊗̂AB, with morphisms
b 
→ 1⊗̂b, ψϕA = ϕA⊗̂ idB , ψσ : h⊗̂b 
→ ψ(σ(h)) · b, ψσi : r⊗̂b 
→ ψ(σi(r)) · b. Here, ⊗̂ denotes the
complete tensor product.

The set of isomorphism classes of objects inDef sec
R←P

(A) is denoted byDef sec
R←P

(A), andDef sec
R←P

:
AK → (Sets) denotes the corresponding deformation functor (which always refers to isomorphism
classes). Moreover, we denote by T 1,sec

R←P
:= Def sec

R←P
(K[ε]) the tangent space to this functor.

Remark 1.2. Since P and the Ri are regular local rings, any deformation of P and of R is trivial.
That is, there are isomorphisms PA

∼= A[[x, y]] and RA
∼=

⊕r
i=1A[[ti]] over A, mapping the sections

σ and σi to the trivial sections. Hence, any object in Def sec
R←P

(A) is isomorphic to a diagram of the
form

r⊕
i=1

K[[ti]]

�

r⊕
i=1

A[[ti]]����

σ={σi | i=1,...,r}

��

K[[x, y]]

ϕ
��

�

A[[x, y]]����

ϕA
��

σ��
K
��

��

A����

��

where ϕA is the identity on A and σ, σi are the trivial sections (that is, the canonical epimorphisms
mod x, y, respectively mod ti). Hence, ϕA is given by ϕA = (ϕA,1, . . . , ϕA,r), where ϕA,i is determined
by

ϕA,i(x) = Xi(ti), ϕA,i(y) = Yi(ti) ∈ tiA[[ti]],

i = 1, . . . , r, such that Xi(ti) ≡ xi(ti), Yi(ti) ≡ yi(ti) mod mA.
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Similarly to Definition 1.1, by replacing P by R and ϕ by ν (respectively, PA by RA and ϕA

by νA), we can define deformations with section of the normalization R→ R, and obtain the category
Def sec

R←R
(respectively, the deformation functor Def sec

R←R
). Indeed, we are mainly interested in the

latter functor, which a priori is more complicated than Def sec
R←P

, since R is not regular in contrast
to P . The following proposition shows that both functors are isomorphic. To prove this, we have to
consider deformations with section of the sequence of morphisms P → R → R, whose definition is
analogous to Definition 1.1. Such deformations may be called deformations of the normalization with
embedding. The corresponding deformation category (respectively, the corresponding deformation
functor of isomorphism classes) is denoted by Def sec

R←R←P
(respectively, by Def sec

R←R←P
).

Proposition 1.3. The forgetful functor from Def sec
R←R←P

(A) to Def sec
R←P

(A) (respectively, to
Def sec

R←R
(A)) is an isomorphism (respectively, smooth). Both induce an isomorphism between the

corresponding deformation functors. In particular,

Def sec
R←P

∼= Def sec
R←R

.

Moreover, if (PA
ϕA−−→ RA, σ, σ) is an object of Def sec

R←P
(A), then ker(ϕA) is a principal ideal, and

the lifting of (ϕA, σ, σ) to an object of Def sec
R←R←P

(A) is obtained by setting RA = PA/ ker(ϕA).

Proof. Let (PA
ϕA−−→ RA, σ, σ) be a deformation with sections of the parametrization P → R over

A ∈ AK . Since ϕA is quasifinite, RA is a finite PA-module, and we have a minimal free resolution

0←− RA ←− F0
M←− F1 ←− F2 ←− · · · (1.1)

of RA as a PA-module. Since PA and RA are A-flat, the exactness of the sequence (1.1) is preserved
when tensoring with ⊗AK, obtaining in this way a minimal free resolution of R as P -module with
presentation matrix M0 = M⊗AK. Since P is regular of dimension two, and since R has depth one,
the Auslander–Buchsbaum formula gives that the minimal resolution of R has length one. Thus,
M0 is injective. By the local criterion of flatness (cf. [Mat86, Theorem 22.5]), M is injective too,
and the free PA-modules F0 and F1 have the same rank.

The ideal 〈det(M)〉 ⊂ PA is independent of the chosen resolution, and we set RA := PA/
〈det(M)〉, which is flat over A. Note that the ideals 〈f〉 and 〈det(M0)〉 of P have the same support
and coincide in the generic points where R = P/〈f〉 is regular. It follows that the two principal
ideals 〈f〉 and 〈det(M0)〉 of P coincide.

Since det(M) annihilates RA by Cramer’s rule, and since the kernel of ϕA is equal to the
annihilator of RA as PA-module, the canonical projection PA � R′A := PA/ kerϕA induces a
surjection RA � R′A. The kernel of this surjection is supported by the singular locus of the fibres
and is zero after tensoring with ⊗AK. Thus, by Nakayama’s lemma, RA = R′A. It follows that
ϕA factors as PA � RA ↪→ RA, defining in this way an object of Def sec

R←R←P
(A). Moreover, if

PA � R′′A ↪→ RA is any lifting of PA → RA to an object of Def sec
R←R←P

(A), then PA � R′′A is
surjective and R′′A ↪→ RA is injective (by Nakayama’s lemma). Thus, as before, R′′A = RA. As
morphisms in Def sec

R←P
(A) can be uniquely lifted, too, this shows that the forgetful functor induces

an equivalence of categories Def sec
R←R←P

(A) ∼= Def sec
R←P

(A).
To get the statements for deformations (with section) of the normalization, note that P is a

regular local ring. Hence, any deformation (with section) of R may be lifted to an ‘embedded’
deformation, that is, a deformation of P → R. Thus, the forgetful functor induces a surjection
Def sec

R←R←P
(A) � Def sec

R←R
(A). The fibre is a principal homogeneous space under isomorphisms of P

fixing R, showing smoothness. Moreover, if two deformations RA and R′A of R over A are isomorphic,
the isomorphism RA

∼= R′A may be lifted to an isomorphism PA
∼= P ′A (since PA

∼= A[[x, y]]).

Remark 1.4. If we omit the sections in Definition 1.1 and in the subsequent discussion, we get
analogous results for deformations without sections. The corresponding categories (respectively
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deformation functors) are denoted by Def R←P (respectively by Def
R←P

), etc. Indeed, as the proof
of Proposition 1.3 shows, the sections do not affect the arguments at all. Hence, Proposition 1.3
remains true with the superscript ‘sec’ being omitted.

2. Equisingular deformations of the parametrization

In this section, we define equisingular deformations of the parametrization with section, and we
discuss the uniqueness of the sections.

In order to define equisingular deformations, we consider the notion of infinitely near points.
Consider the natural diagram of graded K-algebras given by

grmi
(Ri) grm(R)�� grmP

(P )��

Grmi(Ri)

����

Grm(R)��

����

GrmP
(P )��

����

where m,mi,mP are the respective maximal ideals of R,Ri, P and where, for an ideal I ⊂ S,
grI(S) =

⊕∞
k=0 I

k/Ik+1, GrI(S) =
⊕∞

k=0 I
k. Applying Proj to the above diagram, we get the blow-

up schemes B�mi(Ri), B�m(R), and B�mP
(P ) in the lower row, and the corresponding exceptional

divisors Emi , Em, and EP in the upper row. Applying Proj to the vertical maps in the diagram gives
rise to natural embeddings of these objects.

Definition 2.1. An infinitely near point P ′ in the first infinitesimal neighbourhood of P is the
completion of the local ring of a closed point O on the exceptional divisor EP in B�mP

(P ). We
always use the same notation O for the local ring and for the point in B�mP

(P ).

Since exceptional divisors are projectivizations of tangent cones, EP is a projective line, and
the image of Emi in EP is one point Oi, counted mi times, where mi is the multiplicity of the
branch Ri. Among the infinitely near points in the first neighbourhood, those of type P ′ = Ôi for
some 1 � i � r are called infinitely near points (of P ) on R. For such a P ′, we set

ΛP ′ := {i ∈ {1, . . . , r} | P ′ = Ôi}.
For each i ∈ ΛP ′ , we also say that the branch Ri passes through P ′.

Note that we refer to P itself as an infinitely near point of P (in the zeroth infinitesimal neigh-
bourhood) on R.

Remark 2.2. In analytical terms, we have P = K[[x, y]], grmP
(P ) = K[x, y], grm(R) = K[x, y]/

〈Jmf〉, and grmi
(Ri) = K[x, y]/〈Jmifi〉, i = 1, . . . , r, where Jmifi denotes the sum of terms of

smallest degree mi = mt(fi) in the power series expansion of fi, and Jmf =
∏r

i=1 Jmifi.
Note that each Jmifi is the mith power of a non-zero linear form αiy − βix, αi, βi ∈ K. We

also say that it corresponds to the tangent direction (αi : βi) ∈ P1
K. If the infinitely near point

O ∈ EP corresponds to the tangent direction (1 : β) ∈ P1
K , then O = P [y/x]〈x,y′〉, y′ = y/x−β, and

P ′ = Ô = K[[x, y′]].
Let π′ : P → P ′ be the blow-up map x 
→ x, y 
→ x(y′ + β). For g ∈ P (of multiplicity m) such

that Jmg = c(y − βx)m for some c ∈ K∗ we set

g′ = x−mπ′(g), ĝ = xg ′

and call R′ = P ′/〈g′〉 the strict transform (respectively, R̂ = P ′/〈ĝ〉 the reduced total transform)
of R = P/〈g〉. Moreover, P ′/〈π′(g)〉 (respectively, P ′/〈x〉) is the total transform of R (respectively,
the exceptional curve of the blow-up). In particular, if O = Oi (that is, αi �= 0 and β = βi/αi),
then R′i = P ′/〈f ′i〉 (respectively R′ = P ′/〈

∏
i∈ΛP ′

f ′i〉) is the strict transform of the branch Ri

(respectively of R), at P ′.
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For each infinitely near point P ′ in the first infinitesimal neighbourhood on R, and for each
i ∈ ΛP ′ , the normalization of the strict transform R′i is Ri, and the normalization of R′ is R :=⊕

i∈ΛP ′
Ri. Further, note that the parametrization P ′ → R

′ of R′ is given by xi(ti), y′i(ti), i ∈ ΛP ′ ,
where

y′i(ti) :=
yi(ti)
xi(ti)

− βi

αi
∈ K[[ti]].

Here again, we assume that αi �= 0 (which is no restriction, since after a general linear change of
the coordinates x, y it holds for all i = 1, . . . , r).

We extend the above definitions to higher infinitesimal neighbourhoods by induction.

Definition 2.3. Let k � 2, and assume that the infinitely near points P ′ on R in the (k − 1)th
neighbourhood of P are defined. Assume also that for each of these points P ′ a set ΛP ′ , the strict
transform R′i of each branch Ri, i ∈ ΛP ′ , and the strict transform R′ of R at P are defined, as well
as the reduced total transform R̂′i respectively, R̂′ and the exceptional curve E′. Then, we call each
infinitely near point P ′′ on R in the first infinitesimal neighbourhood of such a point P ′ an infinitely
near point on R in the kth neighbourhood of P . We introduce

ΛP ′′ := {i ∈ ΛP ′ | R′i passes through P ′′}
and define the strict transform of Ri (respectively, R) at P ′′ to be the strict transform of R′i
(respectively, R′) at P ′. Moreover, the reduced total transform of Ri (respectively, R) at P ′′ is the
reduced total transform of R̂′i (respectively, R̂′) and the exceptional curve at P ′′ is the reduced total
transform of E′.

Given infinitely near points P ′, P ′′ as above, we call P ′′ consecutive to P ′. According to
Remark 2.2, if P ′ = K[[u, v]], P ′′ = K[[w, z]], then up to interchanging u and v, we can assume that
w = u, z = v/u− β for some β ∈ K. The map P ′ → P ′′ is called a formal blow-up (of the maximal
ideal mP ′ in P ′), as it satisfies the following two properties:

(i) mP ′P
′′ = 〈u, v〉 · P ′′ is a principal ideal; and

(ii) there is no proper subalgebra S ∈ AK of P ′′ with mP ′S being a principal ideal.

We call a point P ′ an infinitely near point of P on R if it is an infinitely near point on R in the
kth neighbourhood of P for some k � 0. The above consideration shows that infinitely near points
of P on R are related to P by compositions of formal blow-ups. An infinitely near point P ′ of R is
called free (respectively, satellite) if exactly one (respectively, two) components of the exceptional
curve E′ pass through P ′. The point P itself is considered as free.

We say that an infinitely near point P ′ �= P is essential for R if the reduced total transform
of R at P ′ is not a node (i.e. a normal crossing of two smooth branches). If R is not smooth P
itself is essential. The set of essential points for R is denoted by Ess(R). The set Ess(R) will be
considered for an embedded (good) resolution of R. By the theorem of resolution of singularities
(cf, e.g. [Cam80, Lip88, Zar38]), Ess(R) is finite.

Definition 2.4. We define the multiplicity (or order) of a deformation with sections of the
parametrization (ϕA, σ, σ), to be the r-tuple ord(ϕAσ, σ) := m = (m1, . . . ,mr) such that ϕA,i(Iσ) ⊂
Imi
σi

and mi is the maximal integer with this property. Here, Iσ = ker σ ⊂ PA and Iσi = ker σi ⊂ RA,i

are the ideals of the sections. A deformation with sections (ϕA, σ, σ) of ϕ is called equimultiple (or
an em-deformation) if

ord(ϕA, σ, σ) = ord(ϕ).
We introduce the category (respectively, deformation functor) of em-deformations with sections of
the parametrization, Def em

R←P
(respectively, Def em

R←P
).
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Remark 2.5. A deformation ϕA : A[[x, y]]→
⊕r

i=1A[[ti]] of the parametrization with trivial sections
as in Remark 1.2, given by power series Xi(ti), Yi(ti) ∈ A[[ti]] is equimultiple if and only if, for each
1 � i � r, the minimum of ordti Xi and ordti Yi coincides with the minimum of the ti-orders of the
residues xi, yi mod mA. If this minimum is attained by, say xi(ti), this means that the coefficient
of the term of smallest ti-degree in Xi is a unit in A. If the deformation with trivial sections
defined by ϕA is equimultiple, then each generator F ∈ A[[x, y]] of kerϕA (which is a principal ideal
due to Proposition 1.3) defines an em-deformation of R = K[[x, y]]/〈f〉, i.e. ordx,y(F ) = ordx,y(f)
(cf. [GLS07, Lemma 2.26] for a proof for k = C which can be modified to work for arbitrary K).

Notice, however, that the converse is not true if A is not reduced. For instance, consider the
irreducible plane curve singularity R = K[[x, y]]/〈x5 + y3〉. The deformation of the parametrization
(with trivial sections) over A = K[ε] given by X(t) = t3 − 3εt, Y (t) = t5 + 5εt3 is obviously not
equimultiple as a deformation of the parametrization. However, the corresponding deformation of
R, which is given by F = x5 + y3, is trivial, hence equimultiple.

Definition 2.6. (1) An equisingular deformation of the parametrization P → R (or es-deformation
of P → R) over A is a deformation with sections (ϕA, σ, σ) of the parametrization which is equi-
multiple and which satisfies.

For each infinitely near point P ′ on R there exists a deformation (ϕ′A, σ
′, σ′) of the parametriza-

tion P ′ → R
′ over A such that the following diagram is commutative with Cartesian squares

R
�� ���

�
RA
������

����

σ

��

R
′

�

R
′
A

����

σ′

		

P ′
ϕ′
��

�

P ′A����

σ′





ϕ′A
��

P

π′
��

ϕ

��

�

PA
����

σ
��

ϕA





π′A

��

K
��

��

A����

��

and the following conditions hold:

(i) We have σ′i = σi : RA,i → A for all i ∈ ΛP ′ . If P ′ = P then (ϕ′A, σ
′, σ′) = (ϕA, σ, σ).

(ii) The deformation (P ′A
ϕ′A−−→ R

′
A, σ

′, σ′) is equimultiple, i.e. an object of Def em
R
′←P ′

(A).

(iii) The system of such diagrams is compatible: that is, if P ′′ on R is in some infinitesimal neighbour-
hood of P ′, then there exists a morphism P ′A → P ′′A such that the obvious diagram commutes.

(iv) If P ′′ is consecutive to P ′, then P ′A → P ′′A is a formal blow-up of the section σ′ : P ′A → A. That
is, I ′σP ′′A is a principal ideal and P ′′A does not contain a proper complete local A-subalgebra S
such that I ′σS is principal.

The corresponding (full) subcategory of Def sec
R←P

is denoted by Def es
R←P

, and the subfunctor of
Def sec

R←P
of isomorphism classes of equisingular deformations of the parametrization is denoted by

Def es
R←P

.

(2) An object ξ = (νA, σ, σ) ∈ Def sec
R←R

(A) is called an equisingular deformation of the nor-

malization of R if it is in the image of Def es
R←P

(A) under the natural functor Def sec
R←P

(A)
∼=←−

Def sec
R←R←P

(A)→ Def sec
R←R

(A) given by Proposition 1.3. The corresponding category (respectively,
deformation) functor is denoted by Def es

R←R
(respectively, Def es

R←R
).
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Note that Def es
R←R

∼= Def es
R←P

by Proposition 1.3.

Remark 2.7. (1) Condition (i), together with the fact that (ϕ′A, σ
′, σ′) defines a deformation with

section of the parametrization P ′ → R
′, implies that the composition P ′A → RA,i

σi−→ A is inde-
pendent of i ∈ ΛP ′ . If P ′′ is an infinitely near point of P ′, the image of Iσ′ in P ′′A is contained
in Iσ′′ .

(2) If σi(ti) = a ∈ mA, then replacing ti by ti−a trivializes the section σi. In the same way, each
section σ′ can be trivialized by choosing appropriate generators u, v for Iσ′ ⊂ P ′ (which is possible
due to Nakayama’s lemma). This choice corresponds to the choice of an isomorphism, P ′A ∼= A[[u, v]]
(up to reordering the indeterminates).

(3) Let P ′′ be consecutive to P ′. Then the formal blow-up P ′A → P ′′A of the section σ′ : P ′A →
A can be expressed in the same way as the formal blow-up of the maximal ideal of a point in
Definition 2.3.

According to part (2), we may assume that P ′A = A[[u, v]] and P ′′A = A[[w, z]] and that the
sections σ′, σ′′ are trivial. In addition, we assume that m(u) � m(v), where m denotes the 〈w, z〉-
order of the residue mod mA of elements in A[[z,w]]. Since P ′A → P ′′A is a formal blow-up, one has
〈u, v〉A[[w, z]] = 〈h〉A[[w, z]] for some h ∈ A[[w, z]]. Therefore, u = hp, v = hq , and h = ru + sv
for some p, q, r, s ∈ A[[w, z]]. Hence, m(u) = m(h) +m(p) � m(u) + ν(p), which implies m(p) = 0,
that is, p is a unit in A[[w, z]]. Replacing h by hp = u, we get v = u(qp−1) = u(v′ + β) for a unique
v′ ∈ 〈w, z〉A and β ∈ A, and thus 〈u, v〉A[[u, v′]] = 〈u〉A[[u, v′]]. The minimality condition for the
formal blow-up implies now that A[[u, v′]] = A[[w, z]] and, therefore, 〈u, v′〉 = 〈w, z〉 = Iσ′′ . Thus, we
may choose w = u and z = v/u−β, that is, the formal blow-up of σ′ is given by A[[u, v]]→ A[[w, z]],
u 
→ w, v 
→ w(z + β) for a unique β ∈ A.

(4) Although the set of infinitely near points P ′ on R is infinite we need to consider in Defini-
tion 2.6 only the subset of Ess(R) consisting of those P ′ for which the strict transform R′ of R is
singular (which is finite since Ess(R) is finite).

Before giving a proof for the existence of a semiuniversal deformation for equisingular deforma-
tions of the parametrization, we consider (versal) equimultiple deformations.

Recall the notion of versality. A deformation ξ over some base B is versal if the following holds:
given two deformations η̃ and η over C̃ and C, respectively, such that η is induced from η̃ by a
surjective morphism χ : C̃ � C and from ξ by a morphism ψ : B → C. Then η̃ can be induced
from ξ by a morphism ψ̃ : B → C̃ satisfying χ ◦ ψ̃ = ψ. ξ is called semiuniversal if, moreover, the
tangent map of ψ̃ is uniquely determined.

We shall identify explicitly a semiuniversal deformation for Def es
R←P

as a subfamily of a semi-
universal deformation for Def sec

R←P
.

We begin by describing a semiuniversal deformation for Def sec
R←P

. We do this in a slightly more
general context: given an integer vector m = (m1, . . . ,mr) such that either m = 0 = (0, . . . , 0),
or 1 � mi � ordϕi, we call a deformation of the parametrization over A, (PA

ϕA−−→ RA, σ, σ), an
m-multiple deformation if

ϕA(Iσ) ⊂ Imσ :=
r⊕

i=1

Imi
σi
.

Here, Iσi := kerσi ⊂ RA,i and Iσ = ker σ ⊂ PA. The corresponding category is denoted by
Def m

R←P
(A), and the deformation functor by Def m

R←P
.

Note that Def m
R←P

coincides with Def R←P for m = 0 = (0, . . . , 0), with Def sec
R←P

for m = 1 =
(1, . . . , 1), and with Def em

R←P
for m = (ordϕ1, . . . , ordϕr).
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The following proposition gives an explicit description of the tangent space T 1,m

R←P
:= Def m

R←P
(K[ε]) to the functor of m-multiple deformations of the parametrization. We start by introducing
the notation

ẋ :=



ẋ1
...
ẋr


 , ẏ :=



ẏ1
...
ẏr


 ,

where ẋi, ẏi denote the derivatives of xi, yi with respect to ti. Moreover, we write m for the maximal
ideal of R, m for the Jacobson radical of R, and

mm :=
r⊕

i=1

tmi
i K[[ti]] ⊂

r⊕
i=1

K[[ti]] = R.

We define the following R-modules:

M0
R←P

:= (R⊕R)/(R · (ẋ, ẏ) + (R ⊕R)),

Mm
R←P

:= (mm ⊕mm)/(m · (ẋ, ẏ) + (m⊕m)), 1 � mi � ordϕi.

Proposition 2.8. With the above notation, we have the following:

(1) There is an isomorphism T 1,m

R←P
∼= Mm

R←P
.

(2) Let ϕA : A[[x, y]] →
⊕r

i=1A[[ti]] define an m-multiple deformation of the parametrization
(with trivial sections) over A = K[[T]] = K[[T1, . . . , Tk]], given by power series Xi(T, ti),
Yi(T, ti), i = 1, . . . , r. Then this deformation is a versal (respectively, semiuniversal) m-multiple
deformation if and only if the column vectors(

∂Xi

∂Tj
(0, ti),

∂Yi

∂Tj
(0, ti)

)
i=1,...,r

∈ mm ⊕mm, j = 1, . . . , k,

represent a system of generators (respectively, a basis) for the vector space Mm
R←P

.

(3) Let a(j),b(j) ∈ mm =
⊕r

i=1 t
mi
i K[[ti]] be such that

(a(j),b(j)) =






a

(j)
1
...

a
(j)
r


 ,



b
(j)
1
...

b
(j)
r





 , j = 1, . . . , k,

represent a basis (respectively, a system of generators) for Mm
R←P

. Then the deformation (with
trivial sections) of the parametrization over K[[T]] = K[[T1, . . . , Tk]] defined by

Xi(T, ti) = xi(ti) +
k∑

j=1

a
(j)
i (ti) · Tj,

Yi(T, ti) = yi(ti) +
k∑

j=1

b
(j)
i (ti) · Tj ,

i = 1, . . . , r, is a semiuniversal (respectively, versal) m-multiple deformation of the parametri-
zation.

In particular, m-multiple deformations of the parametrization are unobstructed, and they have
a smooth semiuniversal base space of dimension dimK(Mm

R←P
).

We omit the proof, because it is similar to (but simpler than) the proof of the analogous statement
for equisingular deformations (Theorem 3.1).

At the end of this section, we consider the problem of the uniqueness of the sections. This
depends on the characteristic of K.
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Lemma 2.9. If the characteristic of K is good, then the forgetful natural transformation Def em
R←P

→
Def R←P is injective in the following cases.

Case 1. All branches of R are singular.
Case 2. The branches of R have pairwise different tangent directions.

In other words, in these cases the equimultiple sections σ and σ are uniquely determined (if they
exist).

Proof. By [Wah74b, Proposition 1.1.4], it suffices to show the injectivity on the tangent level, that
is, for A = K[ε]. Assume first that R is irreducible, mult(R) = m � 2. Assume further that X =
x(t)+ εxε(t), Y = y(t)+ εyε(t), xε, yε ∈ K[[t]], defines an em-deformation along the trivial sections,
that is, min{ordt(xε), ordt(xε)} � m. If X,Y defines also an em-deformation with the sections σ, σ
given by Iσ = 〈t+ εγ0〉, Iσ = 〈x+ εα0, y + εβ0〉, α0, β0, γ0 ∈ K, then the equimultiplicity condition
ϕA(Iσ) ⊂ Im

σ is equivalent to

x(t) + εxε(t) + εα0 = (h(t) + εhε(t)) · (tm +mεγ0t
m−1)

y(t) + εyε(t) + εβ0 = (k(t) + εkε(t)) · (tm +mεγ0t
m−1),

for some h, hε, k, kε ∈ K[[t]]. Comparing coefficients, this implies α0 = β0 = 0 and, if the character-
istic is either zero or if it does not divide m, then γ0 = 0, too.

The injectivity in Case 1 follows immediately from these considerations, since an em-deformation
of the parametrization of R induces by definition em-deformations of the parametrizations of the
branches Ri.

In Case 2 we may assume that at least one of the branches, say R1 is non-singular (otherwise,
Case 1 applies). Then, for each fixed j ∈ {2, . . . , r}, we may choose coordinates x, y such that R1

is parametrized by (x1, y1) = (t1, 0) and Rj has the tangent direction x = 0. Let X,Y define an
em-deformation with trivial sections, and also an em-deformation with the sections σ, σ given by
Iσi = 〈t+ εγi〉, Iσ = 〈x+ εα0, y + εβ0〉, α0, β0, γi ∈ K. Then, similar to the above,

t+ εta1,ε(t) + εα0 = (h1(t) + εh1,ε(t)) · (t+ εγ1),
0 + εtb1,ε(t) + εβ0 = (k1(t) + εk1,ε(t)) · (t+ εγ0),

which implies α0 = γ1 and β0 = 0. If the branch Rj is singular, Case 1 shows that γj = α0 = 0,
hence the uniqueness. Thus, we can assume that Rj is smooth and parametrized by (xj, yj) = (0, tj).
Then the same reasoning as above gives β0 = γj and α0 = 0, thus the uniqueness of the sections.

However, there are examples of em-deformations such that both sections σ and σ are not unique.

Example 2.10. (1) Let char(K) = p > 0, and consider the irreducible singularity R = K[[x, y]]/
〈yp−x2p+1〉. Then (X,Y ) = (tp, tp(t−α)p+1), α ∈ mA, defines an em-deformation of the parametriza-
tion with trivial sections over A. However, it also defines an em-deformation with the sections σ, σ
given by Iσ = 〈t− α〉, Iσ = 〈x− αp, y〉.

(2) Let R = K[[x, y]]/〈x4−y2〉, which decomposes into two smooth branches with the same tangent
direction. Then, for each α ∈ mA, (X1, Y1) = (t1,−t21 + αt1), (X2, Y2) = (t2, t22 − αt2), defines an
em-deformation with trivial sections. In addition, it defines an em-deformation with sections σ, σ
given by Iσ1 = 〈t1 − α〉, Iσ2 = 〈t2 − α〉, Iσ = 〈x− α, y〉.

Note that none of these examples defines an equisingular deformation. Indeed, after formally
blowing up the sections, we do not get an equimultiple deformation of the strict transform. In the
second example, this is caused by the fact that the sections do not satisfy the compatibility condition
of Definition 2.6(iii).
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Proposition 2.11. If the characteristic of K is good, and if R is singular, then the forgetful functor
Def es

R←P
→ Def R←P is injective. That is, the equisingular sections σ and σ are unique.

Proof. If either all branches of R are singular, or if they have pairwise different tangent directions,
the uniqueness of the sections is implied by Lemma 2.9. Moreover, the proof of Lemma 2.9 shows
that the section σ is uniquely determined if R either has a singular branch Rj or two smooth
branches Ri, Rj , i �= j, intersecting transversally. Moreover, the proof shows that if the branch
Rj is either singular, or smooth and transversal to some other branch, the section σj is uniquely
determined. It remains to consider smooth branches that are tangential to all of the other branches.
After finitely many formal blow-ups the strict transform of such a branch Ri becomes transversal
to one of the other branches. Thus, the section σi is uniquely defined, and hence also σ (see the
proof of Lemma 2.9).

There are examples of equisingular deformations in bad characteristic p > 0 where σ is not
unique. For instance, the trivial deformation over K[ε] of the parametrization (tp+1, tp) of R =
K[[x, y]]/〈xp − yp+1〉 is equisingular along the trivial sections and along the section defined by
Iσ = 〈t+ ε〉. However, the section σ is always unique as demonstrated by the following.

Proposition 2.12. Let A ∈ AK , and let ϕA : A[[x, y]] →
⊕r

i=1A[[ti]] define a deformation of
P → R. If R is singular, then for at most one σ : A[[x, y]] → A there is a lifting σ such that
(ϕA, σ, σ) is equisingular.

Proof. From the considerations in the proofs of Lemma 2.9 and Proposition 2.11, it is clear that it
suffices to consider the case of an irreducible singularity R such that the multiplicity of R and of
all of its singular strict transforms are divisible by p = char(K) > 0. Indeed, it suffices to consider
the last singular strict transform of R. It has a parametrization (x, y) = (tkp, tkp+1) + higher terms,
k � 1.

Let X,Y define an em-deformation of (x, y) with trivial sections over A ∈ AK . Then, up to
terms of t-order kp + 1, respectively kp + 2, we have X(t) = (1 + a)tkp , Y (t) = b1t

kp + (1 + b2)tkp+1

for some a, b1, b2 ∈ mA. If X,Y is also equimultiple along the sections σ, σ defined by Iσ = 〈t+ γ〉,
Iσ = 〈x + α, y + β〉, α, β, γ ∈ mA, then we get (again up to terms of t-order kp + 1, respectively
kp+ 2)

(1 + a)tkp + α = (c0 + c1t+ · · ·+ ckpt
kp) · (tp + γp)k,

b1t
kp + (1 + b2)tkp+1 + β = (d0 + d1t+ · · · + dkp+1t

kp+1) · (tp + γp)k,

for some cj , dj ∈ A. Comparing coefficients, we get α = c0γ
kp, β = d0γ

kp, and the conditions
0 = d1γ

kp , 1 + b2 = d1 + eγp for some e ∈ A.
Thus, 0 = (1 + b2 − eγp) · γkp, which implies γkp = 0. Together with the above equalities, this

yields α = β = 0 as claimed.

3. Versal equisingular deformations of the parametrization

In this section, we give a proof for the existence of a semiuniversal equisingular deformation of the
parametrization and show that it has an algebraic representative with a smooth base. Moreover, we
show that equisingular versality is an open property.

Let T 1,es

R←P
= Def es

R←R
(K[ε]) denote the tangent space to the functor Def es

R←R
. It is a subspace of

T 1,sec

R←P
= (m⊕m)/(m(ẋ, ẏ)+(m⊕m)) (indeed, it is a subspace of each T 1,m

R←P
where 1 � mi � ordϕi).

Hence,

T 1,es

R←P
=

Ies
R←P

m · (ẋ, ẏ) + (m⊕m)
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with

Ies
R←P

:=


(a,b) ∈ m⊕m

∣∣∣∣
{(xi(ti) + εai, yi(ti) + εbi) | i = 1, . . . , r} defines
an equisingular deformation of the parametrization
ϕ with trivial sections over K[ε]


 .

We call Ies
R←P

the equisingularity module of P → R. Below, we show that it is an R-module (Corol-
lary 3.5).

The main theorem of this section states now that Def es
R←P

is a ‘linear’ subfunctor of Def sec
R←P

.
As such it is already completely determined by its tangent space.

Theorem 3.1. We have the following.

(1) Let K[[T]] = K[[T1, . . . , Tk]]. Then an r-tuple of power series Xi(T, ti), Yi(T, ti) ∈ K[[T, ti]],
i = 1, . . . , r, satisfying

Xi(T, ti) ≡ xi(ti) +
k∑

j=1

a
(j)
i (ti) · Tj mod 〈T〉2, Xi(T, 0) = 0,

Yi(T, ti) ≡ yi(ti) +
k∑

j=1

b
(j)
i (ti) · Tj mod 〈T〉2, Yi(T, 0) = 0,

defines an equisingular deformation with trivial sections of the parametrization over K[[T]] if
and only if (a(j),b(j)) ∈ Ies

R←P
for all j = 1, . . . , k.

(2) Let Xi(T, ti), Yi(T, ti), i = 1, . . . , r, define an equisingular deformation with trivial sections of
the parametrization over K[[T]]. Then this deformation is a versal (respectively, semiuniversal)
object of Def es

R←P
if and only if





∂X1

∂Tj
(0, t1)

...
∂Xr

∂Tj
(0, tr)


 ,



∂Y1

∂Tj
(0, t1)

...
∂Yr

∂Tj
(0, tr)





 , j = 1, . . . , k,

represent a system of K-generators (respectively a K-basis) of T 1,es

R←P
.

(3) Let (a(j),b(j)) ∈ Ies
R←P

, j = 1, . . . , k, represent a basis (respectively, a system of generators) of

T 1,es

R←P
. Then

Xi(T, ti) = xi(ti) +
k∑

j=1

a
(j)
i (ti) · Tj ,

Yi(T, ti) = yi(ti) +
k∑

j=1

b
(j)
i (ti) · Tj,

i = 1, . . . , r, define a semiuniversal (respectively, versal) equisingular deformation with trivial
sections of the parametrization over K[[T]]. In particular, equisingular deformations of the
parametrization are unobstructed, and the semiuniversal deformation has a smooth base of
dimension dimK T 1,es

R←P
.

The proof of this theorem needs some preparation. It is based on considering small extensions
in AK , that is, surjective morphisms Ã � A of Noetherian complete local K-algebras with a one-
dimensional kernel. The generator of this kernel will be usually denoted by ε. Then, as K-vector
spaces, Ã = A⊕ εK and εmA = 0.
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In Proposition 3.2 below, we show that an em-deformation of the parametrization P → R
together with a factorization through the deformation of an infinitely near point P ′ can be lifted to
a small extension Ã of A. Moreover, after trivialization of the section, the lifting to the infinitely
near point is determined by the lifting of the deformation of P → R to Ã.

We fix some notation: let Ã � A be a small extension in AK , and let ε denote a generator for
its kernel. Let

ϕA = (ϕA,1, . . . , ϕA,r) : PA = A[[x, y]]→
r⊕

i=1

A[[ti]] = RA,

ϕA,i(x) = Xi(ti), ϕA,i(y) = Yi(ti), define a deformation with trivial sections of the parametrization

ϕ = (ϕ1, . . . , ϕr) : P = K[[x, y]]→
r⊕

i=1

K[[ti]] = R,

ϕi(x) = xi, ϕi(x) = yi ∈ K[[ti]]. Moreover, let P ′ = K[[u, v]] be an infinitely near point on R in
the first infinitesimal neighbourhood of P such that ϕi, i ∈ ΛP ′ , factors as ϕi = ϕ′i ◦ π′, where
π′ : K[[x, y]]→ K[[u, v]] is a formal blow-up of the maximal ideal in P . Finally, let π′A : A[[x, y]]→
A[[u, v]] be a formal blow-up of the trivial section in PA extending π′. After a linear change of
variables, we may assume that ordti xi � ordti yi for all i, and π′A(x) = u, π′A(y) = u(v + β), β ∈ A
(see Remark 2.7(5)).

Proposition 3.2. Assume that (ϕA, σ, σ) is equimultiple and that the components ϕA,i, i ∈ ΛP ′ ,
of ϕA factor as ϕA,i = ϕ′A,i ◦ π′A such that

ϕ′A = (ϕ′A,i)i∈ΛP ′ : A[[u, v]]→
⊕

i∈ΛP ′

A[[ti]]

defines a deformation of P ′ = K[[u, v]] →
⊕

i∈ΛP ′
K[[ti]] =: R′ with trivial sections over A. Then

there exists an extension of ϕ′A,

ϕ′
Ã

= (ϕ′
Ã,i

)i∈ΛP ′ : Ã[[u, v]]→
⊕

i∈ΛP ′

Ã[[ti]],

and a formal blow-up π′
Ã

: Ã[[x, y]]→ Ã[[u, v]] of the trivial section σ′ in Ã[[x, y]] extending π′A, such
that the following hold:

(i) ϕ′
Ã

defines a deformation of P ′ → R
′
with trivial sections over Ã;

(ii) ϕ′
Ã
◦ π′

Ã
defines an em-deformation of P → R

′
with trivial sections.

Moreover, ϕ′
Ã

and π′
Ã

are uniquely determined by ϕ′A, π′A, and ϕ′
Ã
◦ π′

Ã
.

In other words, the proposition states that the following diagram of solid arrows (and trivial
sections) can be completed by the dotted arrows

R
′

�

R
′
A

����

�

R
′
Ã

����

σ′

��

P ′

ϕ
��

�

P ′A����

ϕA

��

�

σ′

��

P ′
Ã

����

ϕ
Ã

��

σ̃′

��

P

ϕ

��

�

PA
����

π′A
��

σ
��

�

PÃ
����

π′
Ã

��

σ̃
��

K
��

��

A����

��

Ã����

��

and that the dotted arrows are uniquely determined by their composition.
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Proof. Step 1: uniqueness. Assume that we have extensions ϕ′
Ã
, π′

Ã
of ϕ′A, π′A as in the proposition.

Setting
Ui := ϕ′A,i(u), Vi := ϕ′A,i(v), Ũi := ϕ′

Ã,i
(u), Ṽi := ϕ′

Ã,i
(v),

we have Ũi = Ui +εa′i, Ṽi = Vi +εb′i for a′i, b
′
i ∈ tiK[[ti]], and π′

Ã
(x) = u+εαε, π′Ã(y) = (u+εαε)(v+

β+ εβε) where αε, βε ∈ K, with αε = βε = 0 if σ̃ is trivial. Here π′A(x) = u, π′A(y) = u(v+β), β ∈ A
by Remark 2.7(2). By assumption, ϕA,i factors as ϕA,i = ϕ′A,i ◦ π′A. Hence, Xi = ϕA,i(x) = Ui,
Yi = ϕA,i(y) = Ui · (Vi + β).

Setting X̃i := ϕ′
Ã,i
◦ π′

Ã
(x), and Ỹi := ϕ′

Ã,i
◦ π′

Ã
(y), we get from condition (ii) that

X̃i = Xi + εai, Ỹi = Yi + εbi

for some ai, bi ∈ tiK[[ti]] and

X̃i = Ui + εa′i + εαε, Ỹi = (Ui + εa′i + εαε) · (Vi + εb′i + β + εβε).

Comparing coefficients, this implies

ai = a′i + αε, bi = (a′i + αε)(vi + β0) + (b′i + βε)ui,

where ui = xi, vi ∈ tiK[[ti]] (respectively, β0 ∈ K) are the residues of Ui, Vi (respectively, β mod
mA). Since ai(0) = a′i(0) = 0 this implies αε = 0, hence

a′i = ai, b′i =
bi − ai(vi + β0)

xi
− βε. (3.1)

Since b′i(0) = 0, this implies that

βε =
(
bi − ai(vi + β0)

xi

)
(0) =

bi
xi

(0) +
aiβ0

xi
(0). (3.2)

In particular, the expression on the right-hand side does not depend on the choice of i ∈ ΛP ′ .
Moreover, (3.1) and (3.2) show that Ũi, Ṽi, X̃i, Ỹi determine a′i, b

′
i, αε, βε.

Step 2: existence. Using the above notation, we choose for each i ∈ ΛP ′ power series ai, bi ∈ K[[ti]]
satisfying ordti ai, ordti bi � ordϕi = ordti xi and the compatibility condition(

bi − aiβ0

xi

)
(0) =

(
bj − ajβ0

xj

)
(0) for all i, j ∈ ΛP ′ .

Since vi(0) = 0, this allows us to define the needed extensions according to (3.2) and (3.1).

Remark 3.3. The uniqueness statement of Proposition 3.2 can be reformulated as follows: let Ã→ A
be a small extension in AK , and let ξ̃ = (ϕ

Ã
, σ, σ) ∈ Def em

R←P
(Ã) be a lifting of ξ ∈ Def em

R←P
(A).

Further, let π′
Ã

: PÃ → P ′
Ã

be a formal blow-up of the section σ. Then there is a unique morphism ϕ′
Ã

as in the above diagram and at most one section σ′ : P ′
Ã
→ A such that (ϕ′

Ã
, σ′, σ′) ∈ Def sec

R
′←P ′

(Ã).
Indeed, the diagram shows that σ′ exists if and only if the composition σ′i ◦ ϕ′Ã is independent of
the choice of i ∈ ΛP ′ .

As a corollary of the proof of Proposition 3.2 (applied to A = K, Ã = K[ε]), we obtain the
following lemma which allows us to argue by induction.

Lemma 3.4.

(1) Given a′i, b
′
i ∈ tiK[[ti]], i ∈ ΛP ′ , let

ai = a′i, bi = a′i(ϕ
′
i(y) + β0) + (b′i + βε)xi, (3.3)

where β0 = (β mod mA), βε ∈ K. Then the ai, bi, i ∈ ΛP ′ , define an element of Ies
R
′←P

if and

only if min{ordti ai, ordti bi} � ordti xi and the a′i, b
′
i, i ∈ ΛP ′ define an element of Ies

R
′←P ′

.
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(2) Let ai, bi ∈ tiK[[ti]], i ∈ ΛP ′ define an element of Ies
R
′←P

. Then there exists a unique βε ∈ K
such that setting

a′i = ai, b′i =
bi − ai(ϕ′i(y) + β0)

xi
− βε. (3.4)

defines an element of Ies
R
′←P

satisfying (3.3).

Note that R =
⊕

P ′ R
′, hence Ies

R←P
=

⊕
P ′ I

es
R
′←P

where the sum on the right-hand side is taken
over all points P ′ on R in the first neighbourhood of P .

Corollary 3.5. The equisingularity module Ies
R←P

is an R-submodule of m⊕m.

Proof. We argue by induction on the number of blow-ups needed to resolve the singularity R. If R
is regular, Ies

R←P
= m ⊕ m. If R is singular, we may blow up the maximal ideal in P and consider

the strict transform R′i at each infinitely near point P ′ in the first neighbourhood of P on R. By the
induction hypothesis, for each such P ′, Ies

R
′←P ′

is an R-submodule of m′⊕m′, where m′ =
⊕

i∈ΛP ′
mRi

.
Then Lemma 3.4 shows that the same holds for Ies

R
′←P

. Indeed, the K-vector space structure is
obvious. Let h ∈ R and (a,b) ∈ Ies

R
′←P

. Then, according to (3.1) and (3.2), we have (hai)′ = hai

and (hbi)′−hb′i = (h(ϕ′i(x), ϕ
′
i(y))−h(0)) ·βε ∈ mR′i . Since mR′ ⊕mR′ ⊂ Ies

R
′←P

, mR′ =
⊕

i∈ΛP ′
mR′i ,

and since h(b′i)i∈ΛP ′ ∈ Ies
R
′←P

by the induction hypothesis, we have ((hbi)′)i∈ΛP ′ ∈ Ies
R
′←P

. Then
Lemma 3.4 implies that hb ∈ Ies

R←P
, which proves the claim.

Lemma 3.6. Let the deformation with trivial sections over A defined by ϕA be equisingular, and let
(a,b) ∈ m⊕m. Then the deformation with trivial sections (ϕÃ, σ, σ) over Ã defined by X̃i := Xi+εai,

Ỹi := Xi + εbi, i = 1, . . . , r, is equisingular if and only if (a,b) ∈ Ies
R←P

.

Proof. We argue again by induction on the number of blow-ups needed to resolve the singularity R.
If R is regular, the statement is obvious. Now, assume that R is singular.

If the deformation (ϕÃ, σ, σ) is equisingular, we find a formal blow-up π′
Ã

of the trivial section
σ in PA = A[[x, y]] such that, for each point P ′ = K[[u, v]] in the first neighbourhood of P on R,
and for each i ∈ ΛP ′ , the morphism ϕ

Ã,i
factors as ϕ

Ã,i
= ϕ′

Ã,i
◦ π′

Ã
. Moreover, we can assume

that the ϕ′
Ã,i

: A[[u, v]]→ K[[ti]], i ∈ ΛP ′ define an equisingular deformation with trivial sections of

the parametrization P ′ → R
′. Setting, as before, ϕÃ,i(u) =: Ui+εa′i, ϕÃ,i(v) =: Vi+εb′i, the induction

hypothesis gives that the a′i, b
′
i, i ∈ ΛP ′ define an element of Ies

R
′←P ′

. Since they necessarily satisfy
the equality (3.3), Lemma 3.4(a) implies that (a,b) ∈ Ies

R←P
. Note that the condition on the order

of ai, bi is satisfied, since X̃i, Ỹi defines an equisingular deformation along the trivial section.
Conversely, let us assume that (a,b) ∈ Ies

R←P
. Then (ϕÃ, σ, σ) is obviously equimultiple. More-

over, choosing a′i, b
′
i ∈ K[[ti]] according to (3.4), Ui + εa′i, Vi + εb′i defines a deformation with trivial

sections of the parametrization P ′ → R
′ which is obtained from ϕ

Ã
via a formal blow-up (see

the proof of Proposition 3.2). Lemma 3.4(b) together with the induction hypothesis give that this
deformation is, indeed, equisingular.

Lemma 3.7. We have (ϕA, σ, σ) ∈ Def sec
R←P

(A) is equisingular if and only if it is formally equisin-
gular, that is, if and only if, for each N � 1, the induced deformation with sections over A/mN

A is
equisingular.

Proof. The proof is straightforward, by induction on the number of formal blow-ups.

Proof of Theorem 3.1. Let A = K[[T]], and let (ϕA, σ, σ) denote the deformation with trivial
sections defined by Xi, Yi ∈ tiA[[ti]].
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(1) If (ϕA, σ, σ) is equisingular, then, for each j = 1, . . . , k, the deformation (ψϕA, ψσ, ψσ)
induced by the projection ψ : K[[T]] � K[[T]]/(〈T 2

j 〉 + 〈T� | � �= j〉) is equisingular, too. Thus,
Lemma 3.6 gives (a(j),b(j)) ∈ Ies

R←P
.

Conversely, let (a(j),b(j)) ∈ Ies
R←P

for all j. Since each extension of Artinian local rings factors

through small extensions, Lemma 3.6 (applied to Ã a small extension of A/mN , N > 1, and
ai = bi = 0) implies that (ϕA, σ, σ) is formally equisingular, hence equisingular due to Lemma 3.7.

Since part (3) is an immediate consequence of part (2), it remains to prove part (2). Let (ϕA, σ, σ)
be a versal (respectively semiuniversal) object of Def es

R←P
. Then, for any (a,b) ∈ Ies

R←P
, the equi-

singular deformation with trivial sections defined by xi + εai, yi + εbi, i = 1, . . . , r, can be induced
(respectively, uniquely induced) from (ϕA, σ, σ) via a morphism in AK , K[[T]] → K[ε], Tj 
→ βjε.
However, this means that xi + εai = Xi(βε, ti), yi + εbi = Yi(βε, ti) for some (respectively, for a
unique) β = (β1, . . . , βk). Expanding and comparing coefficients, we get

(ai, bi) =
k∑

j=1

βj

(
∂Xi

∂Tj
(0, ti),

∂Yi

∂Tj
(0, ti)

)
,

thus the necessity of the condition.
To show that the given deformation is versal (semiuniversal) along the trivial sections, it suffices

to show that it is formally versal (semiuniversal), according to [Fle8l, (5.2) Satz]. Thus, it is sufficient
to consider a small extension χ : C̃ � C in AK with kernel εK, and equisingular deformations η, η̃
over C, C̃ , respectively. We assume that η is induced from η̃ by χ and from ξ by a morphism
ψ : A→ C in AK , and have to show that there exists a morphism ψ̃ : A→ C̃ such that χ ◦ ψ̃ = ψ
and that η̃ can be induced from ξ via ψ̃. To show the semiuniversality, we have to show additionally
that the tangent map of ψ̃ is uniquely determined.

We introduce the following notation:

• η is given by Wi(ti), Zi(ti) ∈ C[[ti]];

• η̃ is given by W̃i(ti) = Wi(ti) + εwε
i , Z̃i(ti) + εzε

i , where wε
i , z

ε
i ∈ K[[ti]];

• ψ(Tj) = ψ̃(Tj) + εβε
j , where βε

j ∈ K.

Then the assumption is that there are a C-automorphism of C[[x, y]], mapping x 
→ H1(x, y),
y 
→ H2(x, y), H1,H2 ∈ 〈x, y〉C[[x, y]], and C-automorphisms of C[[ti]] mapping ti 
→ si ∈ tiC[[ti]],
i = 1, . . . , r, such that

H1 ≡ x mod mC , H2 ≡ y mod mC , si ≡ ti mod mC (3.5)

and Xi(ψ(T), ti) = H1(Wi(si), Zi(si)), Yi(ψ(T), ti) = H2(Wi(si), Zi(si)).
We show that these automorphisms can be extended to C̃-automorphisms:

• x 
→ H1 + εhε
1, y 
→ H2 + εhε

2, h
ε
1, h

ε
2 ∈ 〈x, y〉K[[x, y]];

• ti 
→ si + εsε
i , s

ε
i ∈ 〈ti〉K[[ti]], i = 1, . . . , r;

such that

Xi(ψ(T) + εβε, ti) = (H1 + εhε
1)(W̃i(si + εsε

i ), Z̃i(si + εsε
i )), (3.6)

Yi(ψ(T) + εβε, ti) = (H2 + εhε
2)(W̃i(si + εsε

i ), Z̃i(si + εsε
i )). (3.7)

Expanding the left-hand sides as power series in ε (and using εm
C̃

= 0), we get

Xi(ψ(T) + εβε, ti) = Xi(ψ(T), ti) + ε

k∑
j=1

∂Xi

∂Tj
(0, ti) · βε

j
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and similarly for Yi. Note that W̃i(si+εsε
i ) = Wi(si)+ε(ẋi(ti)·sε

i +w
ε
i ), and similarly for Zi. Expand-

ing the right-hand side of (3.6), we get (taking into account (3.5), which implies that ∂H1/∂x ≡ 1
mod mC and ∂H1/∂y ≡ 0 mod mC)

(H1 + εhε
1)(Wi(si) + ε(ẋi · sε

i +wε
i ), Zi(si) + ε(ẏi(ti) · sε

i + zε
i ))

= H1(Wi(si), Zi(si)) + ε(hε
1(xi, yi) + ẋi · sε

i + wε
i ).

Comparing this with the expansion of the left-hand side of (3.6) shows that it suffices to find
βε, hε

1, h
ε
2, s

ε satisfying the equality

(wε
i , z

ε
i ) =

k∑
j=1

βε
j ·

(
∂Xi

∂Tj
(0, ti),

∂Xi

∂Tj
(0, ti)

)
− sε

i · (ẋi, ẏi)− (hε
1(xi, yi), hε

2(xi, yi)).

From Lemma 3.6, we know that wε, zε ∈ Ies
R←P

. Hence, the assumptions imply that we find a solution
βε, hε

1, h
ε
2, s

ε for the above equation (respectively, a solution with uniquely determined βε).

As a corollary of Theorem 3.1 and Corollary 3.5, we get the ‘openness of versality’ for equisingular
deformations with sections of the parametrization: let (S,OS) be an algebraic K-scheme, then we call
a family OS → OS [[x, y]] →

⊕r
i=1OS [[ti]] of parametrizations of reduced plane curve singularities

over S equisingular, if for any (closed) point s ∈ S, the induced family ÔS,s → ÔS,s[[x, y]] →⊕r
i=1 ÔS,s[[ti]] defines an equisingular deformation of the parametrization with trivial sections. We

say that the family is equisingular-versal at s, if the induced family over the complete local ring
ÔS,s is a versal equisingular deformation of the special fibre.

Corollary 3.8. Let OS → OS [[x, y]]→
⊕

iOS [[ti]] be an equisingular family of parametrizations
of reduced plane curve singularities. Then the set of (closed) points s ∈ S such that the family is
equisingular-versal at s is open in S.

Proof. Let J es = J es⊕
iOS [[ti]]←OS[[x,y]] be the subsheaf of

⊕
i(tiOS [[ti]] ⊕ tiOS [[ti]]) of elements

(a,b) such that Xi(ti) + ai(ti), Yi(ti) + bi(ti) defines an equisingular family over S. Here, as usual,
Xi, Yi ∈ OS [[ti]] denote the images of x and y in OS [[ti]]. Let Ẋi, Ẏi denote the partials of Xi, Yi

(with respect to ti). Then the quotient sheaf

T 1,es = T 1,es⊕
iOS [[ti]]←OS[[x,y]] = J es

/(⊕
i

(Ẋi, Ẏi)tiOS [[ti]] + 〈x, y〉OS [[x, y]]
)
,

is a coherent OS-sheaf. Moreover, we have the Kodaira–Spencer map ΘS → T 1,es which maps δ
to the class of (δ(Xi), δ(Yi))ri=1. By Theorem 3.1, the equisingular-versal locus is the complement
of the support of the cokernel of this map. Thus, the equisingular-versal locus is open in S.

4. Equisingular deformations of the equation

We now turn to deformations of the singularity itself, that is, to deformations of R = P/〈f〉 with
or without section. Analogous to Definition 1.1, they are defined by flat morphisms A → RA in
AK (with section σ), together with a surjection RA � R over A � K such that the corresponding
diagram is Cartesian:

R RA
��

σ��
K
��

����

A.����
�

��

Morphisms are morphisms of diagrams. We denote the corresponding category by Def sec
R (respec-

tively, Def R) and the deformation functors by Def sec
R

(respectively, Def
R
). In order to distinguish
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them from deformations of the parametrization, we also refer to the objects of Def R (respectively,
Def sec

R ) as deformations of the equation (respectively, with section) since, basically, we deform f .
From Proposition 1.3, we deduce the following commutative diagram

Def sec
R←R←P∼=������ smooth

�� ������

Def sec
R←P

�����
Def sec

R←R
��������

Def sec
R

��
Def R

where the solid arrows are the natural forgetful functors and the dashed arrow is defined by making
the diagram commutative. For the deformation functors of isomorphism classes we have

Def sec
R←P

∼=←− Def sec
R←R←P

∼=−→ Def sec
R←R

→ Def sec
R
→ Def

R
.

We turn now to equisingular deformations.

Definition 4.1. A deformation of R is called (strongly) equisingular (or an es-deformation) if it is
induced by an equisingular deformation of the parametrization of R. That is, we define the category
Def es

R to be the full subcategory of Def R,

Def es
R = image(Def es

R←P
→ Def R).

Here Def es
R

denotes the corresponding subfunctor of Def
R
. In particular, we introduce

T 1,es
R = Def es

R
(K[ε]).

Similarly, we define
Def es,sec

R = image (Def es
R←P

→ Def sec
R )

as full subcategory of Def sec
R and call objects of Def es,sec

R equisingular deformations of R with section.
The corresponding functor Def es,sec

R
of isomorphism classes is called the equisingular deformation

functor with section.

Since, by Proposition 2.12, every equisingular deformation of P → R has a unique section σ,
the forgetful functors from the image of Def es

R←P
in Def sec

R to Def R is injective on objects, if R
is singular. Moreover, since the section is singular, any isomorphism in Def R must respect the
section and, hence, lifts to an isomorphism in Def sec

R . That is, Def es
R and Def es,sec

R are equivalent
categories and the functors Def es

R
and Def es,sec

R
are isomorphic. In particular, the vector spaces T 1,es

R

and T 1,es,sec
R are isomorphic (but not equal: the first is a subspace of R/J , the second of m/mJ ;

cf. § 5).
Theorem 3.1 yields immediately the first main result of this paper.

Theorem 4.2.

(1) The natural transformation Def es
R←P

→ Def es,sec
R

∼= Def es
R

is smooth. In particular, equisingular
deformations of R are unobstructed and have a semiuniversal deformation with smooth base
of dimension dimK T 1,es

R .

(2) Def es
R←P

→ Def es
R

is an isomorphism of functors if and only if dimK T 1,es

R←P
= dimK T 1,es

R . If
this holds, a semiuniversal equisingular deformation of R is obtained from the semiuniversal
equisingular deformation of the parametrization (as given in Theorem 3.1(3)) by elimination
of the parametrizing variables.

(3) If the characteristic of K is good, then Def es
R←R

∼= Def es
R

, and the semiuniversal object of Def es
R

has an algebraic representative.
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Proof. (1) Since Def es
R

is the image functor under Def es
R←P

→ Def
R
, it follows that any versal object

of Def es
R←P

induces a versal object of Def es
R

. Since Def es
R←P

is unobstructed by Theorem 3.1, the same
follows for Def es

R
. Since Def es

R←P
and Def

R
satisfy Schlessinger’s conditions [Sch68] for the existence

of a formal versal deformation (the first by Theorem 3.1, for the second this is well known), the same
holds for Def es

R
. Now, it follows from [Fle8l, (5.2) Satz] that Def es

R
has a semiuniversal deformation

with smooth base, and that Def es
R←P

→ Def es
R

is smooth.
(2) Since the functors Def es

R
and Def es

R←R
are both unobstructed, they are equivalent if and only

if the surjection T 1,es

R←P
→ T 1,es

R is an isomorphism, showing part (2).

(3) In good characteristic, Proposition 5.5 below says that T 1,es
R
∼= T 1,es

R←R
.

From Proposition 1.3 and its proof, we deduce that a semiuniversal object of Def es
R

is obtained
from the semiuniversal object for Def es

R←P
given in Theorem 3.1(3) by eliminating the uniformizing

parameters ti from the ideal generated by x−Xi(T, ti) and y−Yi(T, ti), i = 1, . . . , r. The resulting
power series Fi(T, x, y), i = 1, . . . , r (respectively their product F = F1 · · · · ·Fr), define the ideal of
the total space of the semiuniversal deformations of the branches Ri (respectively of R).

Since R has an isolated singularity, it is finitely determined, hence we may assume that xi and yi

are polynomials in ti, see [Hir63, Thm. B]. Since T 1,es

R←P
is a finite-dimensional K-vector space, we can

also choose the a(j)
i and the b(j)i in Theorem 3.1(3) to be polynomials in ti. Then Xi, Yi ∈ K[T, ti],

and we have to eliminate ti from x−Xi, y − Yi, that is, we have to compute a generator Fi for the
ideal 〈x−Xi, y − Yi〉 ·K[[x, y,T, ti]] ∩K[[x, y,T]].

If p = char(K) is good, we can compute mith roots of units in K[[ti]] (mi = mult(Ri)), and
hence we may assume that the parametrization is of the form xi(ti) = tmi

i , and ordti yi(ti) > mi.
However, then {x−Xi = y−Yi = 0} intersects the ti-axis only in ti = 0. Thus, we can eliminate in
the polynomial ring, that is, we get 〈Fi〉 = 〈x −Xi, y − Yi〉 ∩K[x, y,T] (cf. [GP02]). The product
F = F1 · · · · · Fr defines via K[T]→ K[x, y,T]/〈F 〉 an algebraic representative of the semiuniversal
equisingular deformation of R.

Remark 4.3. (1) Let ξ be an object of Def es
R←P

(A). Then Proposition 1.3 shows that there exists a
unique lifting toDef es

R←R←P
(A), and this lifting induces a deformation of the equation, η ∈ Def es

R (A).
If ξ is versal, then η is versal too. If ξ is semiuniversal, then, however, η need not be semiuniversal.

More precisely, if ξ is semiuniversal and if ηs ∈ Def es
R (B) is semiuniversal equisingular, then,

by Theorem 4.2, η can be induced from ηs by a map B → A, where A ∼= B[[z1, . . . , z�]]. Here,
� = dimK ker(T 1,es

R←P
→ T 1,es

R ), which can be computed by using the exact sequences in § 5.
(2) For K a field of characteristic 0, Wahl [Wah74a] introduced in a different way a functor ES

of equisingular deformations of R (over Artinian rings). He considered an embedded resolution (by
finitely many successive blow-ups) of the singularity R. Then a deformation of R is equisingular in
the sense of Wahl, if it is an em-deformation of the equation along some section. Further he requires
that, after blowing up the section, there exist sections through the infinitely near points on R in the
first neighbourhood of P along which the blown-up family induces an equisingular deformation of
the equation of the reduced total transform. Thus, the definition is by induction on the number of
blow-ups needed to resolve the singularity. Any em-deformation of a node is equisingular.

Note that equimultiplicity for the parametrization (as in our definition) differs from equi-
multiplicity for the equation (as in Wahl’s definition): an em-deformation of the parametrization
induces an em-deformation of the equation, but not conversely. For instance, it can be easily seen
that the em-deformation along the trivial section of the cusp R = K[[x, y]]/〈x2 − y3〉 given by
RA = A[[x, y]]/〈x2 − y3 − sy2〉 can be lifted to Def sec

R←P
(A), but not to Def em

R←P
(A). Indeed, the

unique lifting is given by the parametrization X(t) = t3−s2t, Y (t) = t2−s2 which is not equimultiple
along any section.
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Hence, the relation between Wahl’s ES, the functor of isomorphism classes of ES, and our
Def es

R
is not completely obvious. Nevertheless, equisingular deformations in Wahl’s sense lift to

equisingular deformations of the parametrization and it can be shown that Def es
R

is isomorphic
to ES (cf. [GLS07]).

(3) The main result of Wahl’s paper [Wah74a] is that ES is unobstructed. Theorem 4.2 provides
a new proof. Wahl’s proof appears to be more involved than ours, as it uses deformation theory of
global objects, namely of divisors supported on the exceptional divisor of the (embedded) resolution
of R. Moreover, as Wahl shows, there is no easy description of ES. For example, it is not, in general,
a linear subfunctor of Def

R
, the functor of deformations of R.

On the other hand, our functorDef es
R←P

is very easy to describe as a linear subfunctor of Def sec
R←P

.
Hence, even in characteristic zero, our approach to equisingular deformations of R via deformations
of the parametrization provides an easy understanding of the objects in Def es

R .

By Theorem 4.2(2), a semiuniversal base for Def es
R

is obtained from a semiuniversal base for
Def es

R←P
by elimination. As elimination is highly nonlinear, this ‘explains’ why we cannot expect

Def es
R

to be a linear subfunctor of Def
R
.

On the other hand, Wahl introduced special equisingular deformations ES′ ⊂ ES such that ES′

is a linear subfunctor of Def
R
. These special deformations lift to equisingular deformations of the

parametrization for which the elimination is linear.

(4) Let K = C. All results proved so far are valid (with the same proofs) for convergent
instead of formal power series. Then we use the geometric language of deformations of reduced
plane curve singularities (C, 0) = ({f = 0}, 0) ⊂ (C2, 0) over complex space germs (T, 0), where
f ∈ C{x, y}. Let (C, 0) → (C, 0) denote the normalization of (C, 0), and (C, 0) → (C, 0) ↪→
(C2, 0) the parametrization. We denote by (Ses, 0) the base space of the semiuniversal equisingular
deformation of (C, 0) (in this case, isomorphic to the base space of the semiuniversal equisingular
deformation of the parametrization). Note that Theorem 3.1 gives a convergent semiuniversal equi-
singular deformation (even an algebraic representative) and not only a formal object. (Ses, 0) is a
closed subgerm of the base space (S, 0) of the semiuniversal deformation (C , 0) → (S, 0) of (C, 0).
As is well known (cf. [GLS07]), (Ses, 0) coincides with the µ-constant stratum of (C, 0),

(Ses, 0) = (Sµ, 0) = ({s ∈ S | µ(Cs) = µ(C, 0)}, 0),

where µ(C, 0) = dimCC{x, y}/〈∂f/∂x, ∂f/∂y〉 is the Milnor number of (C, 0), φ : C → S a suf-
ficiently small representative of (C , 0) → (S, 0), and µ(Cs) =

∑
p∈Cs

µ(Cs, p) is the total Milnor
number of the fibre of φ over s. If µ(Cs) = µ(C, 0) > 0, then it is also known that there is exactly
one singular point p ∈ Cs (satisfying µ(Cs, p) = µ(Cs)), and the restriction of φ to φ−1(Sµ) admits
a unique section, picking up the singular point over s ∈ Sµ (see [Laz73, Tei78]).

Hence, Theorem 4.2 gives a new proof that the µ-constant stratum (Sµ, 0) is smooth.

(5) In good characteristic, the µ-constant stratum can be generalized to the (strong) equisin-
gularity stratum Ses = Spec(Bes) ⊂ S = Spec(B). Here, B is the base ring of the semiuniversal
deformation B → RB of R, and p ⊂ B is a prime ideal defining a smooth subscheme such that the
restriction Bes := B/p → RB⊗̂BB/p is equisingular. Here Ses is the unique maximal closed sub-
scheme of S having the following universal property: if a strongly equisingular deformation A→ RA

of R is induced from B → RB by some map ψ : B → A, then Spec(ψ) : Spec(A) → S factors
through Ses.
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(6) In bad characteristic, a ‘strongly equisingular stratum’ which generalizes the µ-constant
stratum, in general does not exist. The situation is as follows: let ξes ∈ Def es

R(Bes) be a semiuniversal
es-deformation, and let η ∈ Def sec

R (B) be a semiuniversal deformation with section. Then, by the
semiuniversality of η, there exists a morphism ψ : B → Bes in AK , which is unique on the tangent
level, such that ψη ∼= ξes. By definition, Def es

R
is a subfunctor of Def

R
, and we have a unique

subspace T 1,es
R ⊂ T 1

R. Since the tangent map of ψ is injective, the dual map mB/m
2
B → mBes/m2

Bes

is surjective. Thus, ψ induces an isomorphism B/ kerψ ∼= Bes, and the deformation over B/ kerψ
induced by η is isomorphic to ξes, hence strongly equisingular semiuniversal.

Thus, Spec(B/ kerψ) ⊂ Spec(B) could be considered as a (strongly) equisingular stratum. How-
ever, it does not have an intrinsic meaning. Indeed, as Example 4.4 shows, ψ is not unique and
Spec(B/ kerψ) ⊂ Spec(B) may vary for different choices of ψ (only the tangent space is fixed).
Moreover, the restriction of η over the union for different choices is not strongly equisingular.

However, we can define in arbitrary characteristic an intrinsic weak equisingularity stratum in
Spec(B) (see § 6) which coincides with the stratum Ses defined in part (5) if the characteristic is
good.

Example 4.4. We give now several examples which show that all possible pathologies in bad char-
acteristic do actually occur. Consider the plane curve singularities (in bad characteristic) given by
the equation f in the following cases:

(1) char(K) = p > 0 and f = y2p + x2p+1 + xpyp+1;

(2) char(K) = 2 and f = y4 + x6 + x7;

(3) char(K) = p � 3, l = (p + 1)/2 and f = yp − xp+2 + xlyl;

(4) char(K) = p > 0 and f = y(yp − xp+1).

The Tjurina ideal 〈f, x(∂f/∂x), x(∂f/∂y), y(∂f/∂x), y(∂f/∂y)〉 is given by the respective ideals:

(1) 〈x2p+1, x2py, xp+1yp, xpyp+1, y2p〉;
(2) 〈x7, x6y, y4 + x6〉;
(3) 〈xp+2, 2xp+1y − lxl−1yl+1, xl+1yl−1, xlyl, yp〉;
(4) 〈xp+2 − xyp, xp+1y, xpy2, yp+1〉.

Thus, a basis for the K-vector space T 1,sec
R is given by the classes of the monomials with exponents

in the set D given by

(1) D = D0 ∪D1 ∪D2 where

D0 = {(i, j) | 0 < i+ j � 2p, j < 2p},
D1 = {(i, j) | 1 < i < p, p+ 2 < j < 2p, i+ j > 2p},
D2 = {(i, j) | p+ 2 < i < 2p, 1 < j < p, i+ j > 2p};

(2) D = {(i, j) | 0 � i � 5, 0 � j � 3, i+ j > 0} ∪ {(6, 0)};
(3) D = D0 ∪D1 ∪D2 ∪ {(p + 1, 0)} where

D0 = {(i, j) | 0 < i+ j � p},
D1 = {(i, j) | 1 < i < l, l < j < p, i+ j > p},
D2 = {(i, j) | l + 1 < i < p+ 1, 1 < j < l − 1, i+ j > p};

(4) D = {(i, j) | 0 < i+ j, i < p, j < p+ 1} ∪ {(p, 0), (p, 1), (p + 1, 0)}.
In particular, the dimension of T 1,sec

R is given by 3p2 + 1 in case (1), 24 in case (2), 2l2 + (l− 1)2 in
case (3), and p2+p−2 in case (4). The semiuniversal deformation with section η of R = K[[x, y]]/〈f〉
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is given by

F := f +
∑

(i,j)∈D

ui,jx
iyj

over the base S = Spec(B) where B = K[[ui,j | (i, j) ∈ D]].

Case (1): The subscheme S′ ⊂ S given by the smooth conditions

uij = 0, (i, j) ∈ D \ {(p, p), (2p, 0)}, and 2u2p,0 − u2
p,p = 0, if p �= 2;

uij = 0, (i, j) ∈ D \ {(4, 0)}, if p = 2

can be viewed as an equisingular locus for η, and one has dimS′ = 1+(p−1)(p−2). Now, for every
h ∈ 〈uij | (i, j) ∈ D〉 one has the smooth (p − 1)(p − 2)-dimensional subscheme Sh of S′ given by
adding, to the equations defining S′, the following equation

up,p − 2h2 = 0, if p �= 2; u4,0 − h4 = 0, if p = 2.

Then, for each h the deformation induced by η on Sh is a semiuniversal deformation for Def es
R

, so
that Sh = Spec(B/ kerψh) for some ψh as in Remark 4.3(6). Note that all of the smooth subschemes
Sh share the same tangent space, namely the subspace T 1,es

R of T 1,sec
R . Also note that S′ coincides

with the Zariski closure of the union of all Sh.

Case (2): Take any pair h, h′ ∈ 〈uij | (i, j) ∈ D〉 and consider the unique h′′ ∈ 〈uij | (i, j) ∈ D〉
which satisfies the equality

(1 + h′′2)u42 = h′2 + h′′ + (1 + h′′2)u33h
3 + (1 + h′′)(u4,3h

3 + u5,2h
2).

Here h′′ is the solution to an implicit equation in the power series ring B. Consider the five-
dimensional subscheme Sh,h′ ⊂ S given by the smooth conditions

uij = 0, (i, j) ∈ D \ {(4, 0), (4, 2), (5, 1), (6, 0), (3, 3), (4, 3), (5, 2), (5, 3)}
u4,0 + h4 = 0

u5,1 + h2u3,3 = 0

u6,0 + h′′2 + u5,1h+ u4,2h
2 + u3,3h

3 = 0.

Again, the deformation induced by η on Sh,h′ is semiuniversal for Def es
R

, one has Sh,h′ =
Spec(B/ kerψh,h′) for some ψh,h′ , as in Remark 4.3(6), and all Sh,h′ share as tangent space the sub-
space T 1,es

R of T 1,sec
R . Finally, notice that the Zariski closure of

⋃
h,h′ Sh,h′ is the seven-dimensional

non-smooth subscheme S′ ⊂ S given by

uij = 0, (i, j) ∈ D \ {(4, 0), (4, 2), (5, 1), (6, 0), (3, 3), (4, 3), (5, 2), (5, 3)}
u2

5,1 + u4,0u
2
3,3 = 0.

Case (3): The subscheme S′ ⊂ S given by the smooth conditions

ui,j = 0, (i, j) ∈ D, i+ j � p or i+ j = p+ 1 and j � l − 1,

can be viewed as the equisingular locus for η, and one has dimS′ = (l − 2)2. The deformation
induced by η on S′ is a semiuniversal deformation for Def es

R
, therefore S′ is the only subscheme of

type Spec(B/ kerψ) for ψ as in Remark 4.3(6).

Case (4): The subscheme S′ ⊂ S given by the smooth conditions

ui,j = 0, (i, j) ∈ D, i+ j � p+ 1,

again, can be viewed as the equisingular locus for η, and one has dimS′ = 1
2(p − 1)(p − 2). The

deformation induced by η on S′ is semiuniversal for Def es
R

, and the subscheme S is the only one of
type Spec(B/ kerψ) with ψ as in Remark 4.3(6).
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Conclusion. In all four cases the subscheme S′ will become the weak equisingularity stratum
(§ 6).

In case (1) (respectively, case (2)) S′ is the Zariski closure of infinitely many substrata Sh

(respectively, Sh,h′) which are smooth with the same tangent space. For each h (respectively, (h, h′))
the restriction of η to Sh (respectively, Sh,h′) is a semiuniversal strongly equisingular deformation
of R. However, the restriction of η to the union of two different strata of {Sh} (respectively, {Sh,h′})
is not (strongly) equisingular. Hence, an intrinsic largest strong equisingularity stratum in S′ does
not exist. In case (1), S′ is smooth while in case (2) S′ is singular.

In cases (3) and (4) S′ is a strong equisingularity stratum. It exists (and coincides with the weak
version) although the characteristic is bad.

5. Exact sequences of infinitesimal deformations

In this section, we consider maps between the tangent spaces of the deformation functors introduced
so far. We consider additionally deformations of the normalization (without sections) which fix R.
They are given by morphisms RA → RA over A such that RA = R⊗̂A (and each morphism between
them induces the identity on RA). The corresponding category (respectively, deformation functor)
is denoted by Def R/R (respectively, Def

R/R
).

We denote by T 0
R(R), T 0

R, T
0
R
, T 0

Quot(R) the K-vector space of derivations of R in R, R in R, R in
R, and Quot(R) in Quot(R), respectively. Because all of the considered derivations can be extended
to Quot(R), we can regard T 0

R(R), T 0
R, T

0
R

as vector subspaces of T 0
Quot(R).

From the obvious relations among the deformation functors, we deduce linear maps T 1
R/R

→
T 1

R←R
→ T 1

R. The elements of T 1
R/R

= Def
R/R

(K[ε]) can be interpreted as derivation classes in
the following sense: each deformation of R → R which fixes R is represented by a deformation
R⊗K K[ε] ↪→ R⊗K K[ε], given by an injective morphism R+ εR→ R+ εR of K-algebras mapping
an element g of R + εR to g + ε∂g for some fixed ∂ ∈ T 0

R(R). Since two such morphisms define
isomorphic deformations if and only if their derivatives are equal modulo T 0

R
∩ T 0

R(R), we can
identify T 1

R/R
with the quotient T 0

R(R)/(T 0
R
∩T 0

R(R)). The kernel of the map T 1
R/R
→ T 1

R←R
consists

of the deformation classes determined by derivations in T 0
R ⊂ T 0

R(R). Thus, it is identified with the
K-vector space

MR := T 0
R/(T

0
R
∩ T 0

R).

Note that, in characteristic zero, we have MR = 0 as every derivation in T 0
R can be extended to

one in T 0
R

(see [Del73]). However, if char(K) = p > 0, this is not true. For instance, if p � q, the
derivative ∂/∂y is tangent to the curve {yp + xq = 0} and the induced derivation is in T 0

R but not
in T 0

R
.

The involved K-vector spaces can also be described in terms of the parametrization of the curve.
In fact, denote by d = (d1, . . . , dr) the differential multi-exponent, that is, di = min{ordti(ẋi),
ordt(ẏi)}. Then, deformations of the parametrization which give rise to classes in T 1

R/R
are precisely

those defined by power series Xi, Yi ∈ A[[ti]] of type Xi = xi + εhit
−di
i ẋi, Yi = yi + εhit

−di
i ẏi where

hi ∈ K[[ti]]. Deformations leading to elements in T 1
R←R

are precisely those given by Xi = xi + εai,
Yi(ti) = yi + εbi, where ai, bi ∈ K[[ti]].

Taking into account those deformations leading to trivial deformations for the respective func-
tors, we get the following lemma.
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Lemma 5.1. We have the following isomorphisms of K-vector spaces:

MR
∼= t−dR · (ẋ, ẏ) ∩ (R ⊕R)

R · (ẋ, ẏ) ∩ (R⊕R)
, T 1

R/R
∼= t−dR · (ẋ, ẏ)

R · (ẋ, ẏ)
,

T 1
R←R

∼= R⊕R
R · (ẋ, ẏ) + (R⊕R)

, T 1
R
∼= R/J,

where J is the Jacobian ideal of the curve, that is, the ideal of R = K[[x, y]]/〈f〉 generated by the
partials ∂f/∂x, ∂f/∂y. In particular, the vector spaces are all equipped with a natural R-module
structure.

Here, t−dR is a short-hand notation for
r⊕

i=1

t−di
i K[[ti]] ⊂ Quot(R) =

r⊕
i=1

Quot(Ri) =
r⊕

i=1

K((ti)).

Note that, in good characteristic, we have di = mi − 1.
Altogether, we get an exact sequence of R-modules, which are finite-dimensional K-vector spaces

(see also [Buc81] and [GLS07]).

0 −→MR −→ T 1
R/R
−→ T 1

R←R
−→ T 1

R −→ R/RJ −→ 0.

All maps are obvious, except for the map T 1
R←R

→ T 1
R, which takes the class of (a,b) ∈ R ⊕ R

to the class mod J of the element a(∂f/∂x) + b(∂f/∂y). Note that RJ is an ideal of R as J is
contained in the conductor C of R.

For deformations with sections we have an analogous exact sequence of R-modules:

0 −→M sec
R −→ T 1,sec

R/R
−→ T 1,sec

R←R
−→ T 1,sec

R −→ m/mJ −→ 0. (5.1)

Here, m denotes the maximal ideal of R, m the Jacobson radical of R, and

M sec
R := T 0,sec

R /(T 0,sec

R
∩ T 0,sec

R ),

where T 0,sec
R = {∂ ∈ T 0

R | ∂(m) ⊂ m}, T 0,sec

R
= {∂ ∈ T 0

R
| ∂(m) ⊂ m}.

Lemma 5.2. We have the following isomorphisms of R-modules:

M sec
R
∼=

t−d+1R · (ẋ, ẏ) ∩ (m⊕m)
m · (ẋ, ẏ) ∩ (m ⊕m)

, T 1,sec

R/R
∼=

t−d+1R · (ẋ, ẏ)
m · (ẋ, ẏ)

,

T 1,sec

R←R
∼=

(m⊕m)
m · (ẋ, ẏ) + (m ⊕m)

, T 1,sec
R

∼= m/mJ.

Remark 5.3. In the description of MR,M
sec
R as well as of T 1

R/R
, T 1,sec

R/R
in Lemmas 5.1 and 5.2, each

involved derivation ∂ is represented by the tuple (∂x, ∂y) in R⊕R, respectively, in R⊕R.

From the above exact sequences, we deduce the following lemma.

Lemma 5.4. Let δ = dimK R/R. Then the following hold:

dimK T 1
R = dimK T 1,sec

R − dimK(J/mJ) + 1,

dimK T 1
R = dimK T 1

R←R
+ δ + dimK MR,

dimK T 1,sec
R = dimK T 1,sec

R←R
+ δ + r − 1 + dimK M sec

R ,

where 1 � dimK(J/mJ) � 2. If char(K) = 0, then dimK MR = dimK M sec
R = 0 and, if R is not

regular, dimK(J/mJ) = 2.
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Proof. The first equality follows from the definitions. Moreover, we have

dimK T 1
R/R

= dimK T 1,sec

R/R
= |d| := d1 + · · ·+ dr.

From the equality JR = tdC and the fact that dimK R/C = 2δ, we get

dimK R/(JR) = δ + |d|, dimK m/(m ·RJ) = δ + r − 1 + |d|.
The fact that dimK(J/mJ) = 2 in characteristic zero follows, for example, from [Cas00].

Proposition 5.5. The exact sequence (5.1) induces an exact sequence of R-modules

0 −→M sec
R −→ T 1,es

R/R
−→ T 1,es

R←R
−→ T 1,es

R −→ 0,

where M sec
R = T 1,es

R/R
= 0 if the characteristic of K is good.

Proof. To check the exactness, first note that the map T 1,es

R←R
→ T 1,es

R is surjective by definition of
Def es

R
, and that elements in its kernel are nothing but classes of equisingular deformations keeping

R fixed. Second, the image of M sec
R in T 1,sec

R/R
consists of the classes of trivial deformations of the

parametrization keeping R fixed. So, M sec
R is contained in T 1,es

R/R
.

In good characteristic, a deformation of R ← P given by Xi = xi + εhit
−di+1
i ẋi, Yi = yi +

εhit
−di+1
i ẏi is equimultiple along the trivial section if and only if ordti(hi) � di. Thus, in this case,

T 1,es

R/R
= {0} = M sec

R , and the exact sequence simply states that the map T 1,es

R←R
→ T 1,es

R is an
isomorphism.

In bad characteristic, however, each term in the sequence of Proposition 5.5 can be nonzero, as
the following examples show.

Example 5.6. Let char(K) = p > 0.
(1) The irreducible plane curve singularity given by

f = y2p + x2p+1 + xpyp+1

satisfies dimK(M sec
R ) = 0,dimK(T 1,es

R/R
) = 1. Indeed, it is parametrized by

x(t) =
−t2p

1 + tp+1
, y(t) =

−t2p+1

1 + tp+1
,

and under the isomorphism of Lemma 5.2, T 1,es

R/R
is generated by the class of (ẋ, ẏ) = (t3p/(1+tp+1)2,

−t2p/(1 + tp+1)2), however, M sec
R = 0 as ẋ �∈ m. Note that, in this case, T 1,es

R←R
and T 1,es

R are not
isomorphic; in fact, one has dimK(T 1,es

R←R
) = 1 and dimK(T 1,es

R ) = 0.
(2) The irreducible plane curve singularity given by

f = yp2 − xp2+p − xp2+p+1 = (yp − xp+1)p − xp2+p+1

satisfies dimK(M sec
R ) = dimK(T 1,es

R/R
) = 2. Indeed, it is parametrized by

x(t) = tp
2
, y(t) = tp

2+p + tp
2+p+1,

and under the isomorphism of Lemma 5.2, M sec
R is the two-dimensional K-vector space generated

by the classes of (0, tp
2
) and (0, tp

2+p), i.e. by the classes modulo T 0,sec

R
∩ T 0,sec

R of the elements of

T 0,sec
R given by x(∂/∂y) and y(∂/∂y). Note that, in this case, T 1,es

R←R
∼= T 1,es

R .
(3) The irreducible plane curve singularity

f = yp − xp+2 + xlyl
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for p � 3 and l = 1
2 (p+ 1) satisfies dimK M sec

R = dimK T 1,es
R = 0. Indeed, it is parametrized by

x(t) =
tp

(1 + t)l−1
, y =

tp+2

(1 + t)l

and, since d = p, under the isomorphism of Lemma 5.2, T 1,es

R/R
= 0, as one has (ẋ, ẏ) = ((1−l)tp/(1+t)l,

(2tp+1 − ltp+2)/(1 + t)l+1). It follows that the deformations of type

X(t) = x(t) + εst−d+1ẋ

Y (t) = y(t) + εst−d+1ẏ

which are equisingular must satisfy s ∈ tdR, so T 1,es

R/R
= 0. Note that, in this case, one has T 1,es

R←R
∼=

T 1,es
R .

(4) The plane curve singularity with r � 2 branches given by

f = y(y − x2)(y − x3) . . . (y − xr−1)(yp − xp+1)

satisfies dimK M sec
R = dimK T 1,es

R = 0. Indeed, the differential multi-exponent is given by the r-tuple
d = (0, . . . , 0, p), so the elements in t−d+1R(ẋ, ẏ) which give rise to equisingular deformations of the
parametrization over K[ε] need to be in tR(ẋ, ẏ). This shows T 1,es

R/R
= 0. Also, in this case, one has

T 1,es

R←R
∼= T 1,es

R .

Wahl showed in [Wah74a] that the tangent space to his functor ES is an ideal I ⊂ P = K[[x, y]],
the important equisingularity ideal of R. Let us show how this generalizes in our context to arbitrary
characteristic.

Let us denote by Def R/P the category of deformations of P → R inducing the product deforma-
tion of P , also denoted by (embedded) deformations of R/P . The forgetful functor Def R/P → Def R

is smooth, and we denote by Def es
R/P the preimage in Def R/P of Def es

R , and by Def es
R/P,fix the objects

in Def es
R/P which are equisingular along the trivial section.

Proposition 5.7. The tangent space Def es
R/P (K[ε]) of Def es

R/P ,

Ies := {g ∈ P | f + εg defines an element of Def es
R/P (K[ε])}

is an ideal containing the Tjurina ideal 〈f, ∂f/∂x, ∂f/∂y〉. Likewise, the tangent space Def es
R/P,fix

(K[ε]) of Def es
R/P,fix,

Ies
fix := {g ∈ P | f + εg defines an element of Def es

R/P,fix(K[ε])}
is an ideal containing 〈f〉+ mP 〈∂f/∂x, ∂f/∂y〉.

Moreover, the canonical map Ies
R/P,fix → Ies

R/P induces an isomorphism

T 1,es
R
∼= Ies/〈f, ∂f/∂x, ∂f/∂y〉 ∼= Ies

fix/(〈f〉 + mP 〈∂f/∂x, ∂f/∂y〉).
Proof. Consider the image of the R-module Ies

R←P
(Corollary 3.5) under the map R⊕R→ R given

by (a,b) 
→ a(∂f/∂x) + b(∂f/∂y); Ies
fix is the preimage in P of this image, hence an ideal in P .

A slight modification of the proof of Corollary 3.5 shows that

Ies
R←P

:=


(a,b) ∈ m⊕m

∣∣∣∣∣∣
{(xi(ti) + εai, yi(ti) + εbi) | i = 1, . . . , r}
defines an es-deformation of P → R
over K[ε] along some sections σ, σ




is an R-submodule of R ⊕ R. Taking the image of this submodule in R under the same map as
above, and then the preimage in P , gives Ies.

Note that Ies
fix/(〈f〉+mP 〈∂f/∂x, ∂f/∂y〉) is the tangent space to the image of Def es

R←P
in Def sec

R
,

which is isomorphic to T 1,es
R by the remark after Definition 4.1.
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6. Weakly equisingular and weakly trivial deformations

Our definition of (strongly) equisingular deformation of the equation is the canonical extension
of equisingularity to fields of arbitrary characteristic p. However, there is a new phenomenon in
characteristic p > 0, which does not appear in characteristic zero. For example, the deformation
over K[[a]] given by yp+axp+xp+1 is not trivial, but it becomes trivial after the base change a 
→ ap.
Similarly, y2p + 2axpyp + a2x2p + x2p+1 + xpyp+1 does not define an equisingular deformation, but
after the base change a 
→ ap it does (see Example 5.6(1)). Since this is a very natural phenomenon
in positive characteristic, we introduce the new concepts of weak triviality and weak equisingularity.
In this section we just state the main results about weakly equisingular deformations. The proofs
(which rely on the results of § 7) are deferred to § 8.

We start by considering weakly equisingular deformations which are induced from a fixed defor-
mation of R.

For C ∈ AK , let AC denote the category of Noetherian complete local C-algebras. For the
following definition, we fix C ∈ AK and an object η ∈ Def sec

R (C).

Definition 6.1. A weakly equisingular deformation (wes-deformation) of R based in η = (C →
RC , τ) over A ∈ AC is a commutative diagram with Cartesian squares

R
�

RA
��

σ

��

R

��

�

RA
��

σ
��

�

��

RC
��

τ
��

K

��

A��

��

C

��

��

(∗)

such that ξ = (RA → RA, σ, σ) is an object in Def es
R←R

(A). We refer to such a diagram by writing
ξ/η. If ξ is trivial, we call the deformation ξ/η weakly trivial.

Here, Def es
R←R

denotes the category of (strongly) equisingular deformations of the normalization
(Definition 2.6). We could have worked withDef es

R←P
as well, but at this point we prefer deformations

of the normalization (which have the induced deformation of R explicitly as part of their data).
Recall (Proposition 1.3) that the deformation functors Def es

R←R
and Def es

R←P
are isomorphic.

A morphism of wes-deformations based in η is given in an obvious way by a commutative diagram
(inducing the identity on η). The corresponding category is denoted by Def wes

R,η, while Def wes
R,η(A)

denotes the (non-full) subcategory of deformations over A with morphisms being the identity on A.
If ψ : A → B is a morphism in AC , then the induced deformation ψξ is an object in Def es

R←R
(B).

Hence, together with η, it defines an object ψ(ξ/η) ∈ Def wes
R,η(B).

Similarly, we define the category Def wtr
R,η of weakly trivial deformations of R based in η.

We can now formulate the main results about weakly equisingular deformations of this paper.

Theorem 6.2. Let η = (C → RC , τ) ∈ Def sec
R (C) be a fixed deformation with section of R. Then

the following hold:

(1) There exist an algebra Cη ∈ AC with structure morphism Ψη : C → Cη and an object
ζ/η ∈ Def wes

R,η(Cη) which has the following universal property: if ξ/η ∈ Def wes
R,η(A), A ∈ AC ,

then there is a unique morphism Ψ : Cη → A in AC such that Ψ(ζ/η) is isomorphic to ξ/η. In
particular, Cη is unique up to a unique isomorphism.

(2) The ideal Iwes
η := ker(Ψη) ⊂ C is uniquely determined by η and satisfies:

(i) Cwes
η = C/Iwes

η ↪→ Cη is finite;

(ii) for each z ∈ Cη there exists a q = pl for some l � 0 such that zq ∈ C/Iη, where
p = char(K) and q = 1 if p is good.
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(3) The construction of ζ/η is functorial in η which means the following: let η ∈ Def sec
R (C),

η′ ∈ Def sec
R (C ′) and ϕ : C → C ′ a morphism such that ϕ(Iwes

η ) = Iwes
η′ and ϕ(η) ∼= η′. Let

ζ/η ∈ Def wes
R,η(Cη) and ζ ′/η′ ∈ Def wes

R,η′(Cη′) be the universal objects as in part (1), respectively.

Then there exists a morphism Ψ : Cη → Cη′ in AC (where Cη′ ∈ AC via C
ϕ−→ C ′ → Cη′) such

that Ψ(ζ/η) ∼= ζ ′/η′.
(4) Let Ess(R) denote the set of essential infinitely near points on R, mQ the multiplicity of the

strict transform RQ of R at Q and

conwes
R :=

∑
Q∈Ess(R)

mQ(mQ + 1)
2

− efR

where efR is the number of essential and free points on R. Then

dimCη = dimCwes
η � dimC − conwes

R .

(5) If, moreover, η is versal in Def sec
R , then Cη is a regular local ring, Iwes

η is a prime ideal and

dimCwes
η = dimC − conwes

R .

We call ζ/η from part (1) the universal weakly equisingular deformation of R based in η and
conwes

R the number of conditions defining weakly equisingular deformations of R.

Definition 6.3. The morphism Spec(Cη) → Spec(C) is finite and we call the image Swes
η :=

Spec(Cwes
η ) ⊂ Spec(C) with the scheme structure defined by the prime ideal Ies

η the weak equisin-
gularity stratum of η. In good characteristic, strong and weak equisingularity coincide and we call
Swes

R = Ses
η the equisingularity stratum.

If η ∈ Def sec
R (Bsec

R ) is the semiuniversal deformation of R we write Swes,sec
R instead of Swes

η . It is
a subscheme of the base space Ssec

R := Spec(Bsec
R ) of η and called the weak equisingularity stratum

of R.

We define now weakly equisingular deformations without reference to a given deformation.

Definition 6.4. A deformation η ∈ Def sec
R (C) is called a weakly equisingular deformation (with

section) of R if there exists an injective ring map ϕ : C ↪→ A such that the induced deformation ϕη ∈
Def sec

R (A) is strongly equisingular, that is, an object of Def es,sec
R (A). We denote the corresponding

full subcategory of Def sec
R by Def wes,sec

R and Def wes,sec
R

the functor of weakly equisingular deformations
of R with section. If ϕη is trivial we call η weakly trivial.

As a corollary of Theorem 6.2 we show that Def wes,sec
R

has a semiuniversal deformation which
can be identified with the restriction of the semiuniversal deformation for Def sec

R
to the weak equi-

singularity stratum Swes,sec
R ⊂ Ssec

R .

Theorem 6.5. Let η ∈ Def sec
R (C) be a versal (respectively, semiuniversal) deformation with section

of R and π : C � Cwes
η the canonical surjection. Then πη ∈ Def sec

R (Cwes
η ) is a versal (respectively,

semiuniversal) weakly equisingular deformation of R with section.

Proof. First let η be arbitrary in Def sec
R (C) and Ψ′ : C → C ′ a morphism in AK such that Ψ′η ∈

Def wes,sec
R (C ′). We claim that Ψ′ factors as C

π� Cwes
η → C ′.

By definition there exists a ring extension ϕ : C ′ ↪→ A such that (ϕ ◦ Ψ′)η is induced by
an equisingular deformation of the normalization ξ ∈ Def es

R←R
(A). By Theorem 6.2(1) we have

ξ/η ∼= Ψ(ζ/η) for a unique morphism Ψ : Cη → A with ζ/η the universal object such that the
following diagram commutes.

Cη

Ψ
��

Cwes
η

� ���

���
� C����

Ψ′����������

A C ′� �
ϕ��
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The dotted arrow exists since ϕ is injective, which proves the claim.
Now let η be versal and consider two objects Θ′ and Θ′′ in Def wes,sec

R over C ′ and C ′′, respectively,
where χ : C ′′ � C ′ is a surjection and Θ′ ∼= χΘ′′. We have a commutative diagram

C
Ψ′

��

Ψ′′

��

π����
Cwes

η

��� � � �
�����

C ′ C ′′χ
����

such that Ψ′η ∼= Θ′, Ψ′′η ∼= Θ′′ by the versality property of η where the dotted arrows exist by the
first part of the proof. This proves the versality of πη.

If η is semiuniversal, then the tangent map of Ψ′ is unique and, hence, so is the tangent map of
Cwes

η → C ′. Hence, πη is semiuniversal too.

Remark 6.6. Let η ∈ Def sec
R (Bsec

R ) be a semiuniversal deformation of R and ζ/η ∈ Def wes
R,η(Bη) the

universal weakly equisingular deformation of R based in η.
(1) From Example 4.4 the base space of the semiuniversal weakly equisingular deformation

Swes,sec
R ⊂ Ssec

R = Spec(Bsec
R ) is not, in general, smooth in bad characteristic. It is, however, the image

of the smooth space Spec(Bη) under the finite and surjective map Spec(Ψη) : Spec(Bη) � Swes,sec
R

which is actually a homeomorphism by Theorem 6.2(2). In particular, Swes,sec
R is always irreducible

of dimension

dimSwes,sec
R = τ sec(R)− conwes(R),

and we can say that the conditions defining the weak equisingularity stratum are independent.
In good characteristic and, as Example 4.4 suggests, also in many cases of bad characteristic,

the weak equisingularity stratum Swes,sec
R is smooth.

Here we use the well-known fact that if a map ϕ : A → B in AK is injective then the
map Spec(ϕ) : Spec(B) → Spec(A) is dominant (cf. [GP02, Proposition A.3.8]). If ϕ is finite,
then Spec(ϕ) is closed and, hence, Spec(ϕ) is surjective.

(2) We comment on the situation for (weakly) trivial deformations: if char(K) = 0, then it is
known that if a deformation η ∈ Def R(C) becomes trivial after some base change ϕ : C → C ′, then
ϕ factors as C

π� Ctr → C ′ where Ctr is a unique factor algebra of C such that πη is trivial (cf.
[GK89, Lemma 1.4]). Hence, Spec(Ctr) ⊂ Spec(C) is the unique maximal substratum over which η is
trivial (and a family is weakly trivial if and only if it is trivial). The proof uses Schlessinger’s theory
of functors of Artin rings. If char(K) > 0, however, we do not know whether Schlessinger’ conditions
are satisfied and hence we do not know whether unique weakly trivial strata exist.

Everything as above can be formulated for deformations of the parametrization. To do so, fix
any object ζ = (C → RC → RC , τ, τ ) ∈ Def sec

R←R
(C) with C ∈ AK .

Let Def es
R←R,ζ

denote the category whose objects are Cartesian diagrams of type

R
�

RA
��

σ

��

�

RC
��

τ

��

R

��

�

RA
��

σ
��

�

��

RC
��

τ
��

��

K

��

A��

��

C

��

��

where ξ = (A→ RA → RA, σ, σ) is an object in Def es
R←R

(A), and whose morphisms are the obvious
morphisms of diagrams inducing the identity on ζ. We write ξ/ζ for such objects.
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For A ∈ AC denote by Def es
R←R,ζ

(A) the (non-full) subcategory of deformations of the parametri-
zation over A with morphisms being the identity on A. If ψ : A → B is a morphism in AC and if
ξ/ζ is an object in Def es

R←R,ζ
(A), then ψ(ξ/ζ) = (ψξ)/ζ is the induced object in Def es

R←R,ζ
(B).

The next theorem is the parametric analogue of Theorem 6.2. Here the situation is, however,
simpler.

Theorem 6.7. For each deformation ζ = (C → RC → RC , τ, τ ) in Def sec
R←R

there is a universal
object ξ/ζ for the category Def es

R←R,ζ
defined over an algebra Cζ ∈ AC (with structure morphism

ψζ : C → Cζ) which is functorial in ζ and has the following properties:

(1) We have Cζ = Ces
ζ := C/Ies

ζ , where Ies
ζ = kerψζ .

(2) The codimension of Spec(Ces
ζ ) ⊂ Spec(C) satisfies

dimC − dimCes
ζ � cones

R←P
:=

∑
Q∈Ess(R)

mQ − efR − (r − 1),

where Ess(R) is the set of essential infinitely near points of R, mQ is the multiplicity of the
strict transform RQ of R at Q, efR is the number of free essential points of R and r the number
of branches of R.

(3) If ζ is a versal deformation for Def sec
R←R

, then Ces
ζ is smooth and satisfies

dimC − dimCes
ζ = cones

R←P
.

Moreover, the induced deformation ζes of ζ on Ces
ζ is a versal deformation for the functor

Def es
R←R

, and ζes is semiuniversal for Def es
R←R

if ζ is semiuniversal for Def sec
R←R

.

Again, universal in the statement means that if ξ′/ζ is an object in Def es
R←R,ζ

(A), then there
is a unique morphism ψ : Ces

ζ → A such that ψ(ξ/ζ) ∼= ξ′/ζ. In particular, Ces
ζ is unique up to

isomorphism, and it is given by Ies
ζ which is a uniquely defined ideal of C, depending functorially

on ζ. We call the subscheme Ses
ζ := Spec(Ces

ζ ) = Spec(C/Ies
ζ ) the equisingularity stratum of ζ.

Note that in the parametric case, it is not necessary to consider the analogue of weak equi-
singular deformations since the universal object for it is the subscheme Ses

ζ of Spec(C). That is,
if a deformation of the parametrization over A becomes equisingular over B after a finite base
change A ↪→ B, then it was already equisingular before over A. This corresponds to the fact that
in Theorem 6.7(1) no base change Ces

ζ ↪→ Cζ as in Theorem 6.2(2)(i) is required.
Sections 7 and 8 will provide proofs for Theorems 6.2 and 6.7.

7. Equipolygonal deformations

In this section, we introduce equipolygonal deformations for embedded plane curve singularities as
well as for their parametrizations. Such deformations are auxiliary tools for describing equisingular
strata. We also show the relationship between equipolygonal and equisingular deformations.

Throughout the following, we consider a fixed (embedded) plane curve singularity P → R =
P/〈f〉.

7.1 Equipolygonal deformations of the equation
Let Q be an infinitely near point of P on R, and let Q → RQ = Q/〈g〉 be the (embedded) strict
transform of R at Q. If Q �= P , the reduced total transform of R at Q consists of either one or two
additional smooth exceptional branches, depending on whether Q is a free point or a satellite point.
Namely, the branch Q→ EQ given by the exceptional divisor of the blowing-up creating Q and, in
the satellite case, another exceptional branch Q→ DQ which is the strict transform of EP ′ for some
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infinitely near point P ′ of P (such that Q is infinitely near to P ′). We denote by Q→ HQ the curve
singularity consisting of the exceptional branches at Q (for Q = P , HQ is defined to be the zero
ring). We set PP,R := {P} and, for Q �= P ,

PQ,R := {infinitely near points of Q on R which are on HQ}.

Moreover, we define e = eQ,R (respectively, d = dQ,R) to be the number of points in PQ,R which are
on EQ (respectively, on DQ). If EQ (respectively, DQ) does not exist, then we set e = 1 (respectively,
d = 1)

We say that two elements u, v ∈ mQ ⊂ Q are adapted to HQ (or adapted coordinates of Q) if
Q = K[[u, v]] and if all points in PQ,R are on Q/〈uv〉. That is, up to a permutation of u, v, we have
intersection multiplicities i(EQ, Q/〈u〉) � e and i(DQ, Q/〈v〉) � d (if EQ,DQ exist). In this case, we
say that u is adapted to EQ and v is adapted to DQ. In particular, if EQ = Q/〈u〉 and DQ = Q/〈v〉,
then u is adapted to EQ and v is adapted to DQ. If DQ does not exist, we call each element v ∈ mQ

which is transversal to u adapted to DQ. For Q = P , any two elements u, v which generate mQ are
adapted to HQ.

We call u, v ∈ mQ generic adapted elements if the set of infinitely near points of R on Q/〈uv 〉
coincides with PP,R. In other words, two adapted elements u, v are generic adapted if the intersection
multiplicity of Q/〈uv〉 with RQ is minimal, that is, ordu g(u, 0) = i(EQ, RQ) and ordv g(0, v) =
i(DQ, RQ).

Up to a permutation of u and v, the following objects depend only on R and Q (but not on the
choice of adapted elements u, v ∈ Q).

(1) The Newton polygon N = NQ,R of g with respect to generic adapted elements.

(2) The ideal Iep = Iep
RQ
⊂ Q generated by the monomials with exponents in N + Z2

�0.

(3) The adapted Jacobian ideal JQ,R ⊂ Q generated by g, u(∂g/∂u), ue(∂g/∂v), vd(∂g/∂u),
v(∂g/∂v) (assuming that EQ = Q/〈u〉 and DQ = Q/〈v〉). We have JQ,R ⊂ Iep.

(4) The finite-dimensional K-vector space T ep = T ep
Q,R = Iep/JQ,R.

It is easy to see that JQ,R is the tangent space to the group of adapted automorphisms of Q. Here,
an automorphism ψ of Q is called adapted if ψ(u) ∈ 〈u, ve〉, ψ(v) ∈ 〈ud, v〉 (for any adapted u, v with
u adapted to EQ and v adapted to DQ). Note that adapted automorphisms map adapted elements
to adapted elements.

Definition 7.1. Let η = (QA → HQ,A, σ, σ) ∈ Def sec
HQ←Q

(A) be a deformation with section of the
parametrization of HQ, and let ξ = (A→ RQ,A, σ

′) define an object of Def sec
RQ

(A). Then we say that
ξ is adapted to η if ξ fits into a commutative diagram

HQ,A

σ

��

RQ,A

σ′ ��

QA

��

����

σ
��

A

����									

that is, η and ξ are deformations with basically the same section, namely σ = QA � RQ,A
σ′−→ A.

Let u, v ∈ Q be generic adapted elements, and let U, V ∈ Iσ ⊂ QA be such that u ≡ U
mod mA and v ≡ V mod mA. Then Nakayama’s lemma implies that U, V generate Iσ/I2

σ, thus,
QA = A[[U, V ]] and Iσ = 〈U, V 〉.
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We call U, V adapted to η if ordU E(U, 0) = e and ordV D(0, V ) = d. Here, E(U, V ) ∈ A[[U, V ]]
(respectively, D(U, V ) ∈ A[[U, V ]]) is the equation for the deformation of EQ (respectively, DQ)
induced by η.

Definition 7.2. Let η = (φA, σ, σ) ∈ Def sec
HQ←Q

(A), and let ξ ∈ Def sec
RQ

(A) and U, V ∈ Iσ be
adapted to η. Moreover, let G(U, V ) ∈ A[[U, V ]] be an equation for ξ. Then ξ is called

(1) equiadapted if ordU G(U, 0) = ordu g(u, 0), ordV G(0, V ) = ordv g(0, v);

(2) equipolygonal if G(U, V ) ∈ Iep
RQ
A[[U, V ]].

Note that this definition is independent of the choice of the (generic) adapted elements u, v, U, V .
We write Def ep

RQ
(respectively, Def ep

RQ
) for the category (respectively, the functor of adapted iso-

morphism classes) of equipolygonal deformations of RQ. The vector space T ep can then be identified
with the tangent space to Def ep

RQ
.

For Q = P , equiadapted and equipolygonal deformations of RQ are nothing but equimultiple
deformations of the equation (along the section prescribed by η). If Q is arbitrary, equiadapted
deformations preserve the points of intersection of the Newton polygon NQ,R with the u- and v-axes,
while equipolygonal deformations preserve the Newton polygon (for generic adapted coordinates).

For each deformation ξ ∈ Def ep
RQ

(A), there is a well-defined Kodaira–Spencer map Ψ = Ψξ :
TA → T ep, where TA = DerK(A,K) = Hom(A,K[ε]) is the Zariski-tangent space to A. For G ∈
IepA[[U, V ]] inducing ξ, the map Ψ takes a (local) homomorphism δ : A → K[ε] to [h] ∈ T ep =
Iep/JQ,R, where g + εh ∈ K[ε][[u, v]] defines δξ ∈ Def ep

RQ
(K[ε]).

A deformation ξ ∈ Def ep
RQ

(A) is called equipolygonal versal (or ep-versal) if the corresponding
Kodaira–Spencer map Ψξ is surjective. If Ψξ is an isomorphism, we call ξ equipolygonal semiuniversal
(or ep-semiuniversal).

Proposition 7.3. Let h1, . . . , hs ∈ Iep
RQ

represent a basis (respectively, a system of generators) of

T ep
Q,R. Then, with T1, . . . , Ts new variables and T = (T1, . . . , Ts),

G = g +
s∑

i=1

Tihi ∈ K[[T]][[u, v]]

defines an ep-semiuniversal (respectively, ep-versal) deformation of Q/〈g〉.

In particular, each ep-versal deformation of RQ has a smooth base space.

Proof. Since {∂/∂Ti | i = 1, . . . , r} is a basis of TK[[T]] and since the Kodaira–Spencer map for G
maps ∂/∂Ti to hi, the statement is almost a tautology.

Remark 7.4. We introduced the notion of equipolygonal (semiuni)versal at this stage only in order
to have a convenient notation. The fact that this notion is equivalent to the usual definition of
(semiuni)versality for the functor Def ep

RQ
is by no means trivial and follows from the results of § 8.

We generalize the notions from above to multicurves (respectively, curve diagrams).

Definition 7.5. A curve diagram is a finite list C of infinitely near points of P on R (repetitions
are allowed) together with, for each Q ∈ C :

(1) the set of exceptional branches EQ,DQ (if these exist); and

(2) a non-exceptional curve Q→ Q/〈g〉 (that is, a curve without exceptional branches)
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such that the following holds: if Q → Q′ is a formal blow-up among Q,Q′ ∈ C , then the non-
exceptional curve Q′ → Q′/〈g′〉 at Q′ is the strict transform of Q/〈g〉 under the formal blow-up. We
denote such a curve diagram by (C ,G ), where G = (Q/〈g〉)Q∈C .

If none of the points in C are consecutive, we also refer to a curve diagram as a multicurve.

Example 7.6. Let g ∈ Q decompose into s tangential components, that is, g = g1 ·· · · ·gs, where the gi

are unitangential and have pairwise different tangent directions. Then the multicurve of tangential
components of Q/〈g〉 is given by the list C = (Q, . . . ,Q), Q repeated s times, together with, for the
jth entry, the set of exceptional branches EQ,DQ (if these exist), and the curve Q→ Q/〈gj〉.
Definition 7.7. An equipolygonal deformation of a curve diagram (C ,G ) over A is a list of objects
in Def sec

HQ←Q(A), Q ∈ C , and a list of equipolygonal deformations of Q/〈g〉, Q ∈ C , Q/〈g〉 ∈ G ,
adapted to the given deformations of EQ,DQ, such that the following holds. If Q→ Q′ is a formal
blow-up of points in C and if the equipolygonal deformation of Q/〈g〉 is defined by G ∈ QA and
the section σ : A→ QA, then:

(1) the equipolygonal deformation of Q′/〈g′〉 is given by the strict transform G′ of G under the
formal blow-up of Iσ and a section σ′ : A→ Q′ which is compatible with σ;

(2) the given deformation of EQ′ is the exceptional divisor of the formal blow-up of Iσ;
(3) if Q′ is satellite, then the given deformation of DQ′ is the strict transform of the given defor-

mation of the exceptional branch at Q whose strict transform at Q′ is DQ′ .

For a curve diagram (C ,G ), we introduce Tep =
⊕

Q∈C T
ep
Q,Q/〈g〉. Further, for each equipolygonal

deformation of (C ,G ) over A, we consider the Kodaira–Spencer map TA → Tep given componentwise
as above. An equipolygonal deformation of a curve diagram is called ep-versal if the Kodaira–Spencer
map is surjective.

Proposition 7.8. Let g = g1 · · · · · gs be the decomposition of g ∈ Q into tangential components,
and assume that G ∈ QA defines an equipolygonal deformation of Q/〈g〉, then there exists a unique
factorization G = G1 · · · · ·Gs such that the following hold:

(1) Gj defines an equipolygonal deformation of gj , j = 1, . . . , s;
(2) if G defines an equipolygonal versal deformation ξ of Q/〈g〉, then (G1, . . . , Gs) defines an

equipolygonal versal deformation of the multicurve of tangential components of Q/〈g〉.

Proof. First, assume that P = PQ,R consists of just the point P , that is, e = d = 1. In this case,
since the coordinates are generic, equipolygonal means nothing but equimultiple. We may assume
that u, v ∈ Q are adapted elements and g is a Weierstraß polynomial, g ∈ K[[u]][v], of degree m
equal to the multiplicity of g. Then, up to a unit, G ∈ A[[U ]][V ] is also a Weierstraß polynomial
of degree m. The formal transformation (U, V ) → (U, V ′) given by U 
→ U , V 
→ V ′U leads to
g = umg′, G = UmG′, with g′ ∈ K[[u]][v′] (respectively, G′ ∈ A[[U ]][V ′]) polynomials of degree m
in v′ (respectively, V ′). On the other hand, the factors gi of g can also be assumed to be Weierstraß
polynomials, giving rise to transforms g′i such that g′ = g′1 · · · · · g′s. Now, the residues modulo
uK[[u, v′]] of the g′i are relative prime polynomials in K[v′]. So, Hensel’s lemma provides us with
a factorization G′ = G′1 · · · · · G′s, where G′i ∈ A[[U ]][V ′] defines a deformation of Q′/〈g′i〉. Since
the G′i are polynomials, we may apply the backward transformation, giving rise to the required
factorization G = G1 · · · · · Gs, with Gi defining an equimultiple deformation of Q/〈gi〉 at P . The
uniqueness of the factorization follows from the uniqueness of Hensel’s lifting.

For a general P, first factorize G = G1 · · · · ·Gs as equimultiple deformation in terms of tangen-
tial components according to the previous step. Now, for those components Q/〈gj〉 which are not
tangential to one of the coordinate curves Q/〈v〉 or Q/〈u〉 (with u, v adapted to HQ), the deforma-
tion given by Gj is an equipolygonal deformation as it is equimultiple. If some component Q/〈gj〉
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is tangential to Q/〈v〉 (respectively to Q/〈u〉), then the constance of the Newton polygon for G
(condition (2) of Definition 7.2) implies the constance of the Newton polygon Ni for Gi, as one can
easily deduce from the factorization of G. Thus, each Gi defines an equipolygonal deformation of
Q/〈gj〉, which proves part (1).

For part (2), we have to prove the surjectivity of the Kodaira–Spencer map of the multicurve,
(Ψ1, . . . ,Ψs) : TA → Tep, where Ψj : TA → T ep

Q,Q/〈gj〉 is the Kodaira–Spencer map for the equipolyg-
onal deformation ξj of Q/〈gj〉 defined by Gj . To do so, take elements aj ∈ Iep

Q/〈gj〉 and consider
a =

∑s
j=1 ajhj ∈ Iep

Q/〈g〉, where hj = g/gj , j = 1, . . . , s. Since G defines an ep-versal deformation,
there exists some δ ∈ TA such that Ψξ(δ) = [a] ∈ T ep

Q,Q/〈g〉. We claim that Ψj(δ) = [aj ].
To show this claim, let ρ ∈ JQ,Q/〈g〉 be such that the induced deformation δξ be given by

g + ε(a+ ρ). Since g = gjhj , we may write ρ as ρ = ρ′jhj + bjgj for some ρ′j ∈ JQ,Q/〈gj〉 and bj ∈ P
(by definition of the adapted Jacobian ideal). On the other hand, if the induced deformations δξj are
given by gj +εa′j , where a′j ∈ K[[u, v]], then the equality G = G1 · · · · ·Gs implies a+ρ =

∑s
j=1 a

′
jhj .

Together with the above, we get (a′j − aj − ρ′j)hj ∈ 〈gj〉 ⊂ K[[u, v]] (note that hi, i �= j, is divisible
by gj). Since hj has no common divisor with gj, this shows that a′j − aj ∈ JQ,Q/〈gj〉 as required.

Another important example of curve diagrams are blow-up diagrams of non-exceptional curves:
let Q be an infinitely near point of P on R, and let Q → Q/〈g〉 be a non-exceptional curve. Then
the blow-up diagram RQ,g = (C ,G ) of Q→ Q/〈g〉 is defined as follows: the entries of the list C are
Q and each infinitely near point Q′ on R in the first neighbourhood of Q (no repetition). The list of
non-exceptional curves G consists of Q → Q/〈g〉 and its strict transforms Q′ → Q′/〈g′〉 under the
formal blow-up Q→ Q′.

The following lemma provides us with necessary conditions for an equipolygonal deformation of
Q→ Q/〈g〉 to lift to an equipolygonal deformation of the blow-up diagram.

Lemma 7.9. Let Q/〈g〉 be unitangential, let U, V ∈ QA be adapted elements such that u ≡ U
mod mA is transversal to g, and let G ∈ A[[U, V ]] define an equipolygonal deformation of Q→ Q/〈g〉
along the trivial section. Let Q′ be an infinitely near point on R in the first neighbourhood of Q
corresponding to the linear factor v + αu, α ∈ K, of the tangent cone of g. Finally, let η be the
deformation of EQ′ given by the exceptional divisor of the formal blow-up of Iσ = 〈U, V 〉 and
the section σ′. Then the following are equivalent:

(i) the strict transform G′ ∈ A[[U, V ′]], V ′ = V/U + α, of G defines a deformation which is
equiadapted to η;

(ii) G = c(V + aU + αU)m + (terms of order > m in U,V), for some a ∈ mA, c ∈ A∗, and
Iσ′ = 〈U, V ′ + a〉.

Moreover, if condition (ii) holds, a is uniquely determined unless A is non-reduced and the charac-
teristic of K is a divisor of the multiplicity m of g.

Proof. Since σ is compatible with σ′, we have Iσ′ = 〈U, V ′+a〉. As equiadapted implies equimultiple,
we may assume that the m-jet L of G is a homogeneous polynomial of degree m. Then the strict
transform G′ satisfies G′(U, V ′) ≡ L(1, V ′) mod 〈U〉, hence the induced deformation along σ′ is
equiadapted to η if and only if L(1, V ′) = c(V ′ + a)m. This proves the equivalence of conditions (i)
and (ii). The uniqueness follows by comparing coefficients.

For a given P → R = P/〈f〉 and any k � 0, one has the curve diagram R(k) consisting of all
infinitely near points P ′ of P on R which lie in a neighbourhood of order ν � k and such that either
R′ is singular at P ′ or P ′ is not consecutive to a point P ′′ such that R′′ is smooth. Note that R(0)

consists of the data (P,R) and that R(1) is nothing but the blow-up diagram RP,f of P → P/〈f〉.
Denote by h the maximum k such that R(k−1) �= R(k). Set R = R(h).
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The category (respectively, functor of isomorphism classes) of ep-deformations of R(k) is denoted
by Def ep

R(k) (respectively, Def ep

R(k)). For k = h, we simply write Def ep
R (respectively, Def ep

R
) for the

category Def ep

R(h) (respectively, the functor Def ep

R(h)).
The following lemma shows that the deformations in Def ep

R can also be considered as deforma-
tions of the parametrization.

Lemma 7.10. There is a natural functor Def ep
R → Def

sec
R←P

which identifies Def ep
R with a full sub-

category of Def sec
R←P

.

Proof. Each ξ ∈ Def ep
R is equipped with a section of A → QA for each Q in R, in particular, with

sections σi : Qi,A → A for the maximal points Q1, . . . , Qr in R, that is, those essential points where
RQ is smooth. After relabelling, Q1, . . . , Qr correspond one to one to the branches R1, . . . , Rr of R,
in the sense that Qi is on Ri and not on Rj for j �= i. Now, the deformation Qi,A → RQi,A = RQi,A

given by ξ becomes a deformation Qi,A → Ri,A of Ri, and σi induces a section σi : Ri,A → A as it
lies inside Ri,A. The σi all together give rise to σ : RA → A and the statement of the lemma follows
from this fact.

7.2 Equipolygonal deformations of the parametrization
Next, we consider equipolygonal deformations in the parametric case. For this, choose an infinitely
near point Q of P , a parametrization ϕQ : Q → RQ of RQ, and adapted elements u, v to HQ. Up
to permutation we may assume that i(EQ, Q/〈u〉) � e, i(DQ, Q/〈v〉) � d if EQ, DQ exist.

For i ∈ ΛQ, denote by me,i = ordϕQ,i(u) (respectively, md,i = ordϕQ,i(v)) if EQ (respectively,
DQ) exists, and me,i = mi (respectively, md,i = mi) otherwise (see Definition 2.1 for notations).
The following objects depend only on Q and RQ → RQ:

(i) the submodule Iep

RQ←RQ
=

⊕
i∈ΛQ

(mme,i

i ⊕m
md,i

i ) of RQ ⊕RQ;

(ii) the adapted Jacobian module given by

JQ,R←R = m(u̇, v̇) + (〈u, vd〉 ⊕ 〈ue, v〉);

(iii) the finite-dimensional K-vector space T ep

QR←R
= Iep

RQ←RQ
/JQ,R←R.

Definition 7.11. Let η = (φA, σ, σ) ∈ Def sec
HQ←Q

(A) and ζ ∈ Def sec
RQ←Q

(A). Then we say that ζ is
adapted to η if ζ = (ϕA, σ

′, σ) fits into a commutative diagram

RQ,A

σ′

��

HQ,A

σ





QA

φA ��




ϕA������

σ

��
A

��

that is, ζ and η are deformations with the same section σ.

Choose generic adapted elements u, v ∈ Q and U, V ∈ Iσ ⊂ QA adapted to η such that u ≡ U
mod mA and v ≡ V mod mA. Assume that U (respectively, V ) corresponds to EQ,A (respectively,
DQ,A) if EQ (respectively, DQ) exists. Then the adapted deformation ζ is called equiadapted to
EQ,A (respectively, DQ,A) if for any i ∈ ΛQ one has ordϕQ,A,i(U) = ordϕQ,i(u) (respectively,
ordϕQ,A,i(V ) = ordϕQ,i(v)).

The adapted deformation ζ is said to be equipolygonal if it is equimultiple in the sense of
Remark 2.7(2) and if it is equiadapted to EQ,A and to DQ,A whenever EQ and DQ exist. Note that
if ζ is equipolygonal, then its image in Def sec

RQ
(A) is equipolygonal in the sense of Definition 7.2.

The converse is not true as Remark 2.7(3) shows.
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The above definitions of equiadapted and equipolygonal deformations do not depend on the
choice of the (generic) adapted elements u, v, U, V .

Denote by Def ep

RQ←RQ
(respectively, Def ep

RQ←RQ
) the category of equipolygonal deformations

(respectively, of adapted isomorphism classes of equipolygonal deformations) of the parametrization.
The vector space T ep

RQ←RQ
can be considered as the tangent space to Def ep

RQ←RQ
. For each ζ ∈

Def ep

RQ←RQ
(A), there is a well-defined linear (Kodaira–Spencer) map ψζ : TA → T ep

Q,R←R
similarly

to the non-parametric case. The deformation ζ is said to be ep-versal if its Kodaira–Spencer map ψζ

is surjective. If ψζ is an isomorphism, then we call ζ equipolygonal semiuniversal or ep-semiuniversal.

Proposition 7.12. Let (a1, b1), . . . , (as, bs) ∈ Iep

RQ←RQ
represent a basis (respectively, a system of

generators) of T ep

Q,R←R
. Then

U = u+
s∑

i=1

Tiai, V = v +
s∑

i=1

Tibi

defines an ep-semiuniversal (respectively, ep-versal) deformation of Q→ R.

The proof is trivial, cf. Proposition 7.3. Moreover, Remark 7.4 applies mutatis mutandis.
In particular, each ep-versal deformation of RQ ← RQ has a smooth basis.

Definition 7.13. A parametric curve diagram (C ,G ) is a curve diagram as in Definition 7.5 for
which the curve Q→ Q/〈g〉 at each point Q is given by a specified parametrization ϕQ : Q→ RQ,
that is, a diagram consisting of C and the list of parametrizations (ϕQ)Q∈C .

An equipolygonal deformation of a parametric curve diagram (C ,G ) is a list of equipolygonal
deformations of QA → RQ,A, Q ∈ C , (ϕQ : Q → RQ) ∈ G , adapted to the given deformations of
EQ,DQ such that the obvious analogues to Definition 7.7 (1)–(3) are satisfied.

For a parametric curve diagram (C ,G ) one defines

Tep = Tep

(C ,G )
=

⊕
Q∈C

T ep

Q,R←R
.

An ep-deformation of (C ,G ) is said to be ep-versal if the obvious Kodaira–Spencer map TA → Tep

is surjective.
The parametric analogues to Proposition 7.8 and Lemmas 7.9 and 7.10 also hold and they are

rather trivial as shown below.
First, the parametric multicurve of tangential components of a given ϕ : Q → RQ is given by

C = (Q, . . . ,Q) (s entries, where s is the number of tangential components) and the lists G of the
parametrizations ϕj of the curves given by the branches which share one of the tangents.

Proposition 7.14. Let ζ ∈ Def ep

RQ←RQ
. Denote by ζ(C ,G ) the deformation of the parametric multi-

curve of tangential components obtained by distributing the deformations of the parametrizations
of the branches of RQ according to their tangents. Then one has:

(1) ζ(C ,G ) is an equipolygonal deformation of (C ,G );

(2) if ζ is ep-versal, then ζ(C ,G ) is ep-versal too.

Proof. Part (1) follows from the definitions and part (2) from the fact that the map T ep

Q,R←R
→

Tep

(C ,G )
is obviously surjective.
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Now, assume that RQ has only one tangential component and denote by ζ̃ the transform at Q′A of
ζ ∈ Def ep

RQ←RQ
(A) under the blowing up of the section σ given by ζ. One has eithermi = me,i � md,i

for all i ∈ ΛQ or mi = md,i � me,i for all i ∈ ΛQ. Without loss of generality, we assume the first
case. Then, since the leading term of ϕQ,A,i(U) is a unit, one has that the leading term ai of
ϕQ,A,i(V )/ϕQ,A,i(U) is a well-defined element of A. Then the following lemma is again trivial.

Lemma 7.15. Let RQ be unitangential. Then the deformation ζ̃ is equiadapted to EQ′,A along the
section σ′ if and only if one has ai = ai′ for every couple i, i′ ∈ ΛQ. In that case, if a = ai, i ∈ ΛQ,
is the common value, then the section σ′ is given by 〈u, v/u − a〉.

Finally, for a given P → R and k � 0, denote by R(k) the parametric curve diagram consisting
of the points Q of R(k) together with the parametrizations Q → RQ. The category (respectively,

functor) of ep-deformations of R
(k) will be denoted by Def ep

R
(k) (respectively, Def ep

R
(k)). For k = h,

we simply write Def ep

R
(respectively, Def ep

R
) for Def ep

R
(h) (respectively, Def ep

R
(h)). Note that one has

natural maps Def ep

R
(k) → Def ep

R(k) .

Lemma 7.16. There is a natural functor Def ep

R
→ Def sec

R←P
which identifies Def ep

R
with a full sub-

category of Def sec
R←P

.

Proof. The composite of the functor in Lemma 7.10 with the natural functor Def ep

R
→ Def ep

R

corresponding to k = h yields the required functor in the lemma.

Now, we come to the main result of this section which shows that ep-deformations of R, ep-
deformations of R and equisingular deformations of the parametrization are essentially the same
objects.

Theorem 7.17. For a given parametrization P → R, the categories Def ep

R
, Def ep

R , and Def es
R←P

(respectively, the functors Def ep
R

, Def ep
R

, and Def es
R←P

) are pairwise equivalent (respectively, pairwise
isomorphic).

Proof. By Lemmas 7.10 and 7.16 there are natural maps Def ep

R
→ Def ep

R → Def sec
R←P

which identify
Def ep

R
and Def ep

R with respective full subcategories of Def sec
R←P

. We claim that both subcategories
are equal and, in fact, also equal to the subcategory Def es

R←P
of Def sec

R←P
. The theorem follows from

the claim.
To prove the claim, it is enough to show two statements:

(i) the image of any ξ ∈ Def ep
R (A) in Def sec

R←P
(A) is an object of Def es

R←P
;

(ii) for any ζ ∈ Def es
R←P

(A) there exists ξ ∈ Def ep

R
(A) having ζ as image in Def sec

R←P (A).

First, for ξ ∈ Def ep
R (A) consider its image ζ ∈ Def sec

R←P
(A) and, for each Q, the deformation

ξQ ∈ Def sec
RQ←Q

(A) given by the data (ξ, ζ). To check statement (i) one needs to show that ξQ is
equiadapted to EQ,A, DQ,A (if EQ,DQ exist) and, moreover, an equimultiple deformation of the
parametrization. We will show this by recurrence on the integer h. For h = 0, it is trivial. Now, take
Q and U, V adapted to Q. By recurrence, assume that ξQ′ is equiadapted to EQ′,A,DQ′,A (if they
exist) and an equimultiple deformation of the parametrization for all Q′ in the first neigbourhood
of Q. For fixed Q′, assume (without loss of generality) that u = U mod mA is transversal to RQ,i

for all i ∈ ΛQ′ . If Q′ is satellite, then one component of HQ will be tangent to all RQ,i with
i ∈ ΛQ′ , and V is nothing but an equation for that component. If ϕA denotes the deformation of the
parametrization given by ζ then, since U becomes an equation for EQ′,A, one has ordϕQ′,A,i(U) =
ordϕQ′,i(u) for i ∈ ΛQ′ . Since V = V ′U + aU with a ∈ A and U, V generators of Iσ′ , one has
ordϕQ,A,i(V ) � ordϕQ,A,i(U) = ordϕA,i(u). The parametric adaptedness to the deformation of the
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nontangent components of branches with i ∈ ΛQ′ , as well as the parametric equimultiplicity for ξQ
with respect to those branches, follows from the above fact. On the other hand, if Q′ is satellite, then
Iσ′ = 〈U, V ′〉 with V ′ = V/U . By the recurrence hypothesis one has ordϕQ′,A,i(V ) = ordϕQ′,i(v′),
hence ordϕQ,A,i(V ) = ordϕQ,i(v) which shows that the parametric equiadaptness condition also
holds for the deformation of the tangent component of HQ for ξQ with respect to the branches with
i ∈ ΛQ′ . This shows statement (i).

Second, take ζ ∈ Def es
R←P

(A). Then ζ induces deformations ζQ ∈ Def sec
RQ←Q

(A) which are para-
metric equimultiple. To check statement (ii) one needs to prove that they are also parametric
equiadapted to EQ,A,DQ,A. From this one sees that ζQ gives rise to a list of ep-deformations of the
parametrization which defines a ξ ∈ Def es

R
(A) whose image in Def sec

R←R
(A) is nothing but ζ. Now,

we prove this by recurrence on the order of the infinitesimal neighbourhood ν of Q. For ν = 0,
this is trivial. Assume that it is true for Q and take Q′ in the first neighbourhood of Q and choose
adapted U, V at Q such that the equations of the components of HQ,A are either U or V . Also assume
u = U(mod mA) is transversal to RQ,i for i ∈ ΛQ so that one has ordϕQ,A,i(U) = ordϕQ,i(u) (ϕA be-
ing the data given by ζ). Since U is an equation for EQ′,A it follows that ζQ′ is equiadapted to EQ′,A. If
Q′ is satellite, then V ′ = V/U is an equation forDQ′,A and V is an equation for either DQ′,A or DQ,A,
By recurrence one has ordϕQ,A,i(V )= ordϕQ,i(v), hence one deduces ordϕQ,A,i(V ′) = ordϕQ′,i(v′),
where v = V (mod,mA), v′ = V ′(mod mA). This proves the statement (ii) and completes the proof
of the theorem.

8. Proofs for weakly equisingular strata

To prove Theorem 6.2, we need some preparations by means of some constructions, properties, and
notation.

Let Q be an infinitely near point of P on R, and let u, v be generic adapted coordinates (to
HQ). Let g ∈ Q = K[[u, v]] define a non-exceptional curve, and let η = ηQ ∈ Def ep

Q/〈g〉(C) be
defined by G(U, V ) ∈ C[[U, V ]] and Iσ = 〈U, V 〉, where U, V are adapted, u ≡ U mod mC , v ≡ V
mod mC . Then G− g ∈ Iep

RQ
C[[U, V ]] and, by Proposition 7.8, we can assume that G decomposes as

G = G1 · · · · ·Gs, where Gj defines an equipolygonal deformation of the tangential component gj of
g, j = 1, . . . , s. Up to relabelling the components, we may assume that g1, . . . , gs′ are not tangential
to HQ, and that gs′+1, . . . , gs are tangential to HQ. Note that 0 � s− s′ � 2. As above, we assume
additionally that u is transversal to gj , j = 1, . . . , s′.

We introduce new indeterminates W = (W1, . . . ,Ws′) and consider the following ideals Ij ⊂
C[[W]], j = 1, . . . , s: if j > s′, set Ij := 〈0〉. If j � s′, the mj-jet of Gj (mj the multiplicity of Gj)
reads

Lj = cj(V mj + c1,jV
mj−1U + · · ·+ cmj ,jU

mj ), cj ∈ C∗, cij ∈ C.
Write mj = qjm

′
j, such that qj is the largest power of the characteristic p dividing mj (if p = 0, we

set qj = 1). Then we set Ij to be the ideal generated by the following elements:

(i) ci,j, for i not a multiple of qj;

(ii) c�qj ,j −
(m′j

j

)
c�qj ,j, for � = 2, . . . ,m′j ;

(iii) W
qj

j + γ
qj

j − (1/m′j)cqj ,j, where γj ∈ K, γqj

j ≡ (1/m′j)cqj ,j mod mC ,

(iv) the coefficients d
(j)
i,k of U iV ′k, (i, k) �∈ NQ′,R, in the transformed polynomial G′j = U−m

G(U,UV ′ − UWj − Uγj), m =
∑s

j=1mj.

Set C ′ = C[[W]]/(I1 + · · · + Is), and let γ : C → C ′ be the natural morphism. Then the induced
deformation γη is an ep-deformation which can be extended to an ep-deformation η(1) ∈ Def ep

RQ,g
(C ′)
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of the blow-up diagram RQ,g. In fact, this follows by construction: let Q′ be the point in the
first neighbourhood of Q corresponding to the tangent direction of gj . Then the vanishing of the
polynomials in elements (i)–(iii) guarantees that Lj is a pure power, Lj = cj(V + Uγj + UWj)mj ,
and the corresponding strict transform at Q′ reads cj(V ′ +Wj)mj . Thus, we may choose as section
σ′ through Q′ the section given by 〈U, V ′ +Wj〉 if j � s′, respectively the one given by 〈U, V/U 〉 if
j > s′ and gj is tangent to v, respectively 〈U/V , V 〉 if j > s′ and gj is tangent to u. The vanishing
of the coefficients in element (iv) gives that the deformation is, indeed, an ep-deformation.

Remark 8.1. The above construction has the following universal property. For any morphism χ :
C → A and any extension of the induced deformation χ(η) to an ep-deformation ξ of RQ,g over A,
there exists a unique map χ′ : C ′ → A such that χ′ ◦ γ = χ and ξ = χ′(η(1)). In fact, it follows from
the property that the elements in A analogous to the generators (i)–(iv) of the ideals Ij ⊂ C are
equal to zero, if one takes for Wj the value a in Lemma 7.9(ii) which corresponds to the section of
ξ at Q′j,A. For j > s′, Q′j is satellite and, therefore, the section is given by the intersection of EQ′j,A

and DQ′j,A
, so by Definition 7.7(2) and (3) one has a = 0. This shows that for j > s′ no variables

Wj are needed.
Denote by R′Q,g the multicurve obtained by deleting Q and RQ from the blow-up diagram RQ,g.

Denote by η′ the ep-deformation of R′Q,g obtained by deleting the deformation associated to Q (that
is, γη) from the list of deformations of η(1).

The following proposition is the key step for proving Theorem 6.2.

Proposition 8.2. With the above assumptions and notation, if η ∈ Def ep
RQ

(B) is an ep-versal

deformation of RQ with smooth base B, then the deformation η′ ∈ Def ep
R′Q,g

(B′) is ep-versal and its

base B′ is also smooth.

Proof. First, assume that s = 1 and set Q′1 = Q′, g′1 = g′, G′1 = G′. One has two possibilities:
(i) s′ = 0; (ii) s′ = 1.

Case (i): Take adapted U, V with v ≡ V (mod mB) tangent to g. Then the formal blow-up Q→ Q′

(respectively, QB → Q′B) is given by u = u, v = v′u (respectively, U = U , V = V ′U). The blowing-
up transformation Ξ maps uivj to ui+j−mv′j . Moreover, one has Ξ(Iep

RQ
) ⊂ Iep

RQ′
, Ξ(JQ,R) ⊂ JQ′,R

and, hence, Ξ induces a linear map Ξ : T ep
Q,R → T ep

Q′,R. Since g′ ∈ JQ′,R and since the monomial v′m

occurs in the support of g′, the vector space T ep
Q′,R can be generated by monomials of the image of

Ξ (for instance, by the basic monomials with respect to a monomial ordering for which v′m is the
leading term of g′). It follows that Ξ is surjective.

On the other hand, one has ψη′ = Ξ ◦ψη, ψη, ψη′ being the Kodaira–Spencer maps for η and η′,
respectively. Since Ξ is surjective, one concludes that η′ is ep-versal and defined over the same base
B as η. So, B′ = B is smooth.

Case (ii): Take adapted U, V with u ≡ U(mod mB) transversal to g. Since Q′ is free and U is an
equation for EQ′,B at Q′B , in place of U, V we will consider the couple of generators U,Z of Iσ
where Z = V + λU and λ ∈ K is such that z ≡ Z(mod mB) is tangent to g. If b = λ+ a, one has
L = c(V − aU )m if and only if L = c(Z − bU )m and, in that case, Iσ′ = 〈U, V ′ − a〉 = 〈U,Z ′ − b〉
with b ∈ mB. Moreover, L needs not to be a pure power. Condition (ii) from the beginning of this
section for (the construction of) B′ guarantees that L is a pure power of the above type for the
induced deformation on B′.

With the choice of U,Z, we set P0 = {Q,Q′}, e0 = 1, d0 = 2. This is an auxiliar notation (for
the proof) which emphasizes that u, z can be seen as adapted parameters to P0 as both Q and Q′

are on the curves RQ and Q/〈z〉. Other couples u, z0 such that Q,Q′ are the only points in common

869

https://doi.org/10.1112/S0010437X07002953 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X07002953


A. Campillo, G.-M. Greuel and C. Lossen

on RQ and Q/〈z〉 can be thought as generic for P0. The Newton polygon N0 of g with respect to
generic couples for P0 is constant. Thus, one has the associated objects as follows:

(1) the Newton polygon N0;

(2) the ideal Iep
Q,0 generated by the monomials with exponents in N0 + Z2

�0;

(3) JQ,0 ⊂ Iep
Q,0 the ideal generated by g, u(∂g/∂u), u2(∂g/∂z), z(∂g/∂u), z(∂g/∂z);

(4) the vector space T ep
Q,0 = Iep

Q,0/JQ,0.

Note that one has JQ,0 ⊂ JQ,R and JQ,R = JQ,0 + (u(∂g/∂z))K (but not necessarily u(∂g/∂z) �∈
JQ,0). We distinguish three subcases:

(ii)1 p � m or p = 0;

(ii)2 p | m and JQ,R ⊂ Iep
Q,0;

(ii)3 p | m and JQ,R �⊂ Iep
Q,0.

Note that JQ,0 = JQ,R is only possible in case (ii)2.
Fix an appropriate monomial ordering (for instance, the weighted degree reverse lexicographic

ordering with respect to the steepest segment of the Newton polygon N0). Let {g1, . . . , g�} be a
standard basis for the ideal JQ,0 with respect to the fixed ordering. If JQ,0 = JQ,R, then, of course,
{g1, . . . , g�} is also a standard basis for the ideal JQ,R; if JQ,0 � JQ,R, then {g1, . . . , g�, u(∂g/∂z)} is
a standard basis for JQ,R. Those monomials n1, . . . , nd in Iep

RQ
which are not in the initial ideal of

JQ,R induce a vector space basis of T ep
Q,R. Adding u(∂g/∂z) (in case JQ,0 � JQ,R), we get a vector

space basis for Iep
RQ
/JQ,0.

The division theorem for standard bases now provides a unique way to write any element h ∈
Iep
RQ

as

h =
d∑

i=1

ti · ni + b · u∂g
∂z

+
�∑

j=1

cj(u, z) · gj , ti, b ∈ K,

where the term b · u(∂g/∂z) does not appear if JQ,0 = JQ,R, and where the cj(u, z) are power series
with support in some regions Rj determined by the division procedure. Such division also applies
to B[[u, z]]. In fact, if H ∈ Iep

RQ
B[[u, z]], then H can be uniquely expressed in the form

H =
d∑

i=1

ti · ni + b · u∂g
∂z

+
�∑

j=1

Cj(u, z) · gj , ti, b ∈ mB,

where Cj(u, z) ∈ B[[u, z]] has support in the region Rj.

Now, consider the equation G = g+H of the given ep-deformation η. One has H ∈ Iep
RQ
B[[u, z]].

By the above discussion, we have

G = g +
d∑

i=1

ti · ni + b · u∂g
∂z

+
�∑

j=1

Cj(u, z) · gj , ti, b ∈ mB,

with Cj(u, z) ∈ B[[x, y]] as above and b only occurring if JQ,0 � JQ,R. Since η is ep-versal, there are
derivations δ1, . . . , δd ∈ TB such that δj(ti) = δji. This follows from the fact that, for each δ ∈ TB,
the Kodaira–Spencer map ψη is surjective and given by ψη(δ) =

∑d
i=1 δ(ti) · ni modulo JQ,R. Since

TB = (mB/m
2
B)∗, it follows that t1, . . . , td are part of a regular system of parameters for B.

Note also that, without loss of generality, we can assume that g andG can be chosen as Weierstraß
polynomials in z of degree n.
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Case (ii)1: Here, the leading term of u(∂g/∂z) is given by mbuzm−1. Thus, uzm−1 is not a basic
monomial, while u2zm−2, . . . , um−1z, um are. Assume the latter are the basic monomials n2, . . . , nm.
Then t2, . . . , tm are part of a regular system of parameters, and the leading form of G is given by

L = zm + mbuzm−1 + t2u
2zm−2 + · · · + tmu

m.

Conditions (i) and (ii) for B′ impose that L = (z − au)m for some a ∈ B, which is equivalent to
b = −a and ti−

(
m
i

)
bi = 0 for i = 2, . . . ,m. Since bi ∈ m2

B for i � 2, these conditions are analytically
independent. Thus, the quotient ring B̃ of B modulo the ideal generated by these m − 1 smooth
conditions is again regular. The induced ep-deformation on it has an equation G̃ whose leading term
is the pure power (z+ bu)m. Now, substituting z̃ := z+ bu (which preserves adaptation to the data
P0, hence, does not change the analytical description of the Kodaira–Spencer map), we get

G̃(u, z̃ − bu) = g(u, z̃ − bu) + t1n1(u, z̃ − bu) +
d∑

i=m

tini(u, z̃ − bu)

+ bu
∂g

∂z
(u, z̃ − bu) +

�∑
j=1

Cj(u, z̃ − bu) · gj(u, z̃ − bu)

= g(u, z̃) + t1n1(u, z̃) +
d∑

i=m

tini(u, z̃) +
�∑

j=1

Cj(u, z̃)gj(u, z̃) + r(u, z̃),

where Cj has coefficients in mB̃ and r has coefficients in m2
B̃
. Let ri be the coefficient of r for the

monomial ni. Then, to insure that one gets an ep-deformation after blowing up, one has condi-
tions (iv) for B′ which are of type

ti + ri = 0 for all i with ni �∈ Iep
Q,0.

All those monomials are basic ones and ri ∈ m2
B , therefore the latter conditions are also smooth

ones. The ring B′ is nothing but the quotient of B̃ by the ideal generated by the above conditions.
So, B′ is a regular local ring and the transform η′ of the deformation η is equipolygonal.

Cases (ii)2 and (ii)3: Set m =: q ·m′ with q a power of p and m′ prime to p. Now, the monomials
uzm−1, . . . , um−1z, zm are all basic monomials, and we can assume that they coincide with n1, . . . , nm

and, hence, t1, . . . , tm are part of a regular system of parameters for B. The leading form zm +∑m
i=1 tiu

izm−i should be a pure power of type (z − au)m, so conditions (ii) and (iii) for B′ can
be written in the form ti = 0 for i �≡ 0 modulo q, tq = −m′wq for a new parameter w in a new
regular local ring, and tjq− (−1)j ·

(
m′
j

)
wj = 0 for j = 2, . . . ,m′. Then the quotient ring B̃ of B[[w]]

modulo the ideal generated by the equations given by the above conditions is a regular local ring.
The equation G̃ of the induced deformation η̃ of η on B̃ has the pure power (z − wu)m as leading
form. The change z̃ = z − wu gives rise to

G̃(u, z̃ + wu) = g(u, z̃) + (w + b)u
∂g

∂z
+

d∑
i=m+1

tini(u, z̃) +
�∑

j=1

Cj(u, z̃)gj(u, z̃) + r(u, z̃),

with Cj having coefficients in m
B̃

and r having coefficients in m2
B̃

.

In case (ii)2, all of the monomials n ∈ Iep
RQ
\ Iep

Q,0 are basic. Conditions (iv) in at the beginning
of § 8 are of type

ti + ri = 0 for all i > m and ni �∈ Iep
Q,0,

where ri ∈ m2
B̃

is the coefficient of ni in r. The ring B′ is nothing but the quotient of B̃ modulo the
equations given by the above conditions, so it is a regular local ring.
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In case (ii)3, all of the monomials n ∈ Iep
RQ
\ Iep

Q,0 are basic except the leading monomial n0 of
u(∂g/∂z). Here, conditions (iv) are of type

ti + ri = 0 for all i > m and ni �∈ Iep
Q,0,

w + b+ r′ = 0

with ri, r′ ∈ m2
B̃
. These conditions are, again, smooth, since w is analytically independent from the

ti involved in the other conditions and since the linear part of w + b+ r′ involves the parameter w
with coefficient 1. The ring B′ is again a regular local ring as it is nothing but the quotient of B̃
modulo the equations given by the above conditions.

In all cases, η′ is the transform of the deformation γ(η) induced by η on B′. Now, we shall prove
that η′ ∈ Def ep

RQ′
(B′) is ep-versal. For this, we proceed as in case (i).

For this, note that the transformation Ξ associated to the formal blow-up z̃′ = z̃/u maps
uiz̃i to ui+j−mz̃′j and satisfies Ξ(Iep

Q,0) �⊂ Iep
RQ′

,Ξ(JQ,0) ⊂ JQ′R, so that it induces a linear map
τ : T ep

Q,0 → T ep
Q,R which is surjective by the same argument than in case (i). Moreover, as in case (i),

the Kodaira–Spencer map ψη′ is the composite of the Kodaira–Spencer map ψ0 of γη considered as
ep-deformation with respect to auxiliar data in P0 and the linear map Ξ. Thus, the surjectivity of
ψη′ will be proved if one checks that ψ0 is surjective. However, this follows from the fact that all
of the basic monomials ni ∈ Iep

Q,0 plus the term ∂g/∂z in case (ii) when JQ,0 �⊆ JQ,R appear explicitly
in the equation of the deformation γη with coefficients ti = −ri ∈ m2

B′ or w + b = −r′ ∈ m2
B′ (for

u(∂g/∂z)). These conditions are part of a regular system of parameters and, therefore, there exist
derivatives δi ∈ TB′ whose images in T ep

Q,0 are equal to ni mod JQ,0. This shows the surjectivity of
ψ0 : TB′ → T ep

Q,0 and, hence, the ep-versality of η′ as required.
Now, assume s > 1. Then, applying Proposition 7.8, η gives rise to an ep-versal deformation

ηT of the multicurve of tangential components of the given curve. Thus, conditions for B′ are
applied simultaneously to all tangential components, so that those which correspond to a single
component are smooth, which follows from the case s = 1. Moreover, they are also smooth all
together as the ep-versality for ηT provides stronger hypothesis than the ep-versality of the individual
components. In fact, the ep-versality of ηT guarantees that all coefficients of the basic monomials of
all tangential components form part of a regular system of parameters. This follows from the fact
that the surjectivity of the Kodaira–Spencer map ψηT

creates independent derivatives for them.
Actually, there are only two types of conditions: those of type ti + ri = 0 with ri ∈ mB2 (for the

coefficient ti of some basic monomial); and those of type w+b+r′ = 0 with b ∈ mB and wq = ti (for
q some power of the characteristic and ti the coefficient of some basic monomial). In the latter case,
the coefficients of w (in the linear part of the condition) are 1, whereas the coefficients of the other
w′ of similar type which appear are necessarily 0. This guarantees that the whole set of conditions
for B′ are independent and, therefore, B′ is smooth.

The ep-versality of the multicurve deformation η′ follows from the independence of the various ti
involved in the construction of B′ and the proof of ep-versality for s = 1, applied to each component
deformation. In fact, from that proof, one deduces that the image of the Kodaira–Spencer map ψη′

contains every T ep
Q′

j′R
, so ψη′ is surjective.

Now, we come to the proof of Theorem 6.2.

Proof of Theorem 6.2. Take η = (C → RC , τ) ∈ Def sec
R (C). First, we construct the object ζ/η in

the statement.
We may assume that η is given by F (x, y) =

∑
i+j>0 cijx

iyj ∈ mCC[[x, y]]. Then, consider the
ideal I(0) generated by the element cij with i + j < m, set γ(0) : C → C(0) = C/I(0) the natural
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map, and η(0) := γ(0)(η) ∈ Def ep
R (C(0)). Now, by Definition 7.1 applied to η(0) one obtains mor-

phisms γ(1) : C(0) → C(1) = C ′ and η(1) ∈ Def ep

R(1)(C ′) which extends γ(1)(η(0)). By iterating the
construction simultaneously for all points in the infinitesimal neighbourhood of the same order one
obtains morphisms η(k) ∈ Def ep

R(k)(C(k)) such that η(k) extends to γ(k)(η(k−1)) to points in the kth
neighbourhood. Then, we set Cη = C(h), χ = γ(h−1) ◦· · · ◦γ(0) : C → Cη and ζ = η(h). Theorem 7.17
shows that one in fact has ζ/η ∈ Def wes

R,η(Cη).
Now the functoriality of the construction and statement (1) in the theorem follow from the

construction and from Remark 8.1 (one can proceed by recurrence on k) taking into account
Theorem 7.17. Statements (2) and (3) follow from the construction and the successive applica-
tions of Remark 8.1 and I for the construction of ζ/η. Since the extension C → Cη is finite, each
condition can increase the codimension at most by one, allowing us to show statement (4) in this
way. If, in particular, η is versal in Def sec

R , then Proposition 8.2 shows that all of the conditions
are smooth and, therefore, Cη is smooth of codimension equal to the number of conditions which
contribute for the construction of B′.

Proposition 8.2 also allows us to show that each free point Q contributes with 1
2mQ(mQ +1)− 1

such conditions, whereas each satellite contributes with 1
2mQ(mQ +1). The sum can be extended to

any subset of infinitely near points on R which contains all satellite points and those necessary
to create them, in particular to Ess(R) (the minimal subset with the above properties).

Next, let us prove Theorem 6.7 in a parallel way. To prove it, we need some preparations as
above.

Let Q be an infinitely near point and fix ζ = ζQ ∈ Def ep

RQ←RQ
(C). Take adapted U, V and

consider the tangential components ζQ,j ∈ Def ep

RQj
←RQj

(C), 1 � j � s. After relabelling, assume

that for 1 � j � s′ the jth component is not tangent to an exceptional branch and that for s′ � j � s
it is tangent.

Consider the following ideals Ij ⊂ C. If j > s′, Ij = 0. If j � s′, fix a concrete ij ∈ ΛQ′j . For
each i ∈ ΛQ′j , denote by ci the leading term of ϕQ,C,i(V )/ϕQ,C,i(U) and set

ϕQ,C,i(V )− ciϕQ,C,i(U) =
∑
l>mi

cil t
l
i.

Then Ij is the ideal generated by the following elements:

(i) ci − cij for i ∈ ΛQ′j , i �= ij ;

(ii) cil for i ∈ ΛQ′j and mi = me,i = md,i < l < mi + m′i,m
′
i being the multiplicity of the strict

transform of the ith branch at Q′j .

Set C ′ = C/(I1 + · · · + Is). Then, by construction, the natural morphism γ : C → C ′ induces a
deformation of the parametrization ζ(1) ∈ Def ep

RQ,g
(C) which extends the deformation γ(ζ) to the

parametric blow-up diagram RQ,g(C).

Remark 8.3. The above construction has the following universal property: For any map χ : C → A
and an extension of χ(ζ) to an ep-deformation ξ of RQ,g there exists a unique map χ′ : C ′ → A
such that χ′ ◦γ = χ and ξ = χ′(ζ(1)). In fact, this property follows from the fact that the analogous
elements to elements (i) and (ii) in A have to be zero because of the existence of ξ. Note also that
for j > s, no condition is required (in concordance with the fact that Ij = 0).

Now, denote by ζ ′ the deformation of the multicurve R
′
Qi

obtained from the data (RQ,g, ζ
(1)) by

deleting Q from the diagram and the assignment of γ(ζ) at Q to the list of deformations defining ζ(1).
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Proposition 8.4. With the assumptions and notation as above, if ζ ∈ Def ep

RQ←Q
(B) is an ep-versal

deformation of the parametrization with smooth base B, then the deformation ζ ′ ∈ Def ep

R′Q,g
(B′)

is ep-versal and its base B′ is also smooth.

Proof. First assume s = 1, and consider the two possibilities: (i) s′ = 0; (ii) s′ = 1.

Case (i): Assume, for instance, me,i < md,i for all i ∈ ΛQ (without loss of generality). One has
e = 1 < d at Q and e′ = 1 � d′ = d − 1 at Q′. Then σ′ is nothing but the intersection of EQ′,A
and DQ′,A and ζ ′ is equipolygonal with B′ = B. The result follows from the fact that the Kodaira–
Spencer map ψζ′ is nothing but the composite of two surjective maps, namely the Kodaira–Spencer
map ψζ and the linear map

Ξ̄ : T ep

RQ←RQ
→ T ep

RQ′←RQ′
induced by Ξ(a1, . . . , ar′ , b1, . . . , br′) = (a1, . . . , ar′ , b1/a1, . . . , br′/ar′) where r′ = #ΛQ.

Case (ii): One has d = e = 1,mi = mi,e = mi,d. Take adapted U, V with u = U(mod mB)
transversal to Q → RQ. Since Q′ is free and U an equation of EQ′,B at Q′B, one can replace U, V
by non-adapted U,Z = V + λU, λ ∈ K, such that z = Z(mod mB) is tangent to the branches of
Q→ RQ.

Thus, for i ∈ ΛQ = ΛQ′ one has ci = λ + bi where bi ∈ mB is the leading term of ϕQ,B,i(Z)/
ϕQ,B,i(U) and

ϕQ,B,i(Z)− biϕQ,B,i(U) = ϕQ,B,i(V )− ciϕQ,B,i(U) =
∑
i>mi

cil t
l
i.

One also has ordϕQ,i(Z) � mi +m′i with equality if m′i < mi.
Consider the vector space T ep

Q,0 = I
ep
Q,0/J

ep
Q,0, where:

(1) I
ep
Q,0 =

⊕
i∈ΛQ

mmi
i ⊕m

mi+m′i
i ⊂ Iep

RQ←RQ
;

(2) JQ,0 = m(u̇, ż) + m⊕m0, with m0 = (u2, z) ⊂ m = mQ ⊂ RQ.

Note that JQ,R←R/J̄Q,0 is generated by (0, u) as vector space. Hence, the obvious linear map Φ :
T

ep
Q,0 → T ep

Q,R←R
is injective as one has JQ,R←R ∩ I

ep
0 = J0.

Now, one has B′ = B/I where I is generated by the elements of mB given by: (i) bi − bi1 , i, i1 ∈
ΛQ = ΛQ, i �= i1, i1 fixed; (ii) cil , i ∈ ΛQ and mi < l < mi + m′i. Let F be the set of indices (i, l)
with i ∈ ΛQ and mi < l < mi +m′i or l = mi, i �= i1. For each (i, l) ∈ F , let zi,l be the element in
Iep

RQ←RQ
whose jth component modulo JQ,R→R is (0, tmi

i ). Then, the set consisting of the elements

zi,l with (i, l) ∈ F gives a set of linearly independent classes in T ep

Q,R→R
. Since the Kodaira–Spencer

map TA → T ep

Q,R←R
is surjective, there exist derivations δi,l ∈ TA whose images in T ep

Q,R→R
are the

classes of the corresponding zi,l.
Set ϕQ,B,i(Z) − bi1ϕQ,B,i(U) =

∑
l�mi

silt
l
i. If ϕQ,B,i(U) =

∑
l�mi1

uil t
l
i1

one has si1mi = 0,
si,mi = (bi − bi1)uimi for i �= i1, and sil = cil + (bi − bi1)umi1

for l > mi. Since uimi �∈ mB one has
that the ideal I is also generated by the elements sil with (i, l) ∈ F .

Now, by construction, one has δil (si′l′) = 0 if (i, l) �= (i′, l′) and δil (sil) = 1, so the elements
sil ∈ mB are linearly independent modulo m2

B and, hence, they are part of a regular system of
parameters of B. This shows that B′ is smooth.

It remains to check that ζ ′ is ep-versal. For this, note that one has

TB′ = {δ ∈ TB | δ(sil ) = 0 for all (i, l) ∈ F}.
Hence, one has a induced linear map Ψ0 : TB′ → T

ep
Q,0 which is nothing but the Kodaira–Spencer

map for γ(ζ) considered as ep-deformation with respect to the data P0. Since Φ ◦Ψ0 is equal to the
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restriction of Ψζ to TB′ , Φ is injective and Ψζ surjective, it follows that Ψ0 is surjective. On the other
hand, considering γ(ζ) ep-deformation with respect to P0, the situation is exactly the same as in
case (i), so that, in particular, the analogous map Ξ0 to Ξ is surjective. It follows that Ψζ′ = Ξ0 ◦Ψ0

is surjective.
For s > 1, taking into account Theorem 7.17, the situation is completely analogous to that of

Proposition 8.2. The smoothness of B′ and ep-versality of the multicurve deformation ζ ′ follows in
the same way. We do not repeat the arguments here.

Now, the proof of Theorem 6.7 follows in a similar way as for Theorem 6.2.

Proof of Theorem 6.7. Take ζ = (ϕC , σ, σ) ∈ Def sec
R←P

(C). First, we construct the ideal Iζ in the
statement.

Assume that ζ is given by Xi(t) =
∑

j>0 aij t
j , Yi(t) =

∑
j>0 bij t

j, i ∈ Λ with aij , bij ∈ mC . Then,
consider the ideal I(0) generated by the elements aij , bij with 0 < j < mi and i ∈ Λ. Set C(0) :=
C/I(0), γ(0) the natural map, and ζ(0) := γ(0)(ζ) ∈ Def ep

R→R
(C(0)). Now, the successive application of

the construction for C ′ (starting from ζ(0)) gives rise to a sequence of ideals I(0) ⊂ I(1) ⊂ · · · ⊂ · · ·
and deformations ζ(k) ∈ Def ep

R
(k)(C(k) = C/I(k)) such that, for each k, ζ(k) extends to the kth-order

neighbourhood points the deformation γ(k)(ζ(k−1)), γ(k) = C(k−1) → C(k) being the obvious map.
Then, set Iζ = I(h), Cη = C/Iζ = C(h), π : C → Cζ the natural map, and ζ = π(ζ). Note that
ζ ∈ Def es

R←P
(Cζ) as it is the image of ζ(h) ∈ Def ep

R
(Cζ) by the isomorphism in Theorem 7.17.

Statement (1) follows from the construction, Theorem 7.17 and Remark 8.3. Statements (2)
and (3) follow from the construction and successive applications of Proposition 8.4. The integer
cones

R←P
is the number of conditions used in the successive applications to form I(0) for the con-

struction of Iζ , so this number bounds the codimension of the equisingular stratum, showing state-
ment (2). If ζ is versal for Def sec

R←P
, then the successive applications of Proposition 8.4 show that all

of those conditions are smooth and transversal, hence, Cζ is smooth and of codimension cones
R←P

.

The construction of I(0) and the successive applications of Proposition 8.4 starting from ζ versal
for Def sec

R←P
allow us to compute cones

R←P
giving rise to the formula cones

R←P
=

∑
Q∈Ess(R)mQ −

ef R − (r − 1).

9. Geometry of equisingular strata

In this section, we study the geometry and show relations among the different equisingularity strata
and objects related to them. In particular, we prove that the dimension of the weak equisingularity
stratum is related to the terms in the equisingularity exact sequences of § 5.

Let ηsu = η = (B → RB , τ) ∈ Def sec
R (B) be a semiuniversal deformation in Def sec

R . Then B is a
regular local ring. For the weakly equisingular deformation ζ/η of R based in η, one has that Bη is
a regular local ring, the map B/Iη → Bη induced by B → Bη is finite and the weak equisingularity
stratum Swes,sec

R = Spec(B/Iwes
η ) is irreducible with dimSwes,sec

R = dimSpec(Bη) = dimBη.

Theorem 9.1. With the above assumptions and notation from § 5,
dimSwes, sec

R = dimBη = dimT 1,es
R + dimT 1,es

R/R
= dimT 1,es

R←R
+ dimM sec

R .

Proof. From Theorems 6.2 and 6.7 one has

dimBη = τ sec
R − 1

2

∑
Q∈Ess(R)

mQ(mQ + 1) + ef R,

dimT 1,es

R←R
= τ1,sec

R←P
−

∑
Q∈Ess(R)

mQ + ef R + (r − 1).
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On the other hand, from Lemma 5.4 one has

dimM sec
R = τ sec

R − τ sec
R←R

− δ − (r − 1).

Finally, one has the well-known formula δ = 1
2

∑
Q∈Ess(R)mQ(mQ − 1). It follows that dimBη =

dimT 1,es

R←R
+ dimM sec

R = dimT 1,es
R + dimT 1,es

R/R
, the last equality being a consequence of the exact

sequence in Proposition 5.5.

Since the base spaces of the semiuniversal deformations for Def es
R

and Def es
R←R

are smooth,
the above theorem shows dimensional relations between the different semiuniversal equisingular
deformations and equisingular strata. Next, we will see how the geometric nature of these objects
can also be understood in terms of the object ζ/η.

For this, we first give a technical result. Consider a given diagram of the type

R

��

RA
��

		

�

R

��

RA
��

��

��

RC
��

τ
��

� �

K

��

A��

��

Cχ
��

�� (d)

that is, a weakly wes of R based in (C → RC , τ), where χ is finite and injective. Denote by K(χ) the
kernel of the tangent map T (χ) : TA → TC . Further denote by T 1,wes,sec

R ⊂ T 1,sec
R the Zariski tangent

space to the weak equisingularity stratum Swes,sec
R . One obviously has T 1,es

R ⊂ T 1,wes,sec
R ⊂ T1,sec

R .
Note that, if one fixes (C → RC , τ), then the weakly equisingular deformation based on it is nothing
but a diagram as above which satisfies a universal property among such diagrams.

Proposition 9.2. For a given diagram as above, one has an induced commutative diagram of vector
spaces

0 �� K0 := K(χ) ∩K(β)

ε

��

��

i ��������������
� �

i

��
K(χ)

δ

��

�� TA

β

��

γ

���
��

��
��

��
��

T (χ) �� TC
α

  









T 1,sec
R

0 �� M sec
R

�� T 1,es

R/R
�� T 1,es

R←R
�� T 1,es

R
��

� 	
I !!�������

0

where all linear maps α, β, γ, δ, ε only depend on the given diagram; the maps α, γ depend only
on χ(η) and β, δ, ε on the fixed es-deformation of the parametrization for χ(η). The bottom row is
nothing but the exact sequence in Proposition 5.5 and the other maps I, i, i, are inclusions.

Proof. (1) The map α is given by the fact that η ∈ Def sec
R (C).

(2) The map β is given by the fact that χ(η) plus the chosen deformation of the parametrization
is an element of Def es

R←R
(A).

(3) The map γ is the composite of T 1,es

R←R
→ T 1,es

R with β. One has I ◦ γ = α ◦ (T (χ)).
(4) Take a vector v ∈ K(χ) ⊂ TA. Then δ(v) is defined as follows. Since v : A → k[ε] is a

k-algebra morphism such that v ◦ χ = 0, one has that the induced deformation on k[ε] by the base
change v is trivial, therefore, defines an element of T 1,es

R/R
(since at the level of A one has a given

deformation of the parametrization too). This element of T 1,es

R/R
is just δ(v).
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(5) If v ∈ K0, then δ(v) is an element of T 1,es

R/R
whose image in T 1,es

R→R
is zero (as v ∈ ker(β)),

so one has δ(v) ∈ M sec
R . The map ε is nothing but the restriction of δ to K0 taking as target M sec

R

instead of T 1,es

R/R
.

Remark 9.3. Because of the universal property of the weak stratum one has that the image under
α of the subspace TC/ ker(χ) of TC is in T 1,wes,sec

R .

Now, consider the particular case of the diagram

R

""

RBη
��





�

R

��

RBη
��

��

��

RB
��

σ
��

� �

K

��

Bη��

��

Bϕ
��

�� (dsu)

given by the weakly equisingular deformation ζ/η based on a semiuniversal deformation η = (B →
RB , σ) in Def sec

R . Since η is semiuniversal, it follows from the universal property of ζ/η that for any
diagram (d) there is a diagram map from (dsu) to (d). In other words, any weak es-deformation
with respect to any given deformation can be induced (not in a unique way) from ζ/η. Moreover,
one has the following particular situation.

0 �� K0

ε ∼=

��


�

i ##����������
� �

i

##
0 �� K(χ)

δ ∼=
��

�� TBη

β

����

γ

�� ���
��

��
��

��
��

T (χ) �� TB
α
∼=   









T 1,sec
R

0 �� M sec
R

�� T 1,es

R/R
�� T 1,es

R←R
�� T 1,es

R
��

� 	
I !!�������

0

Hence, one has the following lemma.

Lemma 9.4. With the above assumptions and notation, one has the following properties for the
object ζ/η:

(1) α is an isomorphism;

(2) γ is surjective;

(3) δ is an isomorphism;

(4) ker(β) ⊂ ker(ϕ), so K0 = ker(β);
(5) ε is an isomorphism;

(6) β is surjective.

Proof. Statement (1) is obvious from the semiuniversality of η with respect to the functor Def sec
R

.
Statement (2) (respectively, (6)) follows from the fact that every vector in T 1 es

R (respectively, T 1,es

R←R
)

gives rise to a concrete diagram (d) with A = k[ε], so the existing diagram map from (dsu) to (d)
shows that γ (respectively, β) is surjective. The same argument, applied to vectors in T 1,es

R/R
shows

that also δ is surjective. Since, from Theorem 9.1, dimK(χ) = dimT 1,es

R/R
, statement (3) follows.

Moreover dimK0 = dimM sec
R , so statement (5) follows from statement (3).

We now arrive at the theorem which gives the geometric counterpart of Theorem 9.1.
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Theorem 9.5. With the above assumptions and notation, the following hold for the object ζ/η.

(A) There exists the following natural diagram of vector spaces with three exact sequences.

TBη

�����
�

0 �� M sec
R

��

��

�
� � � � �

T 1,es

R/R
��

$$��� ���

T 1,es

R←R
��

""�
�

T 1,es
R

��

%%
��

�
��

�
0

0

&&�
�

0

''��� ���
0 0

(B) The image of the subspace T 1,es

R/R
(respectively, M sec

R ) in TBη is a well-defined subspace which

represents the tangent space to the trivial (respectively, parametrically trivial) subfamilies of ζ.

(C) There exist smooth subschemes of Spec(Bη) such that the induced family of ζ restricted to
them gives a semiuniversal deformation for Def es

R
. Such subschemes are exactly those smooth

ones which are complementary to the image of T 1,es

R/R
, so they may have different tangent spaces.

Their images in Swes,sec
R are also smooth, all share the same tangent space, and the induced

deformation of η on them is semiuniversal for Def es
R

. Moreover, Swes,sec
R is nothing but the

Zariski closure of the union of those smooth subschemes.

(D) There exist smooth subschemes of Spec(Bη) such that the induced family of ζ restricted to
them provides a semiuniversal deformation for Def es

R←R
. These subschemes are exactly all those

smooth ones which are transversal to the image of M sec
R , so they may have different tangent

spaces.

Proof. Part (A) follows from Lemma 9.4, using δ−1 (respectively, ε−1) to define the linear map
T 1,es

R/R
→ TBη (respectively, M sec

R → TBη) in the theorem. Part (B) is obvious. Parts (C) and (D)
partially follow from the fact that a semiuniversal deformation η (respectively, ζ) for the functor
Def es

R
(respectively, Def es

R←R
) gives rise to a diagram

R RBes
��

((

R

��

RBes
R

��

��

))

RBes
R

))
K

��

Bes
R

��

�� Bes
R

��
(des

R)

respectively

R RBes
R←R

**

��

R

��

RBes
R←R

��

��

++

RBes
R←R

++
K

��

Bes
R←R

��

�� Bes
R←R

��
(des

R←R
)

so (des
R ) (respectively, (des

R←R
)) are images of (dsu) by a (not unique) diagram map. This allows us

to consider Bes
R (respectively, Bes

R←R
) as isomorphic to concrete smooth subspaces of Bη satisfying

the properties stated in part (C) (respectively, (D)). For the case of Def es
R

the space Bes
R can also

be seen as isomorphic to a smooth subspace of Bsec
R = B. The fact that the diagram map is not
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unique explains that one may have several copies of Bes
R (respectively, Bes

R←R
) inside Bη. All copies

may be tangent or transversal to each other, but they need to be transversal to the image of T 1,es

R/R

(respectively, M sec
R ) inside TBη . However, since T 1,es

R is a well-defined vector subspace of T 1,sec
R ,

the image of the copies of Bes
R inside Bsec

R share all T 1,es
R as their tangent space. Note that, in

Remark 4.3(6), such a copy was considered a candidate for an es-stratum. All these strata need to
be inside the weak equisingular stratum Swes,sec

R .
The remainder of parts (C) and (D) follow from general arguments applied to this particular

situation. In fact, the deformation ξ on Bη which is based in η is versal for both Def es
R

and Def es
R←R

(if one forgets the involved deformation of R in the second case). Thus, one has a submersion
Spec(Bη)→ Spec(Bes

R ) (respectively, Spec(Bη)→ Spec(Bes
R←R

)) such that:

(i) ξ is isomorphic to the pull-back of the semiuniversal equisingular deformation (respectively,
equisingular deformation of the normalization) on Spec(Bes

R ) (respectively, Spec(Bes
R←R

)),

(ii) the kernel of the tangent map is the image of T 1,es

R←R
(respectively, M sec

R ).

Then if S̃ is a smooth subscheme of Spec(Bη) which is complementary to the image of T 1,es

R/R

(respectively, M sec
R ), the deformation induced by ξ on it is isomorphic, via the induced isomorphism

S̃ → Spec(Bes
R ) (respectively, S̃ → Spec(Bes

R←R
)), to the pull-back of the semiuniversal equisingular

deformation. So the induced deformation of ξ on S̃ is itself semiuniversal equisingular. Moreover,
if S̃ is complementary to the image of T 1,es

R/R
, then the image S′′ of S̃ in S = Spec(B) is also a

smooth subscheme of S isomorphic to S̃, as the tangent map to S̃ → S is injective. It follows that
the deformation induced by η on S′′ is again semiuniversal for Def es

R
. Finally, by construction, it is

clear that Swes,sec
R is the Zariski closure of the union of the subspaces S′′ as above.

This completes the proof of the theorem.

The following result characterizes when the weak equisingularity stratum and the strong equisin-
gularity stratum coincide. In fact, it characterizes numerically when a unique strong equisingularity
stratum exists.

Corollary 9.6. The following conditions for a plane curve singularity are equivalent:

(i) T 1,es

R/R
= 0;

(ii) Swes,sec
R and Spec(Bes

R ) have the same dimension;

(iii) Swes,sec
R and Spec(Bes

R ) are isomorphic;

(iv) the deformation induced by η on Swes.sec
R is strongly equisingular;

(v) the morphism Spec(Bη)→ Swes,sec is an isomorphism;

(vi) there is only one smooth subscheme of S = Spec(B) such that the deformation induced by η
on it is semiuniversal for Def es

R
;

(vii) there is a unique largest subscheme of S such that the deformation induced by η on it is
strongly equisingular.

Proof. (i) ⇒ (ii) follows from Theorem 9.1, (ii) ⇒ (iii) and (iii) ⇒ (iv) follow from the fact that
Swes

R contains subschemes isomorphic to Spec(Bes
R ). Statements (iv) and (v) are equivalent, since in

both cases the inclusion Swes,sec
R ↪→ Spec(B) provides a universal object for the category Def es

R,η.
Finally, from condition (iv) it follows that dimSwes

R � dimT 1,es
K,R, so dimK T 1

R/R
= 0. The equivalence

of conditions (i)–(v) with conditions (vi) and (vii) follows from Theorem 9.5(C).

879

https://doi.org/10.1112/S0010437X07002953 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X07002953


A. Campillo, G.-M. Greuel and C. Lossen

Example 9.7. From the above results one can review the cases in Example 4.4. In particular, in
the four cases the subscheme S′ can be shown to be nothing but the weak equisingularity stratum
Swes,sec

R .

Case 1: The embedded resolution consists of the blow-up of one point of multiplicity 2p and 2p points
of multiplicity 1, with ef R = 2, so one has dimSwes

R = dimT 1,es
R − (2p2 +3p−2) = 1+(p−1)(p−2).

By Theorem 9.1 and Example 5.6 one has dimBes
R = (p−1)(p−2) and dimBes

R←R
= 1+(p−1)(p−2).

In particular, Bη is isomorphic to Bes
R←R

and each Sh is isomorphic to Spec(Bes
R ). The computation

of Bη gives rise to

p �= 2 : ui,j = 0 for (i, j) ∈ D \ {(2p, 0), (p, p)}
2u2p,0 − u2

p,p = 0

p = 2 : ui,j = 0 for (i, j) ∈ D \ {(4, 0)}
u4,0 = w4

4,0.

By eliminating wpp and w40 one obtains the equations for Swes,sec
R which are exactly those for S′

in Example 4.4(1). By specializing wpp (respectively, w40) to h, one obtains the equations for Sh.
A regular system of parameters for Bη consists of uij with (i, j) ∈ D1 ∪D2 and wpp (respectively,
ω40). By specializing, now in Spec(Bη), one gets one-codimensional smooth subschemes S̃h of S̃wes

R

given by

wpp − h = 0 (respectively, q40 − h = 0).

Each S̃h applies to Sh in Spec(B). The deformation induced by η on S̃h is again semiuniversal for
Def es

R
. The image of T 1,es

R/R
in the tangent space to Spec(Bη) is the one-dimensional vector subspace

T generated by ∂/∂ωpp (respectively, ∂/∂ω40). Each S̃h is transversal to T . In fact, any hyperplane
transversal of T is realized as tangent space to some S̃h for some convenient choice of h of type
h =

∑
(i,j)∈D aijuij , aij ∈ K.

Case 2: The embedded resolution consists of the blow-up of one point of multiplicity 4, three points of
multiplicity 2 and two points of multiplicity 1, with ef R = 4. One has dimSwes

R = dimT 1,sec
R −17 = 7,

dimBes
R = dimBes

R←R
= 5. In particular, every Sh,h′ is isomorphic to (Bes

R ). The computation of Bη

gives rise to

uij = 0, (i, j) /∈ {(4, 0), (4, 2), (5, 1), (6, 0), (3, 3), (4, 3), (5, 2), (5, 3)}
u40 = w4

4,0

u51 = w2
4,0u3,3

u60 = w2
6,0 + u5,1w4,0 + u2

4,2 + u3,3w
3
4,0

(1 + w2
6,0)u4,2 = w2

4,2 +w6,0 + (1 + w2
6,0)u3,3u

3
4,0 + (1 + w6,0)(u4,3w

3
4,0 + u5,2w

2
4,0).

By eliminating w4,0, w6,0, and w4,2 one gets as equations for Swes,sec
R exactly those of S in Exam-

ple 4.4(2). By specializing w4,0, w6,0, w4,2 to h, h′′, h′, respectively, one obtains the equations defining
Sh,h′. A regular system of parameters for Bη is given by u3,3, u4,2, u4,3, u5,2, u5,3, w4,0, w4,2. By spe-
cializing w4,0 and w4,2 one obtains smooth subschemes S̃h,h′ of Swes,sec

R given by

w4,0 − h = 0, w4,2 − h′ = 0,

which apply to Sh,h′, are isomorphic to Spec(Bes
R ), and, moreover, the deformation induced by η

on them is semiuniversal for Def es
R

. All of the schemes Sh,h′, are transversal to the image of T 1,es

R/R

in TBη which is nothing but the vector subspace generated by ∂/∂w4,0 and ∂/∂w4,2. The weak
equisingularity stratum Swes,sec

R is singular in this case.
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Case 3: The embedded resolution consists of the blow-up of one point of multiplicity p, l − 1
points of multiplicity 2, and one point of multiplicity 1, with ef R = 2. So, one has dimSwes,sec

R =
dimK T 1,sec

R − (2l2 + 2l − 3) = (l − 2)2, dim(Bes
R ) = dim(Bes

R←R
) = (l − 2)2. The computation of Bη

gives rise to
uij = 0, (i, j) ∈ D, i+ j � p or i+ j = p+ 1 and j � l − 1,

so one has Spec(Bη) = Swes,sec
R = S′. On the other hand, the deformation induced by η on S′ is

semiuniversal for Def es
R

, so S′ = Swes,sec
R is the strong equisingularity stratum for R, which exists in

this case.

Case 4: The embedded resolution consists of the blow-up of one point of multiplicity p + 1, one
point of multiplicity 2, and p−1 points of multiplicity 1, with ef R = 2. Then one has dimSwes,sec

R =
dimK T 1,sec

R − 1
2 (p2 + 5p + 2) = 1

2 (p − 1)(p − 2), dim(Bes
R ) = dim(Bes

R←R
) = 1

2(p − 1)(p − 2). The
computation of Bη gives rise to

ui,j = 0, (i, j) ∈ D, i+ j � p+ 1,

so Spec(Bη) = Swes,sec
R = S′, the deformation induced by η on S′ is semiuniversal for Def es

R
, and

again S′ = Swes,sec
R is the strong equisingularity stratum, which exists in this case.
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