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Abstract

Let G denote a locally compact Vilenkin group with dual group F . We give sufficient conditions
for a function <p € L°°(r) to be a multiplier from the power-weighted Hardy space H^(G) to
itself or the corresponding power-weighted Lebesgue space Lp

a(G), 0 < p < 1, - 1 < a < 0 .

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): primary 43 A 22;
secondary 43 A 15, 43 A 70.

1. Introduction

In a number of recent papers by T. Kitada [4], [5], [6] and by the present
authors [7], [8], [9] various multiplier theorems for spaces of functions or
distributions defined on locally compact Vilenkin groups were proved. The
spaces considered in these papers were the Lp -spaces with power weights,
1 < p < oo, the Hp -spaces, 0 < p < 1, and the power-weighted H' spaces.
In the present paper we consider multipliers on power-weighted Hardy spaces
Hp , where 0 < p < 1 and - 1 < a < 0. Our results are of two kinds: the first
result, Theorem 4.5, gives a sufficient condition for a function to be a multi-
plier from Hp to the corresponding power-weighted Lebesgue space lfa, the
second result, Theorem 4.7, deals with multipliers from Hp

a to Hp. As a
consequence of this last result we prove a multiplier theorem for Hp spaces,
where the multiplier satisfies a Hormander-type condition; see Theorem 4.15.
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[2] Hardy spaces 473

Whereas some of the multiplier theorems in [4] have an analogue for func-
tion or distribution spaces on R" , for the multiplier theorems presented here
no comparable version on R" seems to be known.

We now give a brief outline of the paper. In the next section we introduce
the necessary definitions and notation. In Section 3 we prove the equiva-
lence of the maximal function characterization of the Hp spaces and their
characterization in terms of weighted atoms. We also give an interpolation
theorem for operators on Hp° spaces and LPl spaces, 0 < p0 < 1 < px < oo.
Section 4 is devoted to proofs of our main results and a brief discussion of
the sharpness of the second of these results. We conclude that section, and
the paper, by deriving the Hormander-type multiplier theorem for the spaces
Hp.

2. Definitions and notation

Throughout this paper G will denote a locally compact Abelian group
containing a strictly decreasing sequence of open compact subgroups {G^^
such that

(i) sup{order(<7n/Gn+1): n e Z} < oo,

Such groups are the locally compact analogue of the so-called Vilenkin
groups which were first described by N. Ya. Vilenkin in 1947 [13]. Examples
of such groups are given in [2, Section 4.1.2]. Additional examples are the
additive group of the p-adic numbers and, more general, of a local field, see
[Hi-

Let F denote the dual group of G and for each « e Z let

Tn = {y € T: y{x) - 1 for all x eGn}.

We choose Haar measures fi on G and X on F so that fi(G0) = A(F0) — 1.
Then fi(Gn) = (A(Fn))~' := {mn)~

l for each n € Z.
There exists a metric d on G x G defined by d(x, x) = 0 and d(x, y) =

{mn)~
x if x - y e Gn\Gn+l. Then the topology on G determined by the

metric d coincides with the original topology on G. For x € G we set
||;t|| = d(x, 0). For each a e K we define the function va on G by va(x) =
\\x\\a; the corresponding measure vadfi — \\x\\adfi will also be denoted by
d/ia. We mention here that a simple computation shows that fia(Gn) <

C(wJ~( Q + 1 ) , provided a > - 1 , and that /ia(x + Gn) = (/wy)~°(w#l)~
1 if

x € Gj\GJ+l for some j < n . Here, like elsewhere, C will denote a constant
whose value may change from one occurrence to the next. The Lebesgue
spaces on G with respect to the measures dfia will be denoted by Lp

a{G) or
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474 C. W. Onneweer and T. S. Quek [3]

Ifa, and for / e Lp
a, 0 < p < oo and a e K we set

If a = 0 we write, as usual, If and ||/| | instead of LP
Q and ||/||p 0 .

As a further generalization of the usual Lp spaces we give here the defi-
nition of the Herz spaces on G. We shall use, both here and elsewhere, the
notation XA f° r ^ e characteristic function of a set A.

DEFINITION 2.1. Let 0 < p, q < oo and a e l . A measurable function
/ : G - » C belongs to the Herz space K(a, p, q;G) = K(a, p, q) if

with the usual modification if q — oo.
It is easy to see that K(a/p, p, p) = L?a for a € R and 0 < p < oo.
We can also define a metric 5 on T x f compatible with the topology on

F . In this case we have ||y|| = 5(y, y0) = mn if y e r n + 1 \ r n , where y0 e T
is defined by yQ{x) = 1 for all x e G.

The symbols A and v will be used to denote the Fourier transform and
inverse Fourier transform, respectively. An easy computation shows that

and, hence

We now briefly review the definition of the spaces of test functions, S(G),
and distributions, S'(G); for more details, see [11]. A function (p:G —*
C belongs to (p{G) if there exist integers k, I, depending on <p, so that
suppp c Gk and <p is constant on the cosets of G, in G. A sequence
{(pn)°f of functions in S(G) converges to (p G S(G) if there exist k, I € Z
so that every cpn and <p has support in Gk and is constant on the cosets of
Gl in G and if l im^oo^Cx) = <p(x) uniformly on G.

Next, S'(G) is the space of continuous linear functionals on S(G). A
sequence ( / J f in S'(G) converges to fe S'(G) if for all <p e S(G) we
have l i m ^ ^ ^ , q>) = (f, y).

3. Power-weighted Hardy spaces on G

In [5] Kitada gave a definition for the Hardy spaces Hx
a (G) with respect

to the weight functions va(x) = ||x||a , where - 1 < a < 0. In the following
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[4] Hardy spaces 475

we extend Kitada's definition. If / € S'(G) we first define its regularization
on G x Z by f{x, n) = fn(x) - f * \(x). Then fn is a function on G
which is cons tan t o n the cosets of Gn in G. Moreover , l i m ^ ^ fn = fin
S'(G); see [11 , C h a p t e r IV] . Fo r / e S'{G) we define i ts m a x i m a l func t ion
r by /*(*) = supJ/*An(x)|.

DEFINITION 3.1. Let 0 < p < oo and a e l . The space Hp
a{G) = Hp is

the space of all feS'(G) for which f € / / . We set

and we denote H^ and \\f\\HP by 7/p and H/H^c, respectively.
We now turn to the definition of the atomic Hardy spaces with power

weight

DEFINITION 3.2. Let 0 < p < 1 and a > -1. A function a: G —> C is a
(p, oo)a atom if there exists a set I = x + Gn such that

(i) suppa c / ,

(ii) | |<i | | 0 0<(/*o(/)r1 / l \
(iii) fGa(x)d/i(x) = 0.
Clearly every (p, oo)a atom defines an element of S'(G). Moreover, an

argument like in [1, page 611] shows that each (p, oo)Q atom a belongs to
Hp

a with | |a | |^ < 1.

DEFINITION 3.3. Let 0 < p < 1 and a > - 1 . The space HP'°°(G) =
Hp'°° is the space of all fe S'(G) for which there exists a sequence (A/)̂

>c e
lp and a sequence of (p, oo)Q atoms (a,)^ such that

(3-4) / =

We set

11/11̂ .-=inf{(|>,
where the infimum is taken over all decompositions of / of the form (3.4).

THEOREM 3.5. Let 0 < p < 1 and - 1 < a < 0. Then Hp = Hp'°° and
the "norms" on these spaces are equivalent.

The proof of Theorem 3.5 will be preceded by a lemma.

LEMMA 3.6. Let 0 < p < 1 and - 1 < a < 0. If f <E Hp then each
fn = f * An belongs to Hp'°° and

with C independent of n e Z.
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476 C. W. Onneweer and T. S. Quek [5]

P R O O F . L e t f e Hp
a a n d fo r e a c h keZ le t

ak = {xeG:f(x)>2k}.

If y € £lk then there exists an N GZ SO that fN(y) > 2k and this implies
that y + GNcQ.k. If A(y) = {n e Z:y + Gn c Q.k} , then A(y) is bounded
from below because f* e Lp

a. Thus there exists an a(y) e Z so that y +
G. ) c £lk and >> + Gn <jL Qfc for all « <a{y). We shall denote the at most
countably many different sets y+Ga^ with y e Qk by ^ t+Ga(k^ :— Ik r

Then ^ = 1),-^,,- a n d 4 , , n / A : , ; = 0 f o r l ^ J •
Next, let 4 ,. = yk<t: + Ga(ki)_x and let Clk = U , 4 , i • I f necessary we

first rename the sets Ik i so that they are mutually disjoint.

Also, observe that for each k e Z, Qk+l C Qfc and, since / e Hp
a ,

Ha(Clk) < oo and ^(fl^oo Qk) = ° > w h i c h implies that l i m ^ ^ ^Q(£\) = 0.
Next, for each function fn= f * \ and each k e Z, let

Then £l"k c ilk .
For k, n eZ we define the function gk: G —* C by

where

fn(x)dM(x).
'k.i

We first show that for a.e. x e 6 ,
(i) Hi

(")
To prove (i), consider x € Ik t= y + Gt, say. If n < I then fn is constant

on y + Gl and, since Ik ; <t Q.k we see that \fn{x)\<2k on Ik ; and this
A:implies that \Pk (.| < 2k . If n > I, then

K ,,• = !/* \ ) * A,ly) = / *

which again implies that \Pkj\ < 2k . Therefore, we see that \gl(x)\ < 2k

for all x GG and hence (i) holds.
To prove (ii), observe that fia(fCoo Qfc) = ° i r n P l i e s t h a t ^(fl^oo ^k) = °

and hence, ^ ( f l ^oo^) = °- T n i s l a s t equality immediately implies (ii). It
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follows from (i) and (ii) that for a.e. x e G,

oo

k=-oo

that is,

(3-7) fn(x)= E T,(8ttk+i-8nk)WXitJ(x).

k=-oo i

For each k, i, n let
bkj = (8k+i ~8k)Xiky

Then supp b"k , c /^ ,•. ll^t ,lloo - 2*+2 a n c * a r o u t i n e calculation shows that

(3.8) / b"k t(x)dM(x) = 0.
JG

We now prove that

with the series in (3.9) converging to fn in S'(G). To do so, take any
(p € S(G) with, say, supp <p c Gt for some t e Z . We need to prove that

(3.10) lim / E E b"k ,(x)9(x)dp(x) = f fn{x)<p{x)dn{x).
n2,ni—»oo k=n] i<"i

We first prove three auxiliary results, (3.11), (3.12) and (3.13).
(3.11) There exists an JV, € —N such that

We have

^ E
k=-oc

k=-oo

for suitably chosen iV, e - N .
(3.12) There exists an JV2eN so that for every k > N2, every / e N and

neZ,

i'<P)= [ bn
ki(x)v(x)d/i(x) = 0.

JG
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478 C. W. Onneweer and T. S. Quek [7]

Since q> € S(G), there exists an s e Z such that q> is constant on the
cosets of Gs in G but not on the cosets of Gs_{ (unless g>(x) = 0) . Hence
there exist x{, ... , xre G such that xt + Gs n x}. + Gs = 0 for z ̂  7 and
suppg? = \Jr

j=lXj + Gs. Also, since limfc_>oo/iQ(fifc) = 0, [7, Lemma l(c)]
implies that limk^oo/ia(Clk) = 0 . Consequently, there exists an N2 e N
such that for all k > N2 and all /' e N we have

Because each Ik ; is a coset of some subgroup Gt of G we see that for
k > iV, we have either I, . c x,: + Gc for some j , or else /. iC\xi + G. = 0
for all j , 1 < j < r. In the latter case we have Ik ; n supp (p = 0 and
hence (fr£ .•, cp) = 0 for all « € Z; in case /fc , c Xj + Gs for some j with
1 < j < r, we again have (fe£ J:, y) = 0 for all n € Z, because (3.8) holds.
This proves (3.12).

(3.13) With N{, N2 chosen so that (3.11) and (3.12) hold, there exists an
N3 € N so that

We have

Since v_a(x) < {mt)
a for a < 0 and x € Gt, we see that

Now we observe that for every k e Z there exists an /. e N so that

Let ^ = max{/^: iV, < A; < A^} . Then for this choice of Â 3 we immediately
obtain (3.13).

Applying (3.11), (3.12) and (3.13) it is easy to see that for every ni 6 -N
and « 2 , « 3 e N ,

EXX*(*w*)
k=nt K«3
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is dominated pointwise on G by an integrable function. Thus, in view of
(3.7), the Lebesgue Dominated Convergence Theorem implies (3.10) and,
therefore, (3.9).

Finally, let

and a"kJ

Then each a\ , is a (p, OO)Q atom and

Furthermore, a straightforward computation shows that

This completes the proof of Lemma 3.6.

PROOF OF THEOREM 3.5. Take any / e Hp
a . Using the same notation as

in the proof of Lemma 3.6, we see from the definition of the (p, oo)a atoms
al,t that

Thus the Banach-Alaoglu theorem implies the existence of a subsequence
(flo"'?'11) °f (ao 1) s o *nat *his subsequence converges in the weak* topology
of L°°(G) to, say, a0 , e L°°(G). Clearly, aQ , is a (/?, oo)a atom with
supp a0 , c /0 , . Next, since

" i - ( O . l )

a second application of the Banach-Alaoglu theorem yields a subsequence
(a""(J") of (a""'"") and a (p,oo)a atom ^ , with supp a, , c /, { so
that the subsequence converges weak* in L°°{G) to a, , . Arranging the
pairs of subscripts (k, i) with k € Z and / e N in a sequence we can repeat
the process described above for each (k, / ) . By the usual diagonalization
method we obtain a sequence {nv) and a sequence of {p, oo)a atoms ak t

with suppafc , C 4 , s o t nat for all {k, i) we have

(3.14) lim a"-. = a. . weak* in L°°.

We shall prove that

(3.15) / =
/c=-oo I
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To do so, take any q> e S{G) and assume, like in Lemma 3.6, that supp$? c
Gt. Let e > 0 be given. We first derive three auxiliary inequalities, (3.16),
(3.17) and (3.18).

(3.16) There exists an A/, e - N so that for all neZ we have

The proof of (3.16) is virtually the same as the proof of (3.11).
(3.17) There exists an M2 € N so that for all k > M2, every / e N and

n e Z we have

(ii) ( ^ ^ . , ^ ) = 0.
This is essentially a restatement of (3.12) with M2 = N2.

(3.18) With Af,, Af2 chosen as in (3.16) and (3.17), there exists an M3 e

N and an nv G {nv)°f?=\ s o ^ a t ^or a ^ n
v - ni/ w e

To prove (3.18), we observe that for each k € Z the sets 7fc ; are mutually
disjoint so that at most r of the sets Ik ( will contain at least one of the sets
Xj + Gs, with Xj + Gs as defined in the proof of (3.12). Let

ik — max{/: Xj + Gs c Ik , for some j with 1 < j < r},

and let
M3 = ma\{ilc:Mi < k < M2}.

Clearly, if Af, < k < M2 , i > Mi and n e Z, then {a"k j,<p) - (ak l:, <p) =
0. Furthermore, in view of (3.14) there exists an nv so that for all nv > nv

we have

E
k=Mx

- E
which proves (3.18).

Now we observe that since limM_>oo ŷ  = / in S'(G), there exists an
nv > nv so that

(3.19)
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In the proof of Lemma 3.6 we saw that there exist Nl e -N and N2, N3eN,
with Nl, N2, N3 depending on nv , so that if «, < N{, n2 > N2 and
«3 > N3 then

(3.20)

Consequently, if /, < min{Af,, JV,} , 12> N2 and /3 > max{M3, A^} then

*:=/, /</

k=I, i<l

<\{f-fnn,<p)\

(by (3.12))

AT,

+
"2

A:=A/, +

M,

A;=/,

M,

< e/3 + e/3 + e/6 + e/12 + e/12 = e.
This proves (3.15). In the proof of Lemma 3.6 we saw that

Therefore, feHp'°° and

<

To prove the converse, take any f e Hp'°°. Then / = ^2k Xkak in $'{G)
where (Xk) € lp and each ak is a (p, oo)a atom so that \\a*k\\p a < 1
Consequently,

, that is, / € //^ andand this implies that \\f* \\p
p a <

K -
This completes the proof of Theorem 3.5.

We mention here the following corollary whose simple proof will be omit-
ted.
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COROLLARY 3.21. For each q with 1 < q < oo we have Lq nHp is dense
in H".

a

The last theorem of this section is an interpolation theorem for operators
on H" and Lp spaces. The theorem is a version for locally compact Vilenkin
groups of [3, Theorems III.6.4 and 6.5] or [1, Theorem D], where also the
precise definitions of some of the concepts used here can be found.

THEOREM 3.22. Let 0 < / ? 0 < l < p 1 < o o . Suppose T is a sublinear
operator of weak type (Hp°, p0) on Hp° and of weak type (px,px) on Lp'.
Then T is bounded from Hp to Lp for po< p < 1 and T is bounded form
L" to L" for \<p<px.

PROOF (Outline). Let / e if with 1 < p < pi and choose q so that
1 < q < p . For t > 0 let

As in the proof of Lemma 3.6 we can express Et as a disjoint union of
maximal cosets of certain subgroups Gn of G, say Et = U7 Ij •

Define gt:G^C by

) if * € /

and define bt:G->C by bt(x) = f(x) - gt(x). Then

W = E<->"" St){x)X,{x) = Yi bj(x).
j j

We have

j J ^ j W 1 < C t ,

and if we set

then each a; is a (p0, q) atom and

Thus bt e / / " 0 ' ' and H^H^ < Ct(fi(Et))
l/p. Moreover, \gt(x)\ < Ct for

xeE,, and for ^ £ ( w e have | / ( x ) | < M(\f\)(x) < {Mq(\f\){x)}xlq <t.
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Consequently,

f \gt(x)\p>dMx) = I \gt(x)\Pldfi(x) + I \gt(x)\"'dfi(x)
JG JG\E, JE,

t
\f\<t

<C^'p\\f\\p
p,

that is, gt e LP{ for every t > 0 . The rest of the proof is virtually the same
as the proof of [3, Theorems III.6.4 and 6.5] and will be omitted.

4. Multipliers on HP(G)

As mentioned in the introduction, in this section we shall present our
multiplier theorems for the spaces Hp. Throughout this section, if <p e
L°°(r) and if k e Z we let <pk — q>xv and <pk = <pk+l - (pk . We begin with
a definition which extends a definition given by Kitada in [5].

DEFINITION 4.1. Let 0 < p < 1 and - 1 < a < 0. Let X denote Hp

and let Y denote Hp or Lp
a . A function q> e L°°(r) is a multiplier from

X to Y (<p e M(X, Y) or <p € M(X) in case X = Y) if there exists
a constant C > 0 so that for all f e X n L2 we have (^»/)v e Y and

REMARK 4.2. In order to prove that <p e M(X, Y) it is sufficient to prove
that there exists a C > 0 so that for every {p, oo)a atom a and for every
k e Z we have ||(^A:)

v*a||r = | | ( ^ a ) v | | y < C. To see this, take any (p, oo)a

atom a and let ak = axr • Then l i m ^ ^ ak = a in L2(T). Consequently,

lim <pka — lim <pak = (pa in L (F)

and hence,

(4.3) lim {fka) = {(pa)y in L {G).
k—>oo

Now we distinguish two cases.
(i) Let Y = L"a . Then (4.3) implies the existence of a subsequence (kt)

so that
lim {q>k a)^(x) = (<pa)v(x) for a.e. x e G.

Thus, Fatou's Lemma implies that
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484 C. W. Onneweer and T. S. Quek [13]

From this inequality we easily derive that cp e M(X, Y).
(ii) Let Y = X = HP. Then (4.3) implies that

lim {q>ka)y - (pa)v in
k—*oo

Now a simple argument shows that for every x

(((<pa)v)*(x))p < l iminf(((^a

and an application of Fatou's Lemma shows that

\\(<pa)v\\Hp < l iminf \\(<pkaf\\HP < C
a Q

and this inequality immediately implies that (p e M (X).
We now turn to the discussion of our multiplier theorems for the spaces

Hp . Our first result deals with multipliers from the spaces Hp to the corre-
sponding spaces Lp

a . We start with a lemma in which we consider the case
a = 0.

LEMMA 4.4. Let <p e L°°(r) and let 0 < p < 1. / /

for some r with p < r < oo then
(i) <peM(Hs,Ls) for p<s<\

and
(ii) <pe M(LS) for 1 < s < oo.

PROOF. Let a be a (p, oo) atom with suppa c / = x0 + Gn for some
xoeG and n € Z . For every k e Z we have

:=A + B.

Applying Holder's inequality we see that

x nil

<C\\(<pky*a\\p
2-(mn)-

<C\\<pk\\
pJ\a\\p

2-(mny

<c\w\t,
because a is a (p, oo) atom.

https://doi.org/10.1017/S1446788700030007 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030007
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For B we have

[(<Pk)
V(t)a(x-t)dn(t)

JGG\I

o I G\l

dfi{x)

( 7 \{<Pk)\t)\dn{t))dn{x).
\JX-I J

Since <pk{y) = 0 for ye r\Tk , {q>k)
y is constant on the cosets of Gk .

Thus, if (xt + Gk)°lQ represent the different cosets of Gk in G, then

i=0

so

(L %

^

= {mk)-
{p-X) I \(<pk)\t)\

p

Jx-I
Therefore,

B < \\a\C • {mk)
X-p I !\{(pk)\x - t)\pdn{t)dn{x)

J G\I JI

= II«C • (mk)l~" f I \(<Pk)
V(y - u)fdn{y)dn{u).

Jan Ja\Gn
f I
an Ja\Gn

Next we observe that for each ueGn,

I \{<Pk)\y - u)\pdfi(y) = f \(<pkf(y)\pdMy)
JG\Gn JGXG,,

= E / \(<Pk)
V(y)fdM(y)

P/r

^ E (fG \(9k)
yly)Uii{y)\ -(KGj\GJ+l))

l-p/r

n-\

7=-oo
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Since H a ^ < {n(I))~l/p < C(mn)
l/p , we see that

B < Cmn(mk)
l-p{mn)-\mk)

p-x = C.

Consequently, <p e M(HP, If). Since y e L°°(r), we have (p e M(L2).
Thus, an application of Theorem 3.22 and a duality argument complete the
proof of the lemma.

THEOREM 4.5. Let <p € L°°(T) and let 0 < p < 1. If

for some r with p < r < oo, then q> e M(HP, Lp
a) for -1 + p/r < a < 0.

PROOF. Let a be a (p, oo)a atom. We shall distinguish two cases, de-
pending on supp a. First assume supp a c / = x0 + Gn with xQ & Gn .
Then xQ e Gj\GJ+l for some j < n and /xQ(/) = {mj)~a{mn)~

x, so that

Halloo ^ ((mj)amn)l/P • F o r e a c h ^ e Z we have

where

= f\(<pkf*a(x)\pva(x)dn(x)
J I

'

To estimate B we observe that, as in the proof of Lemma 4.4,
pB=f

JG
G\I \JG

f
G\I

k)l~" i
G\I

f

dna{x)

(f \{<Pk)\t)\dn{t)\P dna{x)
\JX-I )

)l-p f (\{9k?(x-t)
JG\I Ji
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We now estimate the inner integral, first writing it as a sum of three integrals

f • d f i ( y ) = f • • • + f • • • + f •••dfi{y)
JG\Gn JGXG, JGj\Gj+i JGj

\j\\J " \J\KJ • •(/•\u- *f \J • t \ \ J

:= 5, + fi2 + 53.

For x0 G Gj\Gj+l and y £ Gy we have x0 + y & G}•, so that va(x0 + y) <

(nij)~a . Therefore, if u e Gw we obtain, as in the proof of Lemma 4.4,

\{<Pk)\y-u)\pdn{y)

For x0 € Gj\Gj+l and j> e GJ+l\Gn we have x0 + y e Gj\Gj+l and hence,

va(jc0 + y) = (mj)'" . Therefore, if u e Gn then

I(^)V(3; - ") |P ^ (> ' ) < C{mj)~
a{mk)

p~ .
G\Ga

Finally, to find the appropriate estimate for B2 , observe that for u e Gn,

( r \Plr

B2< (y \(<Phf(y-u)\rdMy)j
/ „ \ {r-p)/r

Therefore,

B < CWaC • (mk)
1-p(mJ)-

a(mk)'"\mn)-
1 < C,

because a is a (p, oo)a atom. Thus we see that ||(^fca)v||p a < C.

In case supp
for each k e Z,

In case supp a c Gn we have H a ^ < (na(Gn))~
llP < C(mJa+i)/p , and

:=A + B.
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Choose 5 > 1 so that - 1 + p/s < a. Then, according to Lemma 4.4,
<pk € M(LS) and we see that

a y/s / \{s-P)/s

\(<pk)
v*a(x)\sdn(x)\ • U (va(x)f{s-p)dn(x)\

< C\\a\\p
s • (mnr{a+l-p/s) < C.

Moreover, as in the first part of the proof, we have

B<\\a\\p
oo-(mk)

l-p f [ \{<pk)\y-u)\pva{y)dn{y)dn{u)

< C\\a\\p
0O(mk)

1-"(mn)-
a(mk)

p-\mn)-
1 < C.

Thus, we see again that ||((pfca)v||p < C. According to Remark 4.2 we
P ^may conclude that <p G M{HP, L^).

The next theorem deals with multipliers from Hp
a to Hp . We begin with

a lemma which extends [9, Theorem 2].

LEMMA 4.6. Let <p e L°°(r) and 0 < p < 1. / /

for some r with I < r < oo then <p e M(HS) for 1 < s < oo.

PROOF. We first prove that <p € M(Hl) by showing that there exists a
C > 0 so that for all ( l ,oo) atoms a we have ||(pa)v||ffi < C. We
may assume that supp a c Gn for some n e Z. Let / = (pa)v and let
/* = sup, | / * A, | . Kitada showed in [4, Theorem 2] that

f f(x)dn(x)<C
J G

and
oo n —1

Y Y
j=n k=-oo

Applying Holder's inequality we see that for k < n

)
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Hence, we have

oo n — 1

J = * * = - o

j=n

Therefore,

llĵ i = / f(x)d/i(x)+ f f{x)dn{x) < C,
JGn JG\Gn

that is, <peM(Hl).
We now show that q> e M(HS) for 1 < s < oo. Since <p e M(i/') there

exists a C > 0 so that for all feHlnL2 we have

that is, 9> e M(Hl, L1) . Since / / ' nL2 is a dense subset of Hl, the operator
T can be extended to Hl so that | | r / | | w i < C\\f\\H, for all f e Hl.
This implies immediately that T is of weak type {Hl ,1) on Hl. Since
<p e M(L2), T is of type (2, 2) on L 2 . Thus, it follows from Theorem
3.22 and a standard duality argument that T is of type (s, s), that is, <p e
M(LS) = M(HS) for each 1 < 5 < oo.

THEOREM 4.7. Let (peL°°(T) and 0 < p < 1. If

fc j=k

for some r with 1 < r < oo <Aen p e M(H^) for - 1 + p / r < a < 0.

PROOF. Since 0 < /> < 1 we have

It follows from Lemma 4.6 that #> e M(HS) for 1 < 5 < oo.
To see that <p e M(//^) for - 1 +p/r < a < 0, let a be a (p, oo)Q atom

with supp ac I = xo + Gn. Take any fceZ and let / = {(pka)y = (<pk)
v * a
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and let f* = sup, \f * At\. We have

f{x)fdna{x)

= f(f(x))pdfia(x)+ f {f{x))"dna{x):=A + B.
Ji JG\I

To estimate A we distinguish two cases.
(i) If x0 € Gn then for every r e [ l , oo) and each a with —1 + p/r <

a < 0 we have

a \P/' / \(r-p)/r

{f(x))rdn{x)\ • [jG (va(x)f{r-p)dn(x)\
<C\\a\\p

H,.{mn)-
(a+x-plr)<C,

where the second inequality is obtained by observing that <p e M(Hr).
(ii) If x0 £ Gn then x0 e G/VG1^, for some / < n and / c Gt\GM .

With r and a as in (i) we have

(f(x))rdn(x))

<C\\a\\p
H,-(mi)-

a(mn)-
(l-p/r)<C.

To find the appropriate estimate for B we closely follow Kitada's proof
of [5, Theorem 2]. If we set y/(y) = y{xo)(p{y), y/1 - y/xr \ r and b(x) =
a(x + x 0 ) , then Kitada showed that

j=n

Therefore,

[ {f{x)fdna{x)
G\I

[ J?*b(x)f\(VJ)*b(x)fdiia(x),
j=n i=-ooJJi

where Jt = / , \ / ,+ 1 and /( = x0 + Gt. For each of the integrals in this sum
Kitada showed that

yJ)w*b(x)\pdfia(x)
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Consequently, applying [7, Lemma l(b)] to obtain the third inequality, we
see that

y1 inf{var/{r_p)(y):y e /,\{0}})(

(a) If In = I = Gn we have

(b) If In c G/\Gl+l for some / < n we have

BtJ <

Thus, in both cases we see that

oo n—\

7=n /"=—oo

Thus, | | /*| |P Q = \\f\\jp < C and this implies that <p e M(H?).
For 0 < p < 1 we have the following corollary.

COROLLARY 4.8. Let y e L°°(r) and 0 < p < 1. If

1 / r r | , ) < oo

^),/br sowe r vv/YA 1 < r < oo ?/?e« »̂ € M(H^) for — 1 + p / r < a < 0.

PROOF. For 0 < p < 1 we have

j=k j=k
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The result follows immediately from Theorem 4.7.
We now show that Corollary 4.8 is sharp in a certain sense. The example

we use to prove the sharpness result is a variation of the example used in [9]
to prove that certain results of Kitada for H" multipliers, 0 < p < 1, were
best possible.

T H E O R E M 4 . 9 . L e t 0 < p < 1 a n d 1 < r < o o . T h e r e e x i s t s a p e L ° ° { F )
s o t h a t

(i) supfc(wA:)
I /p"1| |(/)v | |A : (1 /p_1/ r j r ) ( / )<oo for every q>p;

(ii) <p e M{H%) for all q with p <q < 1 and a with - 1 +q/r < a < 0;
(iii) <p <£ M(H^) for any a with - 1 < a < 0.

PROOF. Choose yx e T^FQ and define f:G-*C by

Then feLl(G) and for every r>p we have

* - \^ (n, r ( 1 / p ~
\\K(l/p-l/r,r,g)- Z^^mk>

k=-oo

Moreover, if q > p then

> WJXGk\GkJ
k=~oo

i \ilP

k=~oo

. ilP

Also,

with xG = mkXrk • T h u s SUPP / c ^i + r o c r i \ r o • Let p = / . Then
9» e L°°(r). Moreover, 9>* = 0 for k # 1 and (pk = <p for k = 1, so
that ( / ) v = / and (<pk)y = 0 for fc ̂  1. Therefore p satisfies (i) and,
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according to Corollary 4.8, (p satisfies (ii). To see that <p satisfies (iii), choose
for every / < 0 an xt <E Gf\Gi+l and define, for - 1 < a < 0, functions
gt: G -+ C by

gi(x) = (mt)
a/p{mlXxi+Gi - m0xXi+Go)(x).

Then gt is a multiple of a (p, cx>)Q atom and H^H^e <m{. Moreover,

so suppg, c r , \ r 0 .
Furthermore, if we define ht: G —> C by

then /?( e £'((7), and a straightforward computation shows that hi = (pgi,
that is, ht = {(pgt)

y . Furthermore, we have

a [JG

so limJ-_>_0O \\hj\\p a — oo. Since each /j( e Ll(G) we have

SO

lim | | ( ^ | . ) v | | j ^ = lim Wh,^ = lim ||A*|| = oo

and this implies that (p %
In his most recent paper on multipliers on HP{G) spaces [6], Kitada

proved a multiplier result for Hardy spaces on locally compact Vilenkin
groups in which his assumptions are the natural analogue for G of the usual
Hormander condition for multipliers for function spaces on R". Before
stating Kitada's main result we first repeat a definition given in [6].

DEFINITION 4.10. Let y e L°°(r) . For X > 0 and ; e Z let Z>V be
defined by

z>V = (M V)voo)A.
We say that (p e M(s, A), where 1 < 5 < oo, if

B{(p,s, X) := IIH^ + sup(m/-1 / J | |Z>V||J < oo.

In [6, Theorem 2] Kitada proved the following, which is the analogue for
G of [12, Theorem (4.11)].
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THEOREM K. Let 0 < p < 1 and 1 < s < oo. If q> e M(s, X) for

X>l/p- l/max(2, s') then q> e M(HP).

We conclude this paper by extending Theorem K to power-weighted Hardy
spaces. Our proof depends on Corollary 4.8 and is somewhat different form
Kitada's proof of Theorem K. We first establish a simple lemma.

LEMMA 4.11. Let (p e L°°(r), let 0 < p < 1 and 1 < r < oo. / /

(4.12) s u p ( ^ ) I / p - l + £ | | ( / ) v | | t r > o o ) < o o for some e>0,
k

then

(4.13) SUP(l»fc)
l/'-1||(,*)V||Jf(l/,-l/r.r.p) < «>•

PROOF. We have

+ T (m-)
i=k+\

Assumption (4.12) implies that

since ep > 0.
To estimate B first observe that

< ll/ll, < ll/lloo • A(rfc+1\rfc) < CII^II^ • mk.
Therefore,

i=k+l

From the inequalities for A and B we immediately obtain (4.13).
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COROLLARY 4.14. Let <p e L°°(r), let 0 < p < 1 and 1 < r < oo. / / 9)
satisfies (4.12) tf?e« <p 6 M(//£) /or - 1 + p/r < a < 0.

PROOF. For /? = 1 this is [5, Theorem 2]. For 0 < p < 1 we apply
Lemma 4.11 and Corollary 4.8.

THEOREM 4.15. Let <p e L°°(T), let 0 < p < I, 1 <r < 00 and X > l/p-
l/max(2, / ) . If y e M{r, A) then <p e M(H*) for - 1 +p /min (2 , r) <
a<0.

PROOF. We first assume that 1 < r < 2 so that max(2, r) = r . Since
A > l/p - \/r , there exists an e > 0 so that X = \/p - \/r + e. Now we
consider

Thus, if q> e Af(r, A) then #> satisfies inequality (4.12), and Corollary 4.14
i m p l i e s t h a t <p e M{H*) f o r - 1 +p/r <a<0.

If 2 < r < 00 then max(2, / ) = 2 . In this case there exists an e > 0
such that X = l/p - 1/2 + e and we have

An application of [6, Proposition 2] to obtain the third inequality, shows that

/ - | / 2 | | £ > y i l 2 <B(<p,2,X)

< CB{<p, r,X)<oo

and the conclusion of the theorem follows again from Corollary 4.14. This
completes the proof of Theorem 4.15.

REMARK. Professor Kitada informed the authors that he obtained inde-
pendently essentially the same result as our Theorem 4.15.
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