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Abstract

Let G denote a locally compact Vilenkin group with dual group I'. We give sufficient conditions
for a function ¢ € L*(I') to be a multiplier from the power-weighted Hardy space Hg (G) to
itself or the corresponding power-weighted Lebesgue space Lz(G) ,0<p<t, -1<ax<0.
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secondary 43 A 15, 43 A 70.

1. Introduction

In a number of recent papers by T. Kitada [4], [5], [6] and by the present
authors [7], [8], [9] various multiplier theorems for spaces of functions or
distributions defined on locally compact Vilenkin groups were proved. The
spaces considered in these papers were the L’”-spaces with power weights,
1 < p < o, the H?-spaces, 0 < p < 1, and the power-weighted H ! spates.
In the present paper we consider multipliers on power-weighted Hardy spaces
H’ ,where 0 <p <1 and —1 < a < 0. Our results are of two kinds: the first
result, Theorem 4.5, gives a sufficient condition for a function to be a multi-
plier from H(f to the corresponding power-weighted Lebesgue space Lf; , the
second result, Theorem 4.7, deals with multipliers from Hf to Hf . Asa
consequence of this last result we prove a multiplier theorem for Hf spaces,
where the multiplier satisfies a Hormander-type condition; see Theorem 4.15.
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Whereas some of the multiplier theorems in [4] have an analogue for func-
tion or distribution spaces on R”, for the multiplier theorems presented here
no comparable version on R” seems to be known.

We now give a brief outline of the paper. In the next section we introduce
the necessary definitions and notation. In Section 3 we prove the equiva-
lence of the maximal function characterization of the H: spaces and their
characterization in terms of weighted atoms. We also give an interpolation
theorem for operators on H” spaces and L”' spaces, 0 < Py L1l <p <oo.
Section 4 is devoted to proofs of our main results and a brief discussion of
the sharpness of the second of these results. We conclude that section, and
the paper, by deriving the Hérmander-type multiplier theorem for the spaces
HP

a

2. Definitions and notation

Throughout this paper G will denote a locally compact Abelian group
containing a strictly decreasing sequence of open compact subgroups (Gn)‘foo
such that

(i) sup{order(G,/G,, ):n €2} < oo,

(i) U=, G,=G and N~ G, =1{0}.

Such groups are the locally compact analogue of the so-called Vilenkin
groups which were first described by N. Ya. Vilenkin in 1947 [13]. Examples
of such groups are given in [2, Section 4.1.2]. Additional examples are the
additive group of the p-adic numbers and, more general, of a local field, see
[11].

Let I' denote the dual group of G and for each n € Z let

I,={vely(x)=1forall x € G,}.

We choose Haar measures 4 on G and A on I' so that u(G,) =A(I')) =1.
Then u(G,) = (AT,))”" := (m,)~" foreach necZ.

There exists a metric d on G x G defined by d(x, x) =0 and d(x, y) =
(mn)_l if x-ye€G\G,,, . Then the topology on G determined by the
metric d coincides with the original topology on G. For x € G we set
lx|l = d(x, 0). For each o € R we define the function v, on G by v, (x) =
lix||*; the corresponding measure v, du = ||x||*dp will also be denoted by
du,. We mention here that a simple computation shows that u (G,) <
C(m,)~*", provided a > ~1, and that g (x +G,) = (m;)"*(m,)™" if
XeG j\G i+l for some j < n. Here, like elsewhere, C will denote a constant
whose value may change from one occurrence to the next. The Lebesgue
spaces on G with respect to the measures du, will be denoted by Lﬂ( G) or
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L?,and for feL’, 0<p<oo and a €R we set

11, o= ( [irer dua(x)) "

If a =0 we write, as usual, L” and ||f}|, instead of L and ||, ,-

As a further generalization of the usual L? spaces we give here the defi-
nition of the Herz spaces on G. We shall use, both here and elsewhere, the
notation yx, for the characteristic function of a set A4.

DEFINITION 2.1. Let 0 < p, g < oo and a € R. A measurable function
f:G — C belongs to the Herz space K(a, p, q; G)=K(a,p, q) if

/e
o0
— —a q
”f”[((a,p,q) = ( § : ll(m,) fXG/\Gm”P) <00,

I=—o00
with the usual modification if g = co.

It is easy to see that K(a/p,p,p) =L’ for a €R and 0<p < .

We can also define a metric 4 on I' x I' compatible with the topology on
I'. In this case we have ||y|| =d(y, ) =m, if yeI', \I',, where y, €T
is defined by y,(x) =1 forall xe€G.

The symbols ” and ¥ will be used to denote the Fourier transform and
inverse Fourier transform, respectively. An easy computation shows that

(xg,)" = AMT) = (m) ™ xp.

n

and, hence
(xr)" = W(G,) X, =mxg =4,

We now briefly review the definition of the spaces of test functions, S(G),
and distributions, $'(G); for more details, see [11]. A function ¢:G —
C belongs to ¢(G) if there exist integers k, /, depending on ¢, so that
suppp C G, and ¢ is constant on the cosets of G, in G. A sequence
(p,)7° of functions in S(G) converges to ¢ € S(G) if there exist k,/ € Z
so that every ¢, and ¢ has support in G, and is constant on the cosets of
G, in G andif lim,_, ¢, (x) = ¢(x) uniformly on G.

Next, $'(G) is the space of continuous linear functionals on S$(G). A
sequence (f,)]° in $'(G) converges to f € S§'(G) if for all ¢ € S(G) we
have lim, ,_(f,, ¢)=(f,0).

3. Power-weighted Hardy spaces on G

In [5] Kitada gave a definition for the Hardy spaces H ;(G) with respect
to the weight functions v_(x) = ||x||*, where —1 < a < 0. In the following

https://doi.org/10.1017/51446788700030007 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700030007

(4] Hardy spaces 475

we extend Kitada’s definition. If f € $'(G) we first define its regularization
on GxZ by f(x,n) = f(x)=f+A,(x). Then f, is a function on G
which is constant on the cosets of G, in G. Moreover, lim,_ _ f, = f in
$'(G); see [11, Chapter IV]. For f € $'(G) we define its maximal function
ST by f7(x) =sup, |f*A,(x)].

DEFINITION 3.1. Let 0 < p < 0o and « € R. The space H?(G) = H is
the space of all f € §'(G) for which f* ¢ LZ. We set

1 e = 1S

and we denote H] and | f]| e by H” and ||f]|» , respectively.

We now turn to the definition of the atomic Hardy spaces with power
weight

DEFINITION 3.2. Let 0 < p <1 and a > —1. A function a:G — C isa
(p, 00), atom if there exists a set I = x + G, such that

(i) suppacl,

(ii) llall,, < (1, ()77,

(iii) fza(x)du(x)=0.

Clearly every (p, co), atom defines an element of § '(G). Moreover, an
argument like in [1, page 611] shows that each (p, co), atom a belongs to
H? with |la|,;» < 1.

DEFINITION 3.3. Let 0 < p < 1 and a > —1. The space H>"®(G) =
H?** is the space of all f € S'(G) for which there exists a sequence (4,)° €
I and a sequence of (p, o), atoms (ai)cl’o such that

(3.4) f=3 4a, inSG).

i=1

oo 1/p
1l e = inf{ (Z M,-l”) } ,
i=1

where the infimum is taken over all decompositions of f of the form (3.4).

We set

THEOREM 3.5. Let 0 <p <1 and -1 <a <0. Then H? = H"™ and
the “norms™ on these spaces are equivalent.

The proof of Theorem 3.5 will be preceded by a lemma.

LEMMA 3.6. Let 0 < p <1 and -1 < a < 0. If f € H? then each
f, =1 * A, belongsto H">™ and
1l < CllA Ml »
with C independent of n € Z.
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PrROOF. Let f € H? and for each k € Z let
Q, ={xeG: f"(x)>2"}.

If y € Q, then there exists an N € Z so that fy(y) > 2* and this implies
that y+ Gy c Q, . If A(y)={ne€Z:y+ G, C €}, then A(y) is bounded
from below because f* € Lﬂ . Thus there exists an a(y) € Z so that y +
G,y C Q, and y+ G, ¢ Q, forall n < a(y). We shall denote the at most
countably many different sets y+Ga(y) with y € Q by y; ,.+Ga(k’ n=1
Then Q, =U,.Ik’i and Ik’,.nlk’j =0 for i#j.

Next, let [, ; =y, ;+ Gy »_, and let Q, = U, I, ;. If necessary we
first rename the sets [ 4. so that they are mutually disjoint.

Also, observe that for each k € Z, Q,,, C Q, and, since f € H,
u,(8,) < oo and p (N>, Q) =0, which implies that lim,_,__ x,(2,)=0.

Next, for each function f, = f*A, and each k € Z, let

Q = {x € G:|f,(x)| > 2}.

Then Q; C Q, .
For k, n € Z we define the function g;:G — C by

g:(x) _ { f(x) ifxgQ,

py, ifxel ,,

where

BL= it )7 [ 0 duco).

We first show that for a.e. x € G,

(i) lim,_,__ g/(x)=0,

(i) im,_ g,:'(x) = fn(x).
To prove (i), consider x € I, ; =y +G,, say. If n </ then f, is constant
on y + G, and, since I, ; ¢ Q, we see that |f,(x)| < 2* on I, ; and this
implies that |P; ;| <2“.If n >/, then

P = (F*A) s AO) = F MDY = [0,

which again implies that |P; | < 2% . Therefore, we see that |gf(x)| < 2°
for all x € G and hence (i) holds.

To prove (ii), observe that 1, (N, Q) =0 implies that (N>, Q,) =0
and hence, u(N~_€,) = 0. This last equality immediately implies (ii). It
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follows from (i) and (ii) that for a.e. x € G,

f;,(.X) = Z (g:+l —g,f)(x),
k=—o00
that is,
(3.7) f(x) = Z (8o — &)Xy, ().

For each k, i, n let
P = (" — oMy,
ki = (ki gk)XIky,.-

Then supp b, , C I, ;, |Ib; , and a routine calculation shows that

(3.8) /G b [(x)du(x) =

We now prove that

(39) fo= 20 2B
k=—o00 |

with the series in (3.9) converging to f, in $'(G). To do so, take any
¢ € S(G) with, say, supp¢ C G, for some ¢ € Z. We need to prove that

610 tm_ [ 50 Y6 e(x)du(x )= [ feedut)
nzl,n:;—»oo k nl 1<n3

We first prove three auxiliary results, (3.11), (3.12) and (3.13).
(3.11) There exists an N, € —N such that

]
= > >l el <1

k=—oco i

We have
N,

AL Z “ng g/:'”w”(P”l
=—o0
Nl

k+2

N+3
< lell, <

lell, < 1,

for suitably chosen N, € —N.
(3.12) There exists an N, € N so that for every kK > N, , every i € N and
nez,

B s 9) = /G B (0)p(x)du(x) =
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Since ¢ € S(G), there exists an s € Z such that ¢ is constant on the
cosets of G in G but not on the cosets of G,_, (unless ¢(x) =0). Hence
there exist x,, ..., x, € G such that x,.+GSr1xj+GS = for i # j and
suppgp = ), x; + G,. Also, since lim,_,_ x,(Q,) =0, [7, Lemma 1(c)]
implies that lim,  __ u (Q ) = 0. Consequently, there exists an N, € N
such that for all k > N and all i € N we have

(T ) < 0, (&) < min{g (x; + G): 1 < j<r}.

Because each fk, ; 18 a coset of some subgroup G, of G we see that for
k > N, we have either I, ; C x;+ G, for some j, or else fk,inxj+Gs =0
forall j, 1 < j < r. In the latter case we have Ik,l. Nsuppy = & and
hence (b ;,¢) =0 forall n €Z;incase [, , C x;+ G, for some j with
1 < j <r, weagain have (b, ;, p) =0 for all n € Z, because (3.8) holds.
This proves (3.12).

(3.13) With N, , N, chosen so that (3.11) and (3.12) hold, there exists an
N; € N so that

N,
B = Z Z ”bl':,,'¢”1 <1
k=N, +1i>N,

We have

> / (gl = g e (olv_ (x)dp, (x).

LIZN,

N,
B< Z

k=
Since v__(x) < (mt)" for o <0 and x € G,, we see that

B < |loll.(m, Z D DARIAY

k=N +1{>N,

Now we observe that for every k € Z there exists an i, € N so that
'3 N,+3 ay~1
3w ) < @Y lgll o (m))
i>i,

Let N, = max{i,: N, < k < N,}. Then for this choice of N, we immediately
obtain (3.13).

Applying (3.11), (3.12) and (3.13) it is easy to see that for every n, € -N
and n,,n, €N,

Z Z bk i x)p(x)

k=n, i<n,
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is dominated pointwise on G by an integrable function. Thus, in view of
(3.7), the Lebesgue Dominated Convergence Theorem implies (3.10) and,
therefore, (3.9).
Finally, let
n

k+2 ~ -
A i =2 D' and ap =4, )b

Then each a; ; isa (p, o), atom and
f, =32 4 ; inS'(G).
ki

Furthermore, a straightforward computation shows that

S la LS CURI L < CU, L= ClA -
ki

This completes the proof of Lemma 3.6.

PrROOF OF THEOREM 3.5. Take any f € H(f . Using the same notation as
in the proof of Lemma 3.6, we see from the definition of the (p, co), atoms
ay ; that

supllap lloe < (#,(Tp, ).

neN
Thus the Banach-Alaoglu theorem implies the existence of a subsequence
(ag':‘j"”) of (a; ,) so that this subsequence converges in the weak” topology
of L™(G) to, say, a, , € L*(G). Cleatly, a; | isa (p, o0), atom with
suppa, , C I, | . Next, since

n, 5 -1
sup [la;®" |l < (u,(F, )77,

0,1
a second application of the Banach-Alaoglu theorem yields a subsequence
LTI Ry0,1) : ¥
(a,"}’") of (a;*]'") and a (p, c0), atom a, , with suppa, ; C I, , so
that the subsequence converges weak”™ in L%(G) to a, ,. Arranging the
pairs of subscripts (k, i) with kK € Z and i € N in a sequence we can repeat
the process described above for each (k, i). By the usual diagonalization
method we obtain a sequence (n,) and a sequence of (p, o0), atoms a; ;

with suppa, ; C I, ; so that for all (k, i) we have
(3.14) lim a;", =a, ; weak in L™.
v—oo K> >

We shall prove that

(3.15) f= i > A 4 ; in S'(G).

k=—o00 i
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To do so, take any ¢ € S(G) and assume, like in Lemma 3.6, that suppe C
G,. Let ¢ > 0 be given. We first derive three auxiliary inequalities, (3.16),
(3.17) and (3.18).

(3.16) There exists an M, € —N so that for all n € Z we have

. M

(1) Ek:l—oo Ei |<’1k,jaz,," p)| < % >

() T oo i ke i 15 I < -
The proof of (3.16) is virtually the same as the proof of (3.11).

(3.17) There exists an M, € N so that for all K > M,, every i €N and
n € Z we have

(i) <}”k’[a]':,[’ p)=0,

(i) (4 ;4 ;> 9)=0.
This is essentially a restatement of (3.12) with M, = N, .

(3.18) With M, , M, chosen as in (3.16) and (3.17), there exists an M, €
Nandan n, € (n,)or, so that for all n, > n, we have

M2 . .
S Ll dla —a o)l <.

k=M +1 i

To prove (3.18), we observe that for each k € Z the sets fk, ; are mutually

disjoint so that at most r of the sets Ik . will contain at least one of the sets
x;+ G, with x; + G; as defined in the proof of (3.12). Le

zk—max{zx + G, CIk for some j with 1 < j <r},

and let
M, =max{i,: M, <k < M,}.

Clearly, if M, <k <M,, i > M, and n € Z, then (a,'(',i, 9) = (a, ;»9) =
0. Furthermore, in view of (3.14) there exists an n, so that for all n, > n,
we have

M, )
Z Z"lk,i| Kay’; — a ;> @)

k=M +1 |

M,

&
Z akl ak,i’¢>,<g’
=M

E

which proves (3.18).
Now we observe that since lim,  f = f in $'(G), there exists an
n, > n, so that

(3.19) Wy, =S 0 <3
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[10]
In the proof of Lemma 3.6 we saw that there exist N, € ~N and N,, N;€N
with N,, N,, N, depending on n, , O that if n, < N, n, > N, and
n, > N, then

n, " e

(3.20) P IR ACE S 0 <3
k=n, i<ny ?
5> N3} then

Consequently, if /| < min{M,, N}, [, > N, and [; > max{

IZ
<f_ Zzlk,iak,i’ ¢>

k=, i<l,

NZ
<f_ Zzlk,iak,i’ ¢>

k=1, i<l
'<f f < Zzlk Iak i’ ¢>
k=1, i<l

N

Y Sl -a,. 0
:M S

M

ZZ klakl’¢‘+ZZ| k,ak,a¢|

k=l i<l

(by (3.12))

k=1, i<,
<8/3+8/3+8/6+8/12+8/12—8

This proves (3.15). In the proof of Lemma 3.6 we saw that

YW P < CllA -
k,i

Therefore, f € H>’™ and
1 g < C”f"Hg-

To prove the converse, take any f € H>"® . Then f =Y, «4; in §(G)
where (4,) € I and each a; is a (p, o), atom so that a||, , < 1.

Consequently,
Il < Z A7 |ag ()

and this implies that || /* ||p WS |}~ PP, thatis, f € H" and
1A e < NN pgo oo

This completes the proof of Theorem 3.5
We mention here the following corollary whose simple proof will be omit-
ted.
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COROLLARY 3.21. For each q with 1 < q < oo we have L' H" is dense
in H?.
e ]

The last theorem of this section is an interpolation theorem for operators
on H” and L’ spaces. The theorem is a version for locally compact Vilenkin
groups of [3, Theorems II1.6.4 and 6.5] or [1, Theorem D], where also the
precise definitions of some of the concepts used here can be found.

THEOREM 3.22. Let 0 < p, <1 < p, < oo. Suppose T is a sublinear
operator of weak type (H™, p,) on H™ and of weak type (p,,p,) on L.
Then T is bounded from H” to L? for Py <p <1 and T is bounded form
L’ to L” for 1<p<p,.

PROOF (Outline). Let f € L” with 1 < p < p, and choose ¢ so that

l1<g<p.For t>0 let
E, = {x: M (I/D(x) = (1) (%) > ).

As in the proof of Lemma 3.6 we can express E, as a disjoint union of
maximal cosets of certain subgroups G, of G,say E, =/ i
Define g,:G — C by

f(x) if x ¢ E,,
&(x) = { WU f, fx)du(x) ifxel,

and define b,:G — C by b,(x) = f(x) — g,(x). Then
b(x) = D(f = g)()x, (x) = 3 ().
j J

We have
(u(, / b, ()% du(x)" < c1,

and if we set
a;(x) = (Ct(u(I;))™)™'b,(x),

then each a ; isa (p,, q) atom and

b(x) = 3 Ce(u(I;) " a,(x).
J

Thus b, € H'? and ||b,|| g < Ct(u(Et))l/”. Moreover, |g,(x)| < Ct for

x € E,, and for x ¢ E, we have |f(x)| < M(|f])(x) < {M,(I/)x)}"" <.
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Consequently,

/Ig,(X)I”'dﬂ(X)=/ Ig,(x)l”'d/t(x)+/ g, (x)" du(x)
G G\E, E,

< / )P du(x) + (Ct)f u(E,)
| 1<t

<c AP,

thatis, g, € L for every ¢ > 0. The rest of the proof is virtually the same
as the proof of [3, Theorems II1.6.4 and 6.5] and will be omitted.

4. Multipliers on H”(G)

As mentioned in the introduction, in this section we shall present our
multiplier theorems for the spaces Htf . Throughout this section, if ¢ €
L) and if k € Z we let Or = PXr, and (ok = @r41 — 9i - We begin with
a definition which extends a definition given by Kitada in [5].

DEFINITION 4.1. Let 0 < p <1 and -1 < a £ 0. Let X denote Hg
and let Y denote H’ or L’. A function ¢ € L*(I') is a multiplier from
X toY (pe M(X,Y) or p € M(X) in case X = Y) if there exists
a constant C > 0 so that for all fe X NL* we have (9 €Y and
1@ ly < Cllflly -

REMARK 4.2. In order to prove that ¢ € M(X, Y) it is sufficient to prove
that there exists a C > 0 so that for every (p, co0), atom a and for every
k € Z we have ||((ok)v*al|y = Il(wk&)vlly < C. To see this, take any (p, 00),
atom a and let a, = &xrk. Then lim,_,__a, =& in Lz(l" ). Consequently,

. . . o s . g2
klirgo $,a= klirgo pa, =¢pa in L°(T)
and hence,

(4.3) klim ((pk&)v = (pa)’ in LZ(G).
—00
Now we distinguish two cases.
(i) Let Y = L’ . Then (4.3) implies the existence of a subsequence (k;)
so that
lim (¢, @)’ (x) = (pa)"(x) forae. x€G.
100 i

Thus, Fatou’s Lemma implies that

ltea)’ll, , <liminfli(p, 2)"ll, , < C.

p,a — p,a —

https://doi.org/10.1017/51446788700030007 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700030007

484 C. W. Onneweer and T. S. Quek [13]

From this inequality we easily derive that ¢ € M(X, Y).
(ii) Let Y = X = H”. Then (4.3) implies that

lim (¢,a)" = (pa)’ in §'(G).

k—o0

Now a simple argument shows that for every x € G,
(((pa)")"(x))’ < liminf(((9,a)")"(x))”
and an application of Fatou’s Lemma shows that
1(p@)" Il e < liminf|(9,2)" |l < C

and this inequality immediately implies that ¢ € M(X).

We now turn to the discussion of our multiplier theorems for the spaces
H? . Our first result deals with multipliers from the spaces H’ to the corre-
sponding spaces L‘; . We start with a lemma in which we consider the case

a=0.

LEMMA 4.4. Let p € L") andlet 0<p<1. If

Ve

v
sgp(mk) (@) ”K(]/p—l/r,r,P) <™

for some r with p <r < oo then

(i) pe M(H*,L*) for p<s<1
and

(i) e M(L) for 1 <s<oo.

PROOF. Let a be a (p, co) atom with suppa C I = x, + G, for some
X, € G and n € Z. For every k € Z we have

(@)’ Ilb = li(w,)" *all,
= ll((¢k)v * a)x,llﬁ + ”((¢k)v * 0)10\1”2 '=A+B.

Applying Holder’s inequality we see that

p/2
A< ( /, (9,)” *a(0) du(x)) ()"

—(1-p/2
< Cll(py) *al - (m,)~"~"?

—(1-p/2
< Clig I lall? - (m,) ™~
< Cllol’.,

because a isa (p, co) atom.

https://doi.org/10.1017/51446788700030007 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700030007

[14] Hardy spaces 485

For B we have

— \ ? d
B= GV‘ [0 ax u(x)

<ty [ ([ 00" @ldu0)” duc)

Since ¢,(y) =0 for y e I, (ak) is constant on the cosets of G, .
Thus, if (x, + Gk), _o represent the different cosets of G, in G, then

o0

(27 () = Y0 (x)x, 46, (1),
i=0
SO
? 14
(/ 1<¢k>v<t>|dn(t>) =( > l(«»k)V(x,.)l(mk)“)
x=I {i:x;ex-1}
< Y e ) (m)™"
{ix;ex—1I}
= (my)"¢ " / (w)" (OF du(e).
x—-1I
Therefore,

B <|lalf’, - (m,)' ™ /G ' /, (@) (x - P du(t) du(x)
=, - (m)'~” /G " /G " (00" & — WP du(y) du(u).

Next we observe that for each u € G
[ 00" 0=l du) = [ 10" 0 du)
G\G G\G,

’ n—1
-3 / 100 0F du)

e |
< X (/G . I(m)v(y)l'du(y)) (W(G\G,, )T
J=—00 PN

n—1
—(1/p—1
<C Z ((mj) /e /r)”(¢k)vaj\Gj“ ”,)p

j==o0

v.p
< Cli(eg) ”K(l/p—l/r,r,p)'
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Since |all,, < (u(I))~""? < C(mn)l/” , we see that

B<Cm,(m) P(m)  (m) ' =cC.

Consequently, ¢ € M(H?, L”). Since ¢ € L), we have ¢ € M(L?).
Thus, an application of Theorem 3.22 and a duality argument complete the
proof of the lemma.

THEOREM 4.5. Let o € L°(T') andlet 0<p< 1. If

Yo

\%
sgp(mk) ?i) ”K(x/p—l/rmw <0

for some r with p <r < oo, then 9 € M(H? , L?) for -1 +p/r<a<0.

PROOF. Let a be a (p, o), atom. We shall distinguish two cases, de-
pending on supp a. First assume suppa C I = x, + G, with x, € G, .

Then x, € Gj\GH1 for some j < n and u (1) = (mj)_"‘(m,,)‘1 , so that
lall, < ((mj)amn)l/p . For each k € Z we have

a

(e @) 1] o = li(p,)" *allf
= (o) =@l o+ 12" * @)\ llh = 4+B,

where

A= / (p)" * a(x)Pu, (x) du(x)
I

p/2
<m)™ ([ 100" P dutn) - ur)' "
< (m) " (m,) " " ?)i(p)" * al}
< (m) ™ (m,) """ gll2 llalls < Il

To estimate B we observe that, as in the proof of Lemma 4.4,

p

B= du,(x)

G\I
14
14 \%
<talf, [ (100 0lduv) du,
< llall’, - (my)'~* /G\I/Il(m)v(x—t)l" du(tydu (x)

/G (0,)" (x = Da(t) du(t)

< llal?, - (m,)' ™ /G n /G o 10070 =0 v, 0+ ) du) dut
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We now estimate the inner integral, first writing it as a sum of three integrals

/G\G"md/t(y)=/G\Gj---+/6j\6 +/G cdu(y)

j+i 11\G,
=B, + B, +B,.
For x, € Gj\Gj+l and y ¢ G, we have x, +y € G, so that v_(x, +y) <
(m j)_a . Therefore, if u € G, we obtain, as in the proof of Lemma 4.4,
Bi<m)™ [ 00 -0 duy)
G\G,

—a —a -1
< Cm) @) Wt pmryror.py < Clm) ™ (m, )P~

For x,€ G)\G,,, and y € G;,|\G, we have x;, +y € G;\G;,, and hence,
U, (xg+¥) = (m,;)”*. Therefore, if u € G, then

By<(m)™ [ 100’0 -0l duty) < Clom) ™ (m?~"

Finally, to find the appropriate estimate for B,, observe that for u € G, ,

Bg/
2 (G\G

J J+1

(r—p)/r
: ( /G . (v, (x4 +1))"” du(y)>

—(a+1-p/r)

p/r
(o) (v —w)l du(y)>

< Clg) g6, I - (m))

—a \
< C(mj) ”(¢k) ”!1,((1/,;_1/,,,,”)
—a -1
< C(mj) (mk)p .
Therefore,
1- —a ~1 -1
B < Clall, - (m) " (m;)~"(m,)'" (m,)” <C,

because a isa (p, oo), atom. Thus we see that ||(¢k&)V||” <C.

b,a —
In case supp a C G, we have |a||, < (1,(G,))”"” < C(m,)**"”, and
foreach ke Z,
k)" lly o = I(0)" *all; ,
= (0" *a)xg Iy o+ (0" * D2erg I
=A+B.

https://doi.org/10.1017/51446788700030007 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700030007

488 C. W. Onneweer and T. S. Quek [17]

Choose s > 1 so that —1 + p/s < a. Then, according to Lemma 4.4,
¢, € M(L’) and we see that

p/s
As(/G |<¢k)v*a<x>|sdu(x>) (/G (va(X))S/(S_”)du(X))

v —(a+1—
< Cli(p)" *al’ - (m,)~ =2
< Clla|ff - (m,)"**'7") < C,

Moreover, as in the first part of the proof, we have
1—
B<lall,-m)” [ [ 1000~ 00,0 du() due

< Clalfy(my) ™ (m,) " (m )y’ " (m,)"" < C.

Thus, we see again that ||((9,a)"[? , < C. According to Remark 4.2 we
may conclude that ¢ € M(H?, L?).

The next theorem deals with multipliers from H(f to Ho‘: . We begin with
a lemma which extends [9, Theorem 2].

(s=p)/s

LEMMA 4.6. Let p € L") and 0<p<1.1If

o0
I/p—1 \V
m}:p(mk) Z “(?’1) ”K(1/p—1/r,r,1) < o0
j=k

for some r with 1 <r < oo then 9 € M(H’) for 1 <5< o0.

PrOOF. We first prove that ¢ € M(H l) by showing that there exists a
C > 0 so that for all (1,00) atoms a we have ||(pa)"|,: < C. We
may assume that supp a C G, for some n € Z. Let f = (pa)” and let
= sup, | f * A)| . Kitada showed in [4, Theorem 2] that

/G £ x)dux) < C
and i
S Edpx) <Y 3 e k606,
G\G, o koo +1

Applying Holder’s inequality we see that for k < n
i\V Y —1yr
1)) 266, I SN0 XG0, Nl (M)
1/p—1 —(1/p—1 Y
= (m)"" " m) "N g e, s

1/p—1 —(i/p—1
S (mn) /p (1/p /")”(

i\V
(my) 9) %66, -
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Hence, we have

oo n—1
1 1 (1 1
£ ) dux) < (m )P~ Z Z (me) " 07) Ko 06,

G\G,

l/p 1
Z” ”K(l/p I/r,r,1) = <C.
Therefore,

1l = / (%) du(x / S < C.

thatis, ¢ € M(H ).
We now show that ¢ € M(H®) for 1 <s < co. Since ¢ € M(H') there
exists a C > 0 so that forall fe H YN L? we have

ITANy == 1@ N Il < N@h) Nl < CllAllgp s

thatis, ¢ € M(H L Ll) . Since H'NL? is a dense subset of H', the operator
T can be extended to H' so that ITAl;r £ Cllflly forall f € H'.
This implies immediately that 7 is of weak type (H ' 1) on H !'. Since
@ € M(Lz) , T 1s of type (2, 2) on L*. Thus, it follows from Theorem
3.22 and a standard duality argument that 7 is of type (s, s), thatis, ¢ €
M(L®) = M(H®) foreach 1 <s< 0.

THEOREM 4.7. Let 9 € L(T") and O<p < 1. If

sup(mk pZ” (¢ ) ”K(]/p 1r,r,p) <P
j=k

for some r with 1 <r<oo then ¢ € M(H?) for -1 +p/r<a<0.

ProOF. Since 0 < p <1 we have

p
[o o]
1-p 1-p Ve
(m,) (Z” ) Niqw/p—1yr.r, 1)) < (my) ™" Y 1@ Wxaspryrorny

j=k
1_ .
C(my)' ™" Z 10 Wt pryr.r.py < 00
=k
It follows from Lemma 4.6 that ¢ € M(H’) for 1 <s < oo.

To see that 9 € M(H?) for —1+p/r<a<0,let a bea (p, 00), atom
with suppa C I = x,+G,. Takeany kK €Z and let f = (¢k&)v = (q)k)v*a
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and let f* =sup,|f +A,|. We have

L@y du, )
= [0 duy ) / (f* (%)) di,(x) i= A+ B.

1

To estimate 4 we distinguish two cases.
(i) If x, € G, then for every r € [1, o) and each a with -1+ p/r <
a <0 we have

plr (r—p)/r
A< ( /G (f‘(x»’du(x)) (/G <va<x>>’/"‘”)du<x>)

P —(at+1=p/r)
< Cllaly: - (m,)~* <C,

where the second inequality is obtained by observing that ¢ € M(H").
(i) If x, € G, then x, € G\G,,, forsome / < n and I C G\G,,.
With r and o as in (i) we have

A< (/I(f’(x))'du(x)y/r. (/I(”a(x))’/""’) d#(x))"“’)/’

< Cllalfy - (m)~*(m,)~" " < C.

To find the appropriate estimate for B we closely follow Kitada’s proof
of [5, Theorem 2]. If we set w(y) = y(x,)e(?), l//l = VI, and b(x) =
a(x + x,) , then Kitada showed that

o0 < S * bl

Jj=n

Therefore,

B=- / () day(x)
505 /I(v/ e b dpy(x),

Jj=n i=—o0

where J, = I\I,,, and I, = x, + G,. For each of the integrals in this sum
Kitada showed that

By= [ 10" b du )

= [ 106 2,2 0P dty ().

https://doi.org/10.1017/51446788700030007 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700030007

[20} Hardy spaces 491

Consequently, applying [7, Lemma 1(b)] to obtain the third inequality, we
see that

. p/r
B, < (/J w’)" 2, * b(X)I'du(x)>

(r=p)/r
- ( / (v (x))1P) du(x))
Ji

< IBIEIW) 2y 1E - (e I
j -1. r—p)/r
< 1aliflle”) xg.6, I - C(m) ™" inf{v,,,_, ():¥ € IO}
< Clalflite’) xgna, 7
()P (inf (v, () v € ORI
(a)If I, =1=G, we have
at+l— j ~r)/r —a
B, < Cm,)" " l(0)) kg g, I - (m)P T (m,)7".

(b) If I, C G\G,,, for some / < n we have

a 1— j — —a
B, < C(m)*(m,) @) 260 17 - (m) ™ (m) ™

Thus, in both cases we see that

oo

n—1 )
B<Cm)' "> 3 (m) 0" g6, )

Jj=ni=—o0

oo
1_ .
< C(m,) pZ l'((pj)v"[;((l/p—l/r,r,l?) <C
Jj=n

Thus, ||f"ll, , = Ilflly < C and this implies that ¢ € M(H.).
For 0 < p < 1 we have the following corollary.

COROLLARY 4.8. Let p € L°(I') and O0<p < 1. If

1/p—1 kv
) l(e™) ”K(l/p—l/r,r,p) <00

sup(m

k( k

Jor some r with 1 <r < oo then ¢ € M(H?) for —1+p/r<a<0.
ProOOF. For 0 < p <1 we have

2\1\)\?’I>V \hpK(z/p_z/r,,,p) < CE\mpu—l < C\mkjg_l .
=k =k
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The result follows immediately from Theorem 4.7.

We now show that Corollary 4.8 is sharp in a certain sense. The example
we use to prove the sharpness result is a variation of the example used in [9]
to prove that certain results of Kitada for H” multipliers, 0 < p < |, were

best possible.

THEOREM 4.9. Let 0<p <1 and 1 <r <oc. There existsa ¢ € L*(I")
so that D
. — \2
@) sup (M) P~ 0@ Nkt jpryr.r.q) < 00 Jor every g >p;
(ii) ¢ € M(H?) forall q with p<q <1 and a with —1+4q/r <a <0;
(iii) ¢ & M(H?) for any o with -1 <2 <0.

Proor. Choose y, € I'|\I'y and define f:G — C by

-1

m, I/p
1= % () negn, 0
=—00
Then f € L'(G) and for every r > p we have

—(1/p—1/r)q
1A Nkt p=tsr.roq) = Z (my) 1/ X676,

k=—00
—1 1 q/p
> Z (——) <00 e q>p.
k=—o00 I |

Moreover, if ¢ > p then

)
q _ —(1/q—1/r)aq q
”f”K(l/q—l/r,r,q) - Z (mk) ”fXGk\Gk-H”r

k=—o00

q/p
Z( k)“*"”(lk|> (WG \G, N

<C Z (lk|)q (m) """ < o0

Also,
—1

R m.\ VP
fy) = =) g, — 16, )7 =7,
k;w ( |k| ) Gy Gt 1

with ZG,( = mXr, - Thus supp f C 7+, cT\I,. Let ¢ = f. Then

¢ € L°(T"). Moreover, ¢ = 0 for k # 1 and ¢* = ¢ for k = 1, so
that (¢")¥ = f and ((ok)v = 0 for k # 1. Therefore ¢ satisfies (i) and,
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according to Corollary 4.8, ¢ satisfies (ii). To see that ¢ satisfies (iii), choose
for every i < 0 an x;, € G;\G,,, and define, for —1 < o < 0, functions
8:G— C by

gi(x) = (mi)a/p

Then g; is a multiple of a (p, o0), atom and |g|i,» < m,. Moreover,

(mlxx‘.+Gl — MyXx 16,)(%)-

&) = (m)"y &) xr, - 1)),
so supp &, C I')\T,.
Furthermore, if we define 4;:G — C by

-1

1/p
hi(x) = (m,-)a/p > (%) nx =x)xg\q,,, (¥ = X)

k=—o00

then h; € L'(G) , and a straightforward computation shows that izi =98,
thatis, h; = (q)g,.)v . Furthermore, we have

-1
W7, = /G ()P dpy(x) > C S k]!
k=i

so lim, ,_ (4|, . =oo. Since each k; € L'(G) we have
Bl = WA N, o 2 M
S0
. AV . . *
lim 1102 llys = Lim_ |kl = Lim A7), = o0

and this implies that ¢ ¢ M(H?).

In his most recent paper on multipliers on H?(G) spaces [6], Kitada
proved a multiplier result for Hardy spaces on locally compact Vilenkin
groups in which his assumptions are the natural analogue for G of the usual

Hoérmander condition for multipliers for function spaces on R”. Before
stating Kitada’s main result we first repeat a definition given in [6].

DEFINITION 4.10. Let ¢ € L°(T'). For A > 0 and j € Z let D*¢’ be
defined by
A j A j
D¢’ = (Ix"(¢")" (x))".
We say that ¢ € M(s, A), where 1 <s < o0, if

A— A j
B(p, 5, 4) = |9l +sup(m,)*~*|D*¢’||; < co.
J

In [6, Theorem 2] Kitada proved the following, which is the analogue for
G of [12, Theorem (4.11)].
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THEOREM K. Let 0 < p <1 and 1 < s < oo. If ¢ € M(s,A) for

A>1/p—1/max(2,s’) then p € M(H?).

We conclude this paper by extending Theorem K to power-weighted Hardy
spaces. Our proof depends on Corollary 4.8 and is somewhat different form

Kitada’s proof of Theorem K. We first establish a simple lemma.

LEMMA 4.11. Let p € L), let 0<p<1 and 1 <r<oo. If

1/p—1 kv
(4.12) sx;p(mk) P14 0% Uk(1/p—1/rre.r.00) <0 fOr somee >0,

then

(4.13) sup(m,)""?7 |
k

k\Vv
(9) ”K(l/p—l/r,r,p) < 0o

PrOOF. We have

k
k\Vv —1+p/r kv
1O Weypmiyrrmy = 2o )™ P110") 2606, I

i=—o00
=)

-1 k
+ 3 (m) TN 266 I

i=k+1

:=A+ B.
Assumption (4.12) implies that

k
A<C Z (mi)——Hp/r(mi)l—p/r+ep(mk)_1+p_ep

k
< C(my) P73 (m)T < C(my)”,
i=—00

since ¢p > 0.
To estimate B first observe that

k k k
1(#") oo < 1011y < N0" g - ATy \Te) < Cll Nl - 11

Therefore,

i=k+1
=C(m,) S (m)~' <cm) .
i=k+1

From the inequalities for 4 and B we immediately obtain (4.13).
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COROLLARY 4.14. Let p € L™ (), let 0<p <l and 1 <r<oco. If ¢
satisfies (4.12) then ¢ € M(H?) for —1+p/r<a<0.

ProoOF. For p = 1 this is [5, Theorem 2]. For 0 < p < 1 we apply
Lemma 4.11 and Corollary 4.8.

THEOREM 4.15. Let 9 € L(T"),let 0<p <1, 1 <r<ooand A>1/p—
1/max(2,r). If ¢ € M(r, ) then ¢ € M(H?) for —1 + p/min(2, r') <
a<0.

PROOF. We first assume that 1 < r < 2 so that max(2, ') = r'. Since
A> 1/p—1/r, there exists an & > 0 so that A = 1/p — 1/F +¢&. Now we
consider

f\V \V Y
“((0}) “K(l/p—l/r’+e,r’,oo) = ll(¢”) ”K(A,r’,oo) < ”(¢1) ”K(/l,r’,r’)
. L i o
=) Ny = Nx1 @)1l = 1D ") "1l < 1D 0N,
Thus, if ¢ € M(r, 1) then ¢ satisfies inequality (4.12), and Corollary 4.14
implies that ¢ € M(H?) for —1 +p/r <a<0.

If 2 <r < oo then max(2, ) = 2. In this case there exists an ¢ > 0
such that A=1/p — 1/2 + ¢ and we have

J\V i\V J\V A
||(¢ ) ”K([/p—l/z-f-g’z,oo) = ||(¢j) ”K(A,Z,oo) < ||(¢ ) “K(A,Z,Z) < ”D ¢1“2-
An application of [6, Proposition 2] to obtain the third inequality, shows that

1/p—1+8”

INY
su_p(mj) (97) ”K(l/p—1/2+s,2,°0)

J
A—1/2 A j
<sup(m,)*”"*|ID*¢’||, < B(p, 2, 3)
J

<CB(p,r,A) <o

and the conclusion of the theorem follows again from Corollary 4.14. This
completes the proof of Theorem 4.15.

ReMARK. Professor Kitada informed the authors that he obtained inde-
pendently essentially the same result as our Theorem 4.15.
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